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Domain descriptions should be modular

This work is about the metatheory of actions, and here we address the problem of what a good domain description for reasoning about actions should look like. We state some postulates concerning this sore spot, which establishes the notion of a modular domain description. We point out the problems that arise when modularity is violated and propose algorithms to overcome them.

INTRODUCTION

In logic-based approaches to reasoning about actions a domain is described by a set of logical formulas Σ. At first glance satisfiability is the only criterion logic provides to check the quality of such a description. In this paper we go beyond that, and argue that we should require more than the mere existence of a model for Σ. Our starting point is that in reasoning about actions one usually distinguishes several kinds of logical formulas. Among these are effect axioms, precondition axioms, and domain constraints.

We prefer here to speak of effect, executability, and static laws, respectively. Moreover we separate inexecutability laws from effect laws. Given these ingredients, suppose the language is powerful enough to state that action α is inexecutable in contexts where A holds, and executable in contexts where B holds. It follows that there can be no context where A ∧ B holds. Now ¬(A ∧ B) is a static law that is independent of α. It is therefore natural to expect that it follows from these laws alone! By means of examples we show that if this is not the case then unexpected conclusions might follow from Σ. A similar case can be made against implicit inexecutability laws.

This motivates postulates requiring that the different ingredients of domain descriptions should be arranged in a modular way, such that interactions between them are limited and controlled. It turns out that in all existing accounts which allow for these four kinds of laws [START_REF] Lin | Embracing causality in specifying the indirect effects of actions[END_REF][START_REF] Mccain | A causal theory of ramifications and qualifications[END_REF][START_REF] Thielscher | Computing ramifications by postprocessing[END_REF][START_REF] Castilho | Formalizing action and change in modal logic I: the frame problem[END_REF][START_REF] Zhang | EPDL: A logic for causal reasoning[END_REF], consistent domain descriptions can be written that violate some of these postulates. We here give algorithms that allow one to check whether a domain description satisfies the postulates. With such algorithms, the task of correcting badly written descriptions can be made easier.

This paper is organized as follows: after the preliminary definitions (Sections 2 and 3) we state (Section 4) and study (5-7) three postulates. Finally we discuss strengthenings (Section 8) and assess related work (Section 9).

DOMAIN DESCRIPTIONS

In this section we establish the ontology of domain descriptions. 1 The authors are with the Institut de Recherche en Informatique de Toulouse (IRIT), Toulouse, France. e-mail: {herzig,ivan}@irit.fr

Static laws

Frameworks which allow for indirect effects make use of logical formulas that link invariant propositions about the world. Such formulas characterize the set of possible states. They do not refer to actions, and we suppose they are expressed as formulas of classical propositional logic. PFOR = {A, B, . . .} is the set of all classical formulas. A static law2 is a formula A ∈ PFOR that is consistent. An example is Walking → Alive, saying that if a turkey is walking, then it must be alive [START_REF] Thielscher | Computing ramifications by postprocessing[END_REF].

Effect laws Let ACT = {α, β, . . .} be the set of all actions of a given domain. To speak about action effects we use the syntax of propositional dynamic logic (PDL) [START_REF] Harel | Dynamic logic[END_REF]. The formula [α]A expresses that A is true after every possible execution of α.

An effect law3 for α is of the form A → [α]C , where A, C ∈ PFOR, with A and C both classically consistent. ('Classically consistent' is a shorthand for 'consistent in classical propositional logic'.) The consequent C is the effect which obtains when α is executed in a state where the antecedent A holds. An example is Loaded → [shoot]¬Alive, saying that whenever the gun is loaded, after shooting the turkey is dead. Another one is [tease]Walking: in every situation, the result of teasing is that the turkey starts walking.

Note that the consistency requirements for A and C make sense: if A is inconsistent then the effect law is superfluous; if C is inconsistent then we have an inexecutability law, that we consider to be a separate entity.

Inexecutability laws

We suppose that effect laws with inconsistent consequents are a particular kind of law. This allows us to avoid mixing things that are conceptually different: for an action α, an effect law mainly associates it with a consequent C , while an inexecutability law only associates it with an antecedent A.

An inexecutability law for α is of the form A → [α]⊥, where A ∈ PFOR is classically consistent. For example ¬HasGun → [shoot]⊥ expresses that shoot cannot be executed if the agent has no gun.

Executability laws

With only static and effect laws one cannot guarantee that shoot is executable if the agent has a gun. Whereas all the extant approaches in the literature that allow for indirect effects of actions contain static and effect laws, the status of executability laws is less consensual. Some authors [START_REF] Schubert | Monotonic solution of the frame problem in the situation calculus: an efficient method for worlds with fully specified actions[END_REF][START_REF] Doherty | Explaining explanation closure[END_REF][START_REF] Mccain | A causal theory of ramifications and qualifications[END_REF][START_REF] Thielscher | Computing ramifications by postprocessing[END_REF] more or less tacitly consider that executability laws should not be made explicit but rather inferred by the reasoning mechanism. Others [START_REF] Lin | Embracing causality in specifying the indirect effects of actions[END_REF][START_REF] Zhang | EPDL: A logic for causal reasoning[END_REF] have executability laws as first class objects one can reason about.

It seems strange to us just stating information about necessary conditions for execution of an action (inexecutabilities) and saying nothing about the sufficient ones. This is the reason why we think we need executability laws. Indeed, in several domains one wants to explicitly state under which conditions a given action is guaranteed to be executable, e.g. that a robot should never get stuck and should always be able to execute a move action. In any case, allowing for executability laws gives us more flexibility and expressive power.

In dynamic logic the dual α A, defined as ¬[α]¬A, can be used to express executability. α thus reads "the execution of action α is possible". An executability law 4 for α is of the form A → α , where A ∈ PFOR is classically consistent. For instance HasGun → shoot says that shooting can be executed whenever the agent has a gun, and tease establishes that the turkey can always be teased. Domain descriptions S ⊆ PFOR denotes the set of all static laws of a given domain. For a given action α ∈ ACT, Eα is the set of its effect laws, Xα is the set of its executability laws, and Iα is the set of its inexecutability laws. We define E = α∈ACT Eα, X = α∈ACT Xα, and I = α∈ACT Iα. A domain description is a tuple of the form S, E, X , I .

DYNAMIC LOGIC AND THE FRAME PROBLEM

Given a domain description S, E, X , I , we need a consequence relation solving the frame problem. To this end we now give the semantics of PDL, and extend it with dependence relations. P1, P2, . . . denote propositional constants, L1, L2, . . . PDL alone does not solve the frame problem. For instance, if S, E, X , I describes our shooting domain then S, E, X , I |= PDL HasGun → [load]HasGun. The deductive power of PDL has to be augmented in order to ensure that the relevant frame axioms follow. The presence of static constraints makes that this is a delicate task, and starting with [START_REF] Lin | Embracing causality in specifying the indirect effects of actions[END_REF][START_REF] Mccain | A causal theory of ramifications and qualifications[END_REF], several authors have argued that some notion of causality is needed. We here opt for the dependence based approach presented in [START_REF] Castilho | Formalizing action and change in modal logic I: the frame problem[END_REF], where dependence information has been added to PDL. In [START_REF] Demolombe | Regression in modal logic[END_REF] it has been shown how Reiter's solution to the frame problem can be recast in PDL. α ; L denotes that the execution of action α may change the truth value of the literal L. In our example we have

; = shoot, ¬Loaded , shoot, ¬Alive , shoot, ¬Walking , tease, Walking
Because load, ¬HasGun / ∈ ;, we have load ; ¬HasGun, i.e., ¬HasGun is never caused by load. We also have tease ; Alive and tease ; ¬Alive. 4 Some approaches (most prominently Reiter's) use biconditionals A ↔ α , called precondition axioms. This is equivalent to ¬A ↔ [α]⊥, which illustrates that they thus merge information about inexecutability with information about executability.

We here suppose that ; is finite. A given dependence relation ; defines a class of possible worlds models M;: every M ∈ M; must satisfy that whenever wRαw then • α ; P and w ∈ I(P ) implies w ∈ I(P ); • α ; ¬P and w ∈ I(P ) implies w ∈ I(P ).

The associated consequence relation is noted |=;. In our example we obtain S, E, X , I |=; HasGun → [load]HasGun.

POSTULATES

Our central hypothesis is that the different types of laws should be neatly separated, and should only interfere in one sense: static laws allow one to infer action laws that do not follow from the action laws alone. The other way round, action laws should not allow to infer new static laws, effect laws should not allow to infer inexecutability laws, etc. Here are the postulates for that: P0. Logical consistency: S, E, X , I |=; ⊥ A domain description should be logically consistent.

P1. No implicit executability laws

: if S, E, X , I |=; A → α , then S, X |= PDL A → α
If an executability law can be inferred from the domain description, then it should already "be" in X , in the sense that it should also be inferable in PDL from the set of executability and static laws alone. If a static law can be inferred from the domain description, then it should be inferable in PDL (and even classically) from the set of static laws alone.

Postulate P0 is obvious. P1 can be ensured by maximizing X . This suggests a stronger version of P1:

P4. Maximal executability laws: if S, E, X , I |=; A → [α]⊥, then S, X |= PDL A → α
It expresses that if in context A no inexecutability for α can be inferred, then the respective executability follows in PDL from the executability and static laws. P4 generally holds in nonmonotonic frameworks, and can be enforced in monotonic approaches such as ours by maximizing X .

Things are less obvious for Postulates P2 and P3. They are violated by domain descriptions designed in all approaches in the literature that allow to express the four kinds of laws. We therefore discuss each of them in the subsequent sections by means of examples, and give algorithms to decide whether they are satisfied.

Consider the following domain description (and ; as above): In the literature, such laws are also known as implicit qualifications [START_REF] Ginsberg | Reasoning about actions II: The qualification problem[END_REF], and it has been argued that it is a positive feature of reasoning about actions frameworks to leave them implicit and provide mechanisms for inferring them [START_REF] Lin | Embracing causality in specifying the indirect effects of actions[END_REF][START_REF] Thielscher | Computing ramifications by postprocessing[END_REF]. The other way round, one might argue as well that implicit qualifications indicate that the domain has not been described in an adequate manner: inexecutability laws have a form simpler than that of effect laws, and it might be reasonably expected that it is easier to exhaustively describe them. 5Thus, all the inexecutabilities should be explicitly stated, and this is what Postulate P2 says.

S1 = {Walking → Alive}, E1 = [tease]Walking, Loaded → [shoot]¬Alive , X1 = I1 = ∅ From [
How can we check whether P2 is violated? First we need a definition. Given classical formulas A and B, the function NewCons A(B) computes the set of strongest clauses that follow from A ∧ B, but do not follow from A alone (cf. e.g. [START_REF] Inoue | Linear resolution for consequence finding[END_REF]). It is known that NewConsA(B) can be computed by subtracting the prime implicates of A from those of A ∧ B. For example, the set of prime im-

plicates of P is just {P }, that of P ∧ (¬P ∨ Q) ∧ (¬P ∨ R ∨ T ) is {P, Q, R ∨ T }, hence NewCons P ((¬P ∨ Q) ∧ (¬P ∨ R ∨ T )) =
{Q, R∨T }. And for our example, NewConsWalking→Alive(Walking) = {Alive, Walking}.

Algorithm 1 (Finding implicit inexecutability laws)

input: S, E, I, ; output: a set of implicit inexecutability laws I I I I := ∅ for all α ∈ ACT do for all J ⊆ Eα do

A J := {A i : A i → [α]C i ∈ J} C J := {C i : A i → [α]C i ∈ J} if S ∪ {A J } is classically consistent then for all L i ∈ NewCons S (C J ) do if ∀i, α ; L i and S, I |= PDL (A J ∧ ¬L i ) → [α]⊥ then I I := I I ∪ {(A J ∧ ¬L i ) → [α]⊥}
Example 1 Consider S1, E1, I1 and ; as given above. Then Algorithm 1 returns

I I = {¬Alive → [tease]⊥}.
Theorem 1 S, E, X , I satisfies Postulate P2 if and only if

I I = ∅.
This is the key algorithm of the paper. We are aware that it comes with considerable computational costs: first, the number of formulas AJ and CJ is exponential in the size of Eα, and second, the computation of NewConsS (CJ ) might result in exponential growth. While we might expect Eα to be reasonably small in practice, the size of NewConsS(CJ ) is more difficult to control. Note that the algorithm terminates because we have assumed ; finite.

The algorithm not only decides whether the postulate is satisfied, its output I I also can provide a way to "repair" the domain description. Basically there are three options, that we illustrate with our example: 1) add ¬Alive → [tease]⊥ to I1; 2) add the (unintuitive) dependence tease, Alive to ;; or 3) weaken the law [tease]Walking to Alive → [tease]Walking. It is easy to see that whatever we opt for, the new domain description will satisfy P2.

NO IMPLICIT STATIC LAWS

Executability laws increase expressive power, but might conflict with inexecutability laws. For instance, let S2 = S1, E2 = E1, X2 = { tease }, and I2 = {¬Alive → [tease]⊥}. (Note that Postulate P2 is satisfied.) We have the unintuitive X2, I2 |= PDL Alive: the turkey is immortal! This is an implicit static law because Alive does not follow from S2 alone: P3 is violated.

How can we find out whether there are implicit static laws? We assume that Postulate P2 is satisfied, i.e., all inexecutabilities are captured by I. The existence of implicit static laws may thus indicate too strong executability laws: in our example, we wrongly assumed that tease is always executable. It may also indicate that the inexecutability laws are too strong, or that the static laws are too weak:

Example 3 Suppose a computer representation of the line of integers, in which we can be at a strictly positive number, Positive, or at a negative one or zero, ¬Positive. Let MaxInt and MinInt, respectively, be the largest and the smallest representable integer number. goleft is the action of moving to the biggest integer smaller than the one at which we are. Consider the following domain description for this scenario (Ati means we are at number i):

S3 = {Ati → Positive : i > 0} ∪ {Ati → ¬Positive : i ≤ 0} E3 = {AtMinInt → [goleft]Underflow}∪ {Ati → [goleft]Ati-1 : i > MinInt} X3 = { goleft }, I3 = ∅ with the dependence relation (MinInt ≤ i ≤ MaxInt): ; = goleft, Ati , goleft, Positive , goleft, ¬Positive , goleft, Underflow
In order to satisfy Postulate P2, we run Algorithm 1 and obtain I3 = {(At1 ∧ At2) → [goleft]⊥}. Now applying Algorithm 2 to this action theory gives us the implicit static law ¬(At1 ∧ At2), i.e., we cannot be at 1 and 2 at the same time.

Theorem 2 Suppose S, E, X , I satisfies P2. Then Postulate P3 is satisfied if and only if S I = ∅.

What shall we do with an implicit static law? Again, several options show up: whereas in the latter example the implicit static law should be added to S, in the former the implicit static law is due to an executability law that is too strong and should be weakened.

So, in order to satisfy Postulate P3, a domain description should contain a complete set of static laws or, alternatively, should not make so strong assumptions about executability. This means that eliminating implicit static laws may require revision of S or completion of X . In the next section we approach the latter option.

MAXIMAL EXECUTABILITY LAWS

Implicit static laws only show up when there are executability laws. Which executability laws can be consistently added to a given domain description? What Theorem 3 says is that it suffices to take the 'complement' of I to obtain all the executability laws of the domain. Note that this counts as a solution to the qualification problem given that all preconditions for guaranteeing executability of actions are thus known.

DISCUSSION

In this section we discuss other properties related to consistency and modularity of domain descriptions. Some will follow from ours, while some others look natural at first glance, but turn out to be too strong.

Theorem 4 If S, E, X , I satisfies P3, then S, E, X , I |=; ⊥ iff S |= PDL ⊥.
This means that if there are no implicit static laws then consistency of a domain description (P0) can be checked by just checking consistency of S.

Theorem 5 If S, E, X , I satisfies P3, then S, E, X , I |=; A → [α]C iff S, Eα, Iα |=; A → [α]C .
This means that under P3 we have modularity inside E, too: when deducing the effects of α we need not consider the action laws for other actions. Versions for executability and inexecutability can be stated as well.

Remark 8.1 Although in the present paper concurrency is not taken into account, we conjecture that Theorem 5 holds when we have concurrent action execution. Now we turn to postulates that are too strong. First, it seems to be in line with the other postulates to require domain descriptions not to allow for the deduction of new effect laws: if an effect law follows from a domain description, and no inexecutability law for the same action in the same context can be derived, then it should follow from the set of static and effect laws alone. This means we should have:

P5. No implicit effect laws: if S, E, X , I |=; A → [α]C and S, E, X , I |=; A → [α]⊥, then S, E |=; A → [α]C
But consider the following intuitively correct domain description: Another though obvious possibility of amending our modularity criteria could be by stating the following postulate: P6. No unattainable effects:

S5 = ∅, E5 = Loaded → [shoot]¬Alive, (¬Loaded ∧ Alive) → [shoot]Alive X5 = {HasGun → shoot }, I5 = {¬HasGun → [shoot]⊥}
if A → [α]C ∈ E, then S, E, X , I |=; A → [α]⊥
This expresses that if we have explicitly stated an effect law for α in some context, then there should be no inexecutability law for the same action in the same context. We do not investigate this further here, but just observe that the slightly stronger version below leads to unintuitive consequences: (¬HasGun ∧ Loaded) → [shoot]⊥. This is certainly too strong. Our example also illustrates that it is sometimes natural to have some 'redundancies' or 'overlaps' between I and E.

RELATED WORK

Pirri and Reiter have investigated the metatheory of the situation calculus [START_REF] Pirri | Some contributions to the metatheory of the situation calculus[END_REF]. In a spirit similar to ours, they simplify the entailment problem for this calculus, and show for several problems such as consistency or regression that only some of the modules of a domain description are necessary. Note that in their domain descriptions S = ∅. This allows them to show that such theories are always consistent.

Zhang et al. [START_REF] Zhang | Consistency of action descriptions[END_REF] have also proposed an assessment of what a good domain description should look like. They develop the ideas in the framework of EPDL [START_REF] Zhang | EPDL: A logic for causal reasoning[END_REF], an extended version of PDL which allows for propositions as modalities to represent causal connection between literals. We do not present the details of that, but concentrate on the main metatheoretical results.

Zhang et al. propose a normal form for describing action theories, and investigate three levels of consistency. Roughly speaking, a domain description Σ is uniformly consistent if it is globally consistent

(i.e., Σ |= EPDL ⊥); a formula Φ is Σ-consistent if Σ |= EPDL ¬Φ, for Σ a uniformly consistent theory; Σ is universally consistent if Σ |= EPDL A implies |= EPDL A.
Given these definitions, they propose algorithms to test the different versions of consistency for a domain description Σ that is in normal form. This test essentially amounts to checking whether Σ is safe, i.e., whether Σ |= EPDL α , for every α. Success of this check should mean the domain description under analysis satisfies the consistency requirements.

Nevertheless, this is only a necessary condition: it is not hard to imagine domain descriptions that are uniformly consistent but in which we can still have implicit inexecutabilities that are not caught by the algorithm. Consider for instance a scenario with a lamp that can be turned on and off by a toggle action, and its EPDL representation given by {On →

[toggle]¬On, Off → [toggle]On, [On]¬Off, [¬On]Off}.
The causal statement [On]¬Off means On causes ¬Off. Such a domain description satisfies each of the consistency requirements (in particular it is uniformly consistent, as Σ |= EPDL ⊥). However, Σ is not safe because the implicit static law ¬(On∧Off) cannot be proved.

Lang et al. [START_REF] Lang | Causal theories of action -a computational core[END_REF] address consistency in the causal laws approach [START_REF] Mccain | A causal theory of ramifications and qualifications[END_REF], focusing on the computational aspects. They suppose an abstract notion of completion of a domain description solving the frame problem. Given a domain description Σα containing logical information about α's direct effects as well as the indirect effects that may follow, the completion of Σα roughly speaking is the original theory Σα amended of logical axioms stating the persistence of all non-affected (directly nor indirectly) literals.

Their EXECUTABILITY problem is to check whether α is executable in all possible initial states (Zhang et al.'s safety property). This amounts to testing whether every possible state w has a successor w reachable by α such that w and w both satisfy the completion of Σα. For instance, still considering the lamp scenario, the representation of the domain description for toggle is {On toggle -→ Off, Off toggle -→ On, Off -→ ¬On, On -→ ¬Off}, where the first two formulas are conditional effect laws for toggle, and the latter two causal laws in McCain and Turner's sense. We will not dive in the technical details, and just note that the executability check will return "no" for this example as toggle cannot be executed in a state satisfying On ∧ Off.

CONCLUSION

We have tried to point out some of the problems that can arise when domain descriptions are not modular. In particular we have argued that the non-dynamic part of domain descriptions should not be influenced by the dynamic one. 6We have put forward several postulates, and have in particular tried to demonstrate that when there are implicit inexecutability and static laws then one has slipped up in designing the domain description under consideration. As shown, a possible solution comes into its own with Algorithms 1, 2 and 3, which can give us some guidelines in correcting a domain description if needed.

Given the difficulty of exhaustively enumerating all the preconditions under which a given action is executable and also those under which such an action cannot be executed, there is always going to be some executability precondition A or some inexecutability precondition B that together lead to a contradiction, forcing, thus, an implicit static law ¬(A ∧ B). This is the reason we propose to state some information about both executabilities and inexecutabilities, complete the latter and then, after deriving all implicit static laws, complete the former. As a final result we will have complete S, X and I.

Throughout this work we used a weak version of PDL, but our notions and results can be applied to other frameworks as well. It is worth noting however that for first-order based frameworks the consistency check of Algorithm 1 is undecidable. (We can get rid of this by assuming that S, E, X , I is finite and there is no function symbol in the language. In this way, the result of NewCons is finite and the algorithm terminates.)

Our postulates do not take into account causality statements linking propositions. This could be a topic for further investigation.

  literals, and Φ, Ψ, . . . formulas. (We recall that A, B, . . . denote classical formulas.) If L = ¬P then we identify ¬L with P . A PDL-model is a triple M = W, R, I where W is a set of possible worlds, R maps action constants α to accessibility relations Rα ⊆ W × W , and I maps propositional constants to subsets of W . Given a PDL-model M = W, R, I , |=M Φ if for all w ∈ W , w |=M Φ; w |=M [α]Φ if w |=M Φ for every w such that wRαw . A formula Φ is a consequence of the set of global axioms {Φ1, . . . , Φn} in the class of all PDL-models (noted Φ1, . . . , Φn |= PDL Φ) if and only if for every PDL-model M , if |=M Φi for every Φi, then |=M Φ.

P2.

  No implicit inexecutability laws: if S, E, X , I |=; A → [α]⊥, then S, I |= PDL A → [α]⊥ If an inexecutability law can be inferred from the domain description, then it should be inferable in PDL from the static and inexecutability laws alone. P3. No implicit static laws: if S, E, X , I |=; A, then S |= PDL A.

Algorithm 2 (Example 2

 22 Finding implicit static laws) input: S, X , I output: a set of implicit static laws S I S I := ∅ for all α ∈ ACT do for all A → [α]⊥ ∈ I and A → α ∈ X do if S |= PDL ¬(A ∧ A ) then S I := S I ∪ {¬(A ∧ A )} For S2, E2, X2, I2 , Algorithm 2 returns S I = {Alive}.

Algorithm 3 (Example 4 Theorem 3

 343 Finding implicit executability laws) input: S, X , I output: a set of implicit executability laws X I X I := ∅ for all α ∈ ACT do Aα:= {A i : A i → [α]⊥ ∈ Iα} if S |= PDL Aα and S, X |= PDL ¬Aα → α then X I := X I ∪ {¬Aα → α } Suppose S4 = {Walking → Alive}, X4 = ∅ and I4 = {¬Alive → [tease]⊥}. Then Algorithm 3 yields X I = {Alive → tease }. Suppose S, E, X , I satisfies P2 and P3. Postulate P4 is satisfied if and only if X I = ∅.

Theorem 6

 6 There exist domain descriptions S, E, X , I not satisfying P3 such that S, E, X , I |=; A → [α]C and S, Eα, Iα |=; A → [α]C . For example, we have S2, E2, X2, I2 |=; ¬Alive → [shoot]Alive, but S2, E2 shoot , I2 shoot |=; ¬Alive → [shoot]Alive.

  together with the dependence relation ; of Example 1. It satisfies Postulates P1, P2, P3, and P4, but does not satisfy P5. Indeed, we have that S5, E5, X5, I5 |=; ¬HasGun ∨ Loaded → [shoot]¬Alive and S5, E5, X5, I5 |=; ¬HasGun ∨ Loaded → [shoot]⊥, but S5, E5 |=; ¬HasGun ∨ Loaded → [shoot]¬Alive. So, Postulate P5 would not help us to deliver the goods.

P6.

  No unattainable effects (strong version): if S, E |=; A → [α]C , then S, E, X , I |=; A → [α]⊥ Indeed, for the above domain description we have that E5 |=; (¬HasGun ∧ Loaded) → [shoot]¬Alive, but S5, E5, X5, I5 |=;

  tease]Walking it follows with S1 that [tease]Alive, i.e., in every situation, after teasing the turkey is alive: S1, E1 |= PDL [tease]Alive. Now as tease ; Alive, the status of Alive is not modified by the tease action, and we have S1, E1 |=; ¬Alive → [tease]¬Alive. From the above, it follows S1, E1, X1, I1 |=; ¬Alive → [tease]⊥, i.e., the turkey cannot be teased if it is dead. But S1, I1 |= PDL ¬Alive → [tease]⊥, hence Postulate P2 is violated. The formula ¬Alive → [tease]⊥ is an example of what we call an implicit inexecutability law.

Static laws are often called domain constraints, but the different laws for actions that we shall introduce in the sequel could in principle also be called like that.

Effect laws are often called action laws, but we prefer not to use that term here because it would also apply to executability laws that are to be introduced in the sequel.

Note that nevertheless this is not related to the qualification problem, which basically says that it is difficult to state all the executability laws of a domain.

It might be objected that it is only by doing experiments that one learns the static laws that govern the universe. But note that this involves learning, whereas here -as always done in the reasoning about actions field -the static laws are known once forever, and do not evolve.
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