C\&L intention revisited

Andreas Herzig, Dominique Longin

To cite this version:

Andreas Herzig, Dominique Longin. C\&L intention revisited. 9th International Conference on Principles of Knowledge Representation and Reasoning (KR 2004), Jun 2004, Whistler, Canada. pp.527-535. hal-03519771

HAL Id: hal-03519771

https://hal.science/hal-03519771

Submitted on 25 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

C\&L Intention Revisited*

Andreas Herzig and Dominique Longin
IRIT - CNRS
118 route de Narbonne, F-31062 Toulouse cedex 04 (France)
\{herzig,longin\}@irit.fr

Abstract

The 1990 papers of Cohen and Levesque (C\&L) on rational interaction have been most influential. Their approach is based on a logical framework integrating the concepts of belief, action, time, and choice. On top of these they define notions of achievement goal, persistent goal, and intention.

We here revisit their approach in a simplified, propositional logic, for which we give complete axiomatization.

Within that logic we study the definition of achievement goals, refining C\&L's analysis. Our analysis allows us to identify the conditions under which achievement goals persist. We then discuss the C\&L definition of intention as well as a variant that has been proposed by Sadek and Bretier. We argue that both are too strong and propose a weakened version.

1 Introduction

The fundamental role of intention in communication and more generally in interaction has been stressed by Bratman [7, 8]. Bratman's analysis has inspired most of the authors in the literature, starting with Cohen \& Levesque [10, 11] (C\&L henceforth). Their approach has been taken up by Perrault [19], Rao and Georgeff [20, 21], Sadek [22], Konolige and Pollack [15], and is the standard reference on BDI logics [33].
$\mathrm{C} \& \mathrm{~L}$ and Sadek reduce intention to primitive concepts of belief, choice, action, and time. In contrast, intention is primitive in the other approaches. This is probably due to C\&L's rather complex framework, which requires a modal predicate logic with equality and quantification over sequences of events, and includes a temporal logic with a binary 'before' operator. Moreover there is only part of the semantics: syntactical assumptions

[^0]are postulated that have no semantical counterpart. Finally, the frame problem remains unsolved, and attempts to fill that gap [19] [1] have turned out to be unsatisfactory [13].

In this paper we simplify and perfect C\&L's approach. We first define and study a minimal propositional logic of action, time, belief, and choice (that we call $A B C$ logic) able to support C\&L's approach. We here take advantage of recent progress in reasoning about actions and beliefs and in product logics, and give a complete axiomatization. We then study the definition of achievement goals, refining the C\&L analysis. Our analysis allows us to identify the conditions under which achievement goals persist. We then discuss the C\&L definition of intention as well as a variant that has been proposed by Sadek. We argue that both are too strong and propose a weakened version.

The components of $A B C$ logic are introduced in the next three sections. We then give a complete axiomatization. Within $A B C$ logic we define achievement goals, and show under which conditions their persistence can be deduced. Finally we discuss how intentions can be defined from achievement goals.

2 Action and time

We here introduce a simple logic of action and time. Generally speaking, events and actions can be interpreted as transition relations on states, be it states of the world, mental states, dialogue states, or a blend of them. This is the kind of model that Dynamic Logic offers. We add to this logic a unary modal operator "henceforth".

2.1 Semantics of events and actions

We suppose there is a set of events $E V T=\{\alpha, \beta, \ldots\}$ and a set of agents $A G T=$ $\{i, j, \ldots\}$. Actions are events that are brought about by agents. We sometimes write $i: \alpha$ to identify the agent of α. EVT contains purely epistemic events which do not change the physical world, but only the agents' mental states. Epistemic events include observations and communication actions.

The formula $[\alpha] \phi$ expresses that if α happens then ϕ holds after α. The dual $\langle\alpha\rangle \phi=$ $\neg[\alpha] \neg \phi$ expresses that α happens and ϕ is true afterwards. Hence $[\alpha] \perp$ expresses that α does not happen, and $\langle\alpha\rangle \top$ expresses that α happens.

2.2 Semantics of time

To speak about sequences of more than one event we use a temporal operator $\square . \square \phi$ expresses that henceforth ϕ holds. A dual operator \diamond is defined by $\diamond \phi=\neg \square \neg \phi$ ('eventually ϕ ').

Models have a set of possible worlds W, and a mapping

$$
V: W \rightarrow(A T M \rightarrow\{0,1\})
$$

associating a valuation V_{w} to every $w \in W$. There are mappings

$$
\mathcal{R}_{\square}: W \rightarrow 2^{W}
$$

and

$$
\mathcal{R}: E V T \rightarrow\left(W \rightarrow 2^{W}\right)
$$

associating sets of possible worlds $\mathcal{R}_{\square}(w)$ and $\mathcal{R}_{\alpha}(w)$ every possible world w. We
indentify such mappings with accessibility relations: $w \mathcal{R}_{\square} w^{\prime}$ iff $w^{\prime} \in \mathcal{R}_{\square}(w)$, etc. As usual,

$$
w \models[\alpha] \phi \text { if } w^{\prime} \models \phi \text { for every } w^{\prime} \in \mathcal{R}_{\alpha}(w)
$$

and

$$
w \models \square \phi \text { if } w^{\prime} \models \phi \text { for every } w^{\prime} \in \mathcal{R}_{\square}(w)
$$

With C\&L we suppose:

- if $w \mathcal{R}_{\alpha} w^{\prime}$ and $w \mathcal{R}_{\beta} w^{\prime \prime}$ then $w^{\prime}=w^{\prime \prime}$;
- \mathcal{R}_{\square} is reflexive ${ }^{1}$, transitive ${ }^{2}$, and confluent ${ }^{3}$;
- if $w \mathcal{R}_{\alpha} w^{\prime}$ then $w \mathcal{R}_{\square} w^{\prime}$;
- if $w \mathcal{R}_{\alpha} w^{\prime}, w \mathcal{R}_{\square} w^{\prime \prime}$ and $w \neq w^{\prime \prime}$ then $w^{\prime} \mathcal{R}_{\square} w^{\prime \prime}$.

It follows from the last two conditions that events are organized in histories: if $w \mathcal{R}_{\alpha} w^{\prime}$ and $w \mathcal{R}_{\beta} w^{\prime \prime}$ then $w^{\prime}=w^{\prime \prime}$. From that it follows that events are deterministic. (To see this put $\beta=\alpha$.)

Our semantics is slightly weaker than C\&L's. First, \mathcal{R}_{\square} is not necessarily linear. Second, w might be possible in the future without there being a particular sequence of actions leading to w : ϕ will be eventually true without necessarily having a sequence of actions which will achieve ϕ. This will be relevant when it comes to intentions, because an agent might believe w can be achieved without having a plan to reach w.

3 Mental attitudes

We now add the basic mental attitudes of belief and choice to the picture.

3.1 Semantics of belief

Under the doxastic logics denomination, modal logics of belief are popular in philosophy and AI, and the system KD45 is widely accepted. ${ }^{4}$ In the models, for each agent i and possible world w there is an associated set of possible worlds $\mathcal{B}_{i}(w) \subseteq W$: the worlds that are compatible with i 's beliefs. Hence every \mathcal{B}_{i} is a mapping

$$
\mathcal{B}_{i}: W \rightarrow 2^{W}
$$

For every $i \in A G T$ there is a modal operator $B e l_{i}$, and $B e l_{i} \phi$ expresses that agent i believes that ϕ. The truth condition for the modal operator $B e l_{i}$ stipulates that $w=B e l_{i} \phi$ if ϕ holds in all worlds that are compatible with i 's beliefs, i.e.

$$
w \models \operatorname{Bel}_{i} \phi \text { if } v \models \operatorname{Bel}_{i} \phi \text { for every } v \in \mathcal{B}_{i}(w)
$$

\mathcal{B}_{i} can be seen as an accessibility relation, and it is standard to suppose that

[^1]- every relation \mathcal{B}_{i} is serial ${ }^{5}$, transitive, and euclidian ${ }^{6}$.

BelIf $_{i} \phi$ abbreviates $B e l_{i} \phi \vee B e l_{i} \neg \phi$.

3.2 Semantics of choice

Among all the worlds in $\mathcal{B}_{i}(w)$ that are possible for agent i, there are some that i prefers. C\&L say that i chooses some subset of $\mathcal{B}_{i}(w)$. Semantically, these worlds are identified by yet another accessibility relation

$$
\mathcal{C}_{i}: W \rightarrow 2^{W}
$$

Choice ${ }_{i} \phi$ expresses that agent i chooses that ϕ. We sometimes also say that i prefers that $\phi .{ }^{7}$ Without surprises, $w \models$ Choice $_{i} \phi$ if ϕ holds in all preferred worlds, i.e.

$$
w \vDash \text { Choice }_{i} \phi \text { if } w^{\prime} \models \phi \text { for every } w^{\prime} \in \mathcal{C}_{i}(w)
$$

We suppose that

- \mathcal{C}_{i} is serial, transitive, and euclidian.

This differs from C\&L, who only have supposed seriality, and follows Sadek's approach. The latter has argued that choice is a mental attitude which obeys to principles of introspection that correspond with transitivity and euclideanity.

3.3 Choice and belief

What is the relation between choice and belief? As said above, an agent only chooses worlds he considers possible:

- $\mathcal{C}_{i}(w) \subseteq \mathcal{B}_{i}(w)$.

Hence belief implies choice, and choice is a mental attitude that is weaker than belief. This corresponds to validity of the (Inc Choice $_{i}$) principle Bel $_{i} \phi \rightarrow$ Choice $_{i} \phi$. We moreover require that worlds chosen by i are also chosen from i 's possible worlds, and vice versa:

- if $w \mathcal{B}_{i} w^{\prime}$ then $\mathcal{C}_{i}(w)=\mathcal{C}_{i}\left(w^{\prime}\right)$.

(See Figure 1.)

Such a semantics validates the equivalences

$$
\begin{align*}
& \text { Choice }_{i} \phi \leftrightarrow \text { Bel }_{i} \text { Choice }_{i} \phi \tag{1}\\
& \neg \text { Choice }_{i} \phi \leftrightarrow \text { Bel }_{i} \neg \text { Choice }_{i} \phi \tag{2}\\
& \text { Choice }_{i} \phi \leftrightarrow \text { Choice }_{i} \text { Choice }_{i} \phi \tag{3}\\
& \neg \text { Choice }_{i} \phi \leftrightarrow \text { Choice }_{i} \neg \text { Choice }_{i} \phi \tag{4}
\end{align*}
$$

The implication Choice $_{i}$ Bel $_{i} \phi \rightarrow$ Choice $_{i} \phi$ is also valid, but not the converse.

[^2]

Figure 1: Belief and choice

4 The kinematics of mental attitudes

Several proposals were made in the beginning of the 90 s concerning the relation between action and belief. They built on what was state of the art in the reasoning-aboutactions field in the 80s, and used complex default or autoepistemic logics [19, 1]. In the beginning of the 90s, Scherl and Levesque [25] have proposed simple principles that can be integrated easily into the original C\&L framework, which is what we undertake here.

We first make some hypotheses on the perception of events. Then we state general principles governing relationships between belief, choice, action and time.

4.1 Hypotheses on perception

We suppose that an event occurs iff every agent i perceives it. More precisely, we suppose that i 's perception is correct (in the sense that if i believes that α has occurred then α indeed occurred) and complete (in the sense that if α occurs then α is perceived by i). Hence event occurrences are public.
HYPOTHESIS. All event occurrences are perceived correctly and completely by every agent.

We note that this hypothesis just aims at simplifying our exposition, and that misperception can be integrated following ideas of Bacchus et al. [2,3] and Baltag et col. [5, 4].

While an agent perceives the occurrence of an event, or more precisely of an event token, we suppose that he does not learn anything beyond that about the event's particular effects. We therefore define uninformative events as event tokens whose outcome is not perceived by the agents. When an agent learns that such an event has occurred, he is nevertheless able to predict its results according to the action laws he believes to
hold. Consider e.g. the action of tossing a coin. Suppose the agent learns that toss has occurred. As he cannot observe the effects, he predicts them in an a priori way, according to his mental state and the action laws. The agent might thus be said to 'mentally execute' toss. After toss he believes that Heads \vee Tails holds, but neither believes Heads nor Tails. It is only the observation that the coin fell heads which may make the agent start to believe that Heads.

We suppose the observation of ϕ never occurs when ϕ is false. To learn that the observation of ϕ has occurred means to learn that ϕ (supposing observations are reliable). Thus, observation actions are uninformative: all the relevant information is encoded in the notification of the event occurrence. Then to take into account the observation of ϕ amounts to incorporate ϕ into $\mathcal{B}_{i}(w)$.

In the same way, we can suppose that i 's action of informing that ϕ is uninformative (both for the speaker i and the hearer). There are perception actions which do not satisfy our hypothesis, such as testing-if- ϕ. Such tests can nevertheless be reduced to uninformative actions: testing-if- ϕ is the nondeterministic composition of observing-that- ϕ and observing-that- $\neg \phi$.

Hypothesis. All events are uninformative.

Our second hypothesis is deeper than the first: without presenting a formal proof here, we suppose that every event can be constructed from uninformative events by means of dynamic logic nondeterministic composition " \cup " and sequencing ";". For example the everyday action of tossing corresponds to the complex toss; (observeHeads \cup observe Tails). In fact such a hypothesis is often made in reasoning about actions, e.g. in [25] or [31, footnote 10].

4.2 Mental attitudes and action

Suppose the actual world is w, and some event α occurs leading to a new actual world w^{\prime}. Which worlds are possible for agent i at w^{\prime} ? According to Moore [18] and Scherl and Levesque [25, 26], i makes 'mentally happen' α in all his worlds $v \in \mathcal{B}_{i}(w)$, and then collects the resulting worlds $\mathcal{R}_{\alpha}(v)$ to form the new belief state. We thus have $\mathcal{B}_{i}\left(w^{\prime}\right)=\left(\mathcal{R}_{\alpha} \circ \mathcal{B}_{i}\right)(w)=\bigcup_{v \in \mathcal{B}_{i}(w)} \mathcal{R}_{\alpha}(v)$. This identity must be restricted in order to keep i 's beliefs consistent, i.e. to avoid $\mathcal{B}_{i}\left(w^{\prime}\right)=\emptyset$. We thus obtain:

- If $w \mathcal{R}_{\alpha} w^{\prime}$ and $\left(\mathcal{R}_{\alpha} \circ \mathcal{B}_{i}\right)(w) \neq \emptyset$

$$
\text { then } \mathcal{B}_{i}\left(w^{\prime}\right)=\left(\mathcal{R}_{\alpha} \circ \mathcal{B}_{i}\right)(w)
$$

This relies on our hypothesis that events are uninformative: apart from the mere occurrence of α agent i should learn nothing about α 's particular effects that obtain in w^{\prime}, and $\mathcal{B}_{i}\left(w^{\prime}\right)$ only depends on $\mathcal{B}_{i}(w)$ and α.

Note that such an explanation is in accordance with our hypotheses. Syntactically, this makes the principle of no forgetting $\left(\mathrm{NF}_{B e l_{i}}\right) \operatorname{Bel}_{i}[\alpha] \phi \wedge \neg \operatorname{Bel}_{i}[\alpha] \perp \rightarrow[\alpha] \operatorname{Bel}_{i} \phi$ valid, as well as the dual principle of no learning ($\mathrm{NL}_{B e l_{i}}$) $[\alpha] \operatorname{Bel}_{i} \phi \wedge \neg[\alpha] \perp \rightarrow$ $\operatorname{Bel}_{i}[\alpha] \phi$.

Figure 2: Action and belief

How do an agent's choices evolve? We recall that for each possible world there is an associated temporal structure (its history). Therefore agent i 's choices concern not only possible states of the world, but also possible histories. We therefore suppose that i 's preferences after α are just the images by α of its preferred worlds before α. Just as for belief, this identity must be restricted in order to keep i 's choices consistent. We thus obtain the constraint:

- If $w \mathcal{R}_{\alpha} w^{\prime}$ and $\left(\mathcal{R}_{\alpha} \circ \mathcal{C}_{i}\right)(w) \neq \emptyset$ then $\mathcal{C}_{i}\left(w^{\prime}\right)=\left(\mathcal{R}_{\alpha} \circ \mathcal{C}_{i}\right)(w)$.

Figure 3: Action, belief, and choice

Again, note that such an explanation is in accordance with our hypotheses. Syntactically, this makes valid the principle (NF Choice $_{i}$) Choice $_{i}[\alpha] \phi \wedge \neg$ Choice $_{i}[\alpha] \perp \rightarrow$
$[\alpha]$ Choice $_{i} \phi$, and (NLChoice ${ }_{i}$) $[\alpha]$ Choice $_{i} \phi \wedge \neg[\alpha] \perp \rightarrow$ Choice $_{i}[\alpha] \phi$.

4.3 Mental attitudes and time

Which constraints can be formulated on $B e l_{i}$ and \square ?
First, note that from $\left(\mathrm{NF}_{B e l_{i}}\right)$ it follows that $\operatorname{Bel}_{i} \square \phi \wedge \neg \operatorname{Bel}_{i}[\alpha] \perp \rightarrow[\alpha] \operatorname{Bel}_{i} \square \phi$, i.e. beliefs about invariants persist as long as there are no surprises.

What about a 'no forgetting' principle for the temporal operator $B e l_{i} \square \phi \rightarrow \square B e l_{i} \phi$? In fact this would be too strong: suppose that for some reason, i wrongly believes that some object is broken and cannot be repaired. We thus have $B e l_{i} \square \neg$ Broken, which together with such a principle would imply $\square B e l_{i} \neg B r o k e n$. Which is absurd: imagine e.g. i learns that the object is in fact not broken. Then such a no forgetting principle would forbid any belief revision.

Only weaker identities can be motivated here: for each of i 's possible worlds v, if u^{\prime} is possible for i in some world u in the future of v then there is a world v^{\prime} possible for i such that u^{\prime} is in its future. And vice versa:

- if $w \mathcal{B}_{i} v$ then $\left(\mathcal{R}_{\square} \circ \mathcal{B}_{i}\right)(v)=\left(\mathcal{B}_{i} \circ \mathcal{R}_{\square}\right)(v)$

This constraint can also be interpreted as a form of introspection through time. Indeed, the introspection principles for belief correspond to $\mathcal{B}_{i} \circ \mathcal{B}_{i}=\mathcal{B}_{i}$, and it can be shown that due to transitivity and euclideanity of \mathcal{B}_{i} our condition is equivalent to $\mathcal{B}_{i} \circ \mathcal{R}_{\square} \circ$ $\mathcal{B}_{i}=\mathcal{B}_{i} \circ \mathcal{R}_{\square}$. Note that corresponding principles of negative introspection cannot be motivated.

Similar to belief we impose for choice:

- if $w \mathcal{C}_{i} v$ then $\left(\mathcal{R}_{\square} \circ \mathcal{C}_{i}\right)(v)=\left(\mathcal{C}_{i} \circ \mathcal{R}_{\square}\right)(v)$

This makes the principle (Inv Choice $_{i}$) Choice $_{i}\left(\square\right.$ Choice $_{i} \phi \leftrightarrow$ Choice $\left._{i} \square \phi\right)$ valid. It follows that Choice $_{i} \square$ Choice $_{i} \phi \leftrightarrow$ Choice $_{i} \square \phi$, which says that if an agent prefers ϕ to be invariant then he chooses that he will always prefer ϕ, and vice versa.

4.4 Comments: revision of beliefs and choices

Our conditions say nothing about i 's beliefs after a surprising action occurrence, i.e. when $\left(\mathcal{R}_{\alpha} \circ \mathcal{B}_{i}\right)(w)=\emptyset$. In this case i must revise his beliefs. Integrations of belief revision into a logic of action and belief have been proposed in [31]. In [14] we have proposed an alternative based on updating by the preconditions of α. It amounts to suppose that our language contains not only modal action operators [α], but also update operators $[\operatorname{upd}(\phi)]$, for every formula ϕ. In the original paper such operations were seen as particular actions. Here we have to separate them because our semantics is in terms of histories, and at most one action happens at a given w, while we would like to allow several updates leaving w.

Our conditions do not constrain either i 's choices when $\left(\mathcal{R}_{\alpha} \circ \mathcal{C}_{i}\right)(w)=\emptyset$, i.e. after an unwanted action occurrence. Then i has to revise his choices.

There are two cases. First, if Choice $_{i}[\alpha] \perp$ and Bel $_{i}[\alpha] \perp$ then a surprising event has occurred, and the agent has to revise both his beliefs and his choices. We think that
in this case our account of belief revision in [14] can be extended to choice revision. In the second case we have Choice $i_{i}[\alpha] \perp$ and $\neg \operatorname{Bel}_{i}[\alpha] \perp$. Then i did not believe the event was impossible, but preferred so. Devices such as a preference relation have to be integrated here, and we leave a more detailed investigation to future work.

5 Completeness theorem

We have defined the semantics of a basic logic of action, belief, and choice. To sum it up, our models have the form $\left\langle W, \mathcal{B}, \mathcal{C}, \mathcal{R}, \mathcal{R}_{\square}, V\right\rangle$, where W is a set of possible worlds, \mathcal{B} and \mathcal{C} associate accessibility relations to every agent, \mathcal{R} associates an accessibility relation to every action, \mathcal{R}_{\square} is the accessibility relation for \square, and V associates a valuation to every possible world. We call $A B C$ models the set of models satisfying all the constraints imposed in the three preceding sections, and write $=_{A B C} \phi$ if ϕ is valid in $A B C$ models. We write $\mathcal{S}=_{A B C} \phi$ if ϕ is a logical consequence of the set of formulas \mathcal{S} in $A B C$ models.

We give now an axiomatization of $A B C$. We suppose the axioms and inference rules of the basic normal modal logic K for every modal operator, ${ }^{8}$ plus the following:
$\left.\begin{array}{lr}\neg\left(\text { Bel }_{i} \phi \wedge \text { Bel }_{i} \neg \phi\right) & \left(\mathrm{D}_{\left.\text {Bel }_{i}\right)}\right. \\ \text { Bel }_{i} \phi \rightarrow \text { Bel }_{i} \text { Bel }_{i} \phi & \left(\mathbf{4 B e l}_{i}\right) \\ \neg \text { Bel }_{i} \phi \rightarrow \text { Bel }_{i} \neg \text { Bel }_{i} \phi & \left(5_{\left.\text {Bel }_{i}\right)}\right. \\ \neg\left(\text { Choice }_{i} \phi \wedge \text { Choice }_{i} \neg \phi\right) & \left(\mathrm{DChoice}_{i}\right) \\ \text { Choice }_{i} \phi \rightarrow \text { Bel }_{i} \text { Choice }_{i} \phi & \left(\mathrm{Pl}_{\left.\text {Choice }_{i}\right)}\right. \\ \neg \text { Choice }_{i} \phi \rightarrow \text { Bel }_{i} \neg \text { Choice }_{i} \phi & \left(\mathrm{Nl}_{\left.\text {Choice }_{i}\right)}\right. \\ \text { Bel }_{i} \phi \rightarrow \text { Choice }_{i} \phi & \text { (IncChoice }\end{array}\right)$
${ }^{8}$ for example for $[\alpha]$:

from $\phi \leftrightarrow \psi$ infer $[\alpha] \phi \leftrightarrow[\alpha] \psi$	$(\operatorname{RE}[\alpha])$
$[\alpha](\phi \wedge \psi) \rightarrow[\alpha] \phi \wedge[\alpha] \psi$	$(\mathrm{M}[\alpha])$
$[\alpha] \phi \wedge[\alpha] \psi \rightarrow[\alpha](\phi \wedge \psi)$	$(\mathrm{C}[\alpha])$
$[\alpha] \top$	$(\mathrm{N}[\alpha])$

Choice $_{i}[\alpha] \phi \wedge \neg$ Choice $_{i}[\alpha] \perp \rightarrow$	$\left(\right.$ NF $_{\left.\text {Choice }_{i}\right)}$
$\quad[\alpha]$ Choice $_{i} \phi$	$\left(\right.$ NL Choice $\left._{i}\right)$
$[\alpha]$ Choice $_{i} \phi \wedge \neg[\alpha] \perp \rightarrow$ Choice $_{i}[\alpha] \phi$	$\left(\right.$ Inv $\left._{i}{ }_{i}\right)$
Bel $_{i}\left(\square\right.$ Bel $_{i} \phi \leftrightarrow$ Bel $\left._{i} \square \phi\right)$	$\left(\operatorname{Inv}\right.$ Choice $\left._{i}\right)$

Some comments are in order.
($\mathrm{Pl}_{\text {Choice }_{i}}$) is an axiom of positive introspection for choice similar to (4 Bel $_{i}$) and ($\mathrm{Nl}_{\text {Choice }_{i}}$) is the negative version.

Axiom (Hist1) implies determinism of every $\alpha:\langle\alpha\rangle \phi \rightarrow[\alpha] \phi$. (Hist 2) is similar to the first of the Segerberg axioms [12].

Axioms ($\mathrm{NF}_{B e l_{i}}$) and ($\mathrm{NL}_{B e l_{i}}$) can be put together into the single $\left(\neg[\alpha] \perp \wedge \neg \operatorname{Bel}_{i}[\alpha] \perp\right) \rightarrow\left([\alpha] \operatorname{Bel}_{i} \phi \leftrightarrow \operatorname{Bel}_{i}[\alpha] \phi\right)$. Equivalences of this kind have been called successor state axioms for belief in [25].
$\left(\mathrm{NF}_{\text {Choice }_{i}}\right)$ and ($\mathrm{NLChoice}_{i}$) are their analogues for choice. Such axioms for choice have not been studied before.
$\left(\operatorname{lnv} B e l_{i}\right)$ is a subjective version of a successor state axiom for belief and time. (Inv Choice $_{i}$) is a similar axiom for choice and time. As far as we know they have not been studied before either.

From ($\mathrm{NF}_{B e l_{i}}$) it follows that

$$
\operatorname{Bel}_{i} \square \phi \wedge \neg \operatorname{Bel}_{i}[\alpha] \perp \rightarrow[\alpha] \operatorname{Bel}_{i} \square \phi,
$$

i.e. beliefs about invariants persist as long as there are no surprises.

From $\left(\operatorname{Inv} \mathrm{Bel}_{i}\right)$ it can be deduced in KD45 that

$$
\operatorname{Bel}_{i} \square \phi \leftrightarrow \operatorname{Bel}_{i} \square \operatorname{Bel}_{i} \phi
$$

i.e. if i believes ϕ to be an invariant then he believes that he will always be aware of ϕ.

Moreover,

$$
\begin{gathered}
\operatorname{Bel}_{i} \square\left(\operatorname{Bel}_{i} \phi \rightarrow \phi\right) \\
\operatorname{Bel}_{i} \diamond \operatorname{Bel}_{i} \phi \rightarrow \operatorname{Bel}_{i} \diamond \phi \\
\text { Choice }_{i} \diamond \operatorname{Bel}_{i} \phi \rightarrow \text { Choice }_{i} \diamond \phi
\end{gathered}
$$

are valid.
The other way round, $\operatorname{Bel}_{i} \diamond \phi \rightarrow \operatorname{Bel}_{i} \diamond \operatorname{Bel}_{i} \phi$ and Choice $_{i} \diamond \phi \rightarrow$ Choice $_{i} \diamond$ Bel $_{i} \phi$ should not hold. Here is an example illustrating that, inspired by Heisenberg's uncertainty principle. Let p mean that some electron is in a particular place. Suppose you believe that it will eventually be in that place: $B e l_{i} \diamond p$. According to Heisenberg it is impossible to know that at the same point in time: $\square \neg B e l_{i} p$. Now if we suppose that i is aware of that principle, we obtain $B e l_{i} \neg \diamond B e l_{i} p$.

A similar argument can be made against Choice ${ }_{i} \diamond \phi \rightarrow$ Choice $_{i} \diamond$ Bel $_{i} \phi$. This is opposed to Sadek and colleagues' approach [22, 9, 16], where the principle Choice ${ }_{i} \diamond \phi \rightarrow$ Choice $_{i} \diamond$ Bel $_{i} \phi$ is accepted.

We call $A B C$ logic the logic thus axiomatized, and write $\vdash_{A B C} \phi$ if ϕ is a theorem of $A B C$.

```
THEOREM. \(\models_{A B C} \phi\) iff \(\vdash_{A B C} \phi\).
```

It is a routine task to check that all the axioms correspond to their semantic counterparts. It is routine, too, to check that all of our axioms are in the Sahlqvist class, for which a general completeness result exists [24, 6].

We conjecture that Marx's proof [17] of decidability and EXPSPACE complexity of the problem of satisfiability in the product logic $S 5 \times \mathrm{K}$ extends straightforwardly to $A B C$ logic in the case of a single agent. ${ }^{9}$

In the rest of the paper, we apply $A B C$ logic to investigate the notions of achievement goal, persistent goal, and intention.

6 Achievement goals

C\&L view goals and intentions as particular future-oriented choices which take the form Choice ${ }_{i} \diamond \phi$.

If ϕ is already believed to be true then there is no point in maintaining the goal or the intention that $\phi . \mathrm{C} \& \mathrm{~L}$ therefore concentrate on goals which require some change in order to make them true. Basically such goals are of the form Choice $_{i} \diamond \phi \wedge \neg \psi$, where ψ is a condition triggering the abandonment of the goal.

Which forms do ϕ and ψ take? First of all ϕ and ψ should be equivalent: when ϕ obtains then the goal can be abandoned, and whenever the goal is abandoned then ϕ holds. (This is at least expected by i.) Second, ψ should not be factual, but rather about i 's mental state: else the agent has no means to decide when to abandon his goal. Hence achievement goals take the following form.

Definition. Agent i has the achievement goal that ϕ if (1) in his preferred worlds ϕ is believed later and (2) i does not believe ϕ :

$$
A G o a l_{i} \phi \stackrel{\text { def }}{=} \text { Choice }_{i} \diamond \operatorname{Bel}_{i} \phi \wedge \neg \text { Bel }_{i} \phi \quad \quad \quad\left(\operatorname{Def}_{A G o a l_{i}}\right)
$$

The only basic modal principle our definition of achievement goals validates is

$$
\frac{\phi \leftrightarrow \psi}{\text { AGoal }_{i} \phi \leftrightarrow A \text { Goal }_{i} \psi} .
$$

For the rest, just as in the $\mathrm{C} \& \mathrm{~L}$ account none of the standard principles is valid.
The so-called side effect problem is to avoid to systematically adopt the consequences of our goals. Formally $A_{G o a l_{i}} \phi \wedge \operatorname{Bel}_{i}(\phi \rightarrow \psi) \rightarrow A \operatorname{Goal}_{i} \psi$ should not be valid. Just as for $\mathrm{C} \& \mathrm{~L}$, this formula is not valid in $A B C$ logic. Even if we strengthen the condition $\operatorname{Bel}_{i}(\phi \rightarrow \psi)$ in various ways, $A \operatorname{Goal}_{i} \phi$ does not imply $A G o a l_{i} \psi$. The

[^3]reason is that the side effect might be believed, which makes that ψ cannot be an achievement goal. And just as $\mathrm{C} \& \mathrm{~L}$, if we add the condition $\neg B e l_{i} \psi$ then we validate
$$
\text { AGoal }_{i} \phi \wedge \operatorname{Bel}_{i} \square(\phi \rightarrow \psi) \wedge \neg \operatorname{Bel}_{i} \psi \rightarrow \text { AGoal }_{i} \psi
$$
(The proof makes use of the Axiom $\left(\operatorname{lnv} \mathrm{Bel}_{i}\right)$.) We also validate and the inference rule
$$
\frac{\phi \rightarrow \psi}{\text { AGoal }_{i} \phi \wedge \operatorname{Bel}_{i} \wedge \neg \operatorname{Bel}_{i} \psi \rightarrow \text { AGoal }_{i} \psi} .
$$

Finally, the valid equivalences

$$
\text { AGoal }_{i} \phi \leftrightarrow \operatorname{Bel}_{i} A_{G o a l}^{i} \phi
$$

and

$$
\neg \text { AGoal }_{i} \phi \leftrightarrow \text { Bel }_{i} \neg \text { AGoal }_{i} \phi
$$

express that an agent is aware of his achievement goals. The equivalence

$$
\text { AGoal }_{i} \phi \leftrightarrow A \operatorname{Goal}_{i} \operatorname{Bel}_{i} \phi
$$

is valid as well (while only the left-to-right direction is valid for C\&L).

6.1 Comparison with C\&L

C\&L's original definition of achievement goals is

$$
A G o a l_{i}^{C L} \phi \stackrel{\text { def }}{=} \text { Choice }_{i} \diamond \phi \wedge \text { Bel }_{i} \neg \phi
$$

Theorem. A Goal $_{i} \phi \leftrightarrow$ AGoal $_{i}^{C L}$ Bel $_{i} \phi$.
This can be proved using introspection properties of belief.
C\&L satisfy Axiom D: $\neg\left(A G o a l_{i} \phi \wedge A G o a l_{i} \neg \phi\right)$, while we do not. ${ }^{10}$ Thus, while an agent's choices are consistent, his achievement goals are not necessarily so. This can be justified by the same temporal considerations that lead to rejection of axiom C : i might want ϕ to be true at some point in the future, and ϕ to be false at some other point in the future. But note that $A G o a l_{i} \square \phi \wedge A G o a l_{i} \square \neg \phi$ is unsatisfiable due to the confluence of time.

In their definition, C\&L stipulate that i should believe ϕ is false. We have preferred the weaker $\neg \operatorname{Bel}_{i} \phi$ because it is more natural: in general goals are abandoned only when they are believed to be true, and therefore absence of belief is sufficient to maintain the goal (but see our Byzantine example below for a counterexample).

[^4]$\mathrm{C} \& \mathrm{~L}$ only require Choice $_{i} \diamond \phi$. We have seen in the previous section that Choice $_{i} \diamond$ Bel $_{i} \phi \rightarrow$ Choice $_{i} \diamond \phi$ is a theorem. We have also said there that the other sense of the implication should not hold. So let us consider a situation where Choice $_{i} \diamond \phi \wedge \neg$ Choice $_{i} \diamond$ Bel $_{i} \phi$ holds. The following example seems to motivate the need for achievement goals in C\&L's sense.

Let r mean that a message of i has been received by j, and let i believe initially that j has not received the message yet. Suppose we are in a Byzantine-generalsstyle scenario where i is not guaranteed that his message will eventually be received by j, and where i believes that in any case he will never know whether j received the message or not. (In the original scenario it is just possible for i that he will never know.) Hence we have $B e l_{i} \neg r \wedge$ Choice $_{i} \diamond r \wedge \operatorname{Bel}_{i} \square \neg \operatorname{BelIf}_{i} r$. From the latter it follows that \neg Choice $_{i} \diamond$ Bel $_{i} r$. In summary, we have Bel $_{i} \neg r \wedge A$ Goal $_{i}^{C L} r \wedge \neg A$ Goal $_{i} r$.

Now in such a context it seems reasonable that i acts by nevertheless posting the message. C\&L can account for this case by stating AGoal ${ }_{i}^{C L} r$. What would be i 's achievement goal in our account? We argue that in the example i has the achievement goal that $\neg B e l_{i} \neg r$: such an achievement goal can first motivate i to post the message, and then trigger abandonment (say after the time period i esteems necessary for the message travelling under favorable conditions). Note that $A G o a l_{i} \neg \operatorname{Bel}_{i} \neg r$ is consistent with the scenario description.

Consider another example where there is only one action of toggling a switch, and suppose that in the initial world $w_{0} \models \neg \operatorname{Bel}_{i} \operatorname{Light} \wedge \neg \operatorname{Bel}_{i} \neg$ Light, i.e. i ignores whether the light is on or off: for i there is at least one possible world where Light holds, and there is at least one possible world where \neg Light holds. As toggling is the only available action we have $w_{0} \models \operatorname{Bel}_{i} \square\left(\neg \operatorname{Bel}_{i} \operatorname{Light} \wedge \neg \operatorname{Bel}_{i} \neg \operatorname{Light}\right)$, i.e. i believes he will always ignore whether the light is on or off. According to C\&L agent i can nevertheless have the achievement goal $A \operatorname{Goal}_{i}^{C L}$ Light in w_{0}, while he cannot have such a goal with our definition. Thus i is aware that he will never be able to abandon his goal that Light in the expected way, viz. by coming to believe that Light.

7 Persistent goals

C\&L have defined persistent goals to be achievement goals that are kept until they are achieved, or are abandoned for some other reasons. We can show that persistence can be deduced from our no forgetting principle for choice as long as the event is not unwanted:

THEOREM. $\models_{A B C}\left(\right.$ AGoal $_{i} \phi \wedge \neg$ Choice $\left._{i}[\alpha] \perp\right) \rightarrow[\alpha]\left(\right.$ AGoal $_{i} \phi \vee$ Bel $\left._{i} \phi\right)$
Proof. We prove $\neg \operatorname{Bel}_{i} \phi \wedge$ Choice $_{i} \diamond$ Bel $_{i} \phi \rightarrow$ Choice $_{i}[\alpha] \perp \vee[\alpha]$ Choice $_{i} \diamond$ Bel $_{i} \phi$. This can be deduced from ($\mathrm{NL}_{\text {Choice }}^{i}$), (Hist2), (Inc Choice $_{i}$) as follows.

First, axiom (Hist2) tells us that

$$
\diamond B e l_{i} \phi \rightarrow\left(\operatorname{Bel}_{i} \phi \vee[\alpha] \diamond B e l_{i} \phi\right)
$$

for any action α. Therefore

$$
\text { Choice }_{i} \diamond \text { Bel }_{i} \phi \rightarrow \text { Choice }_{i}\left(\text { Bel }_{i} \phi \vee[\alpha] \diamond \operatorname{Bel}_{i} \phi\right)
$$

As by (5 Bel $_{i}$) and (Inc Choice $_{i}$) we have

$$
\neg \text { Bel }_{i} \phi \rightarrow \text { Choice }_{i} \neg \text { Bel }_{i} \phi,
$$

the left hand side implies

$$
\text { Choice }_{i}[\alpha] \diamond \text { Bel }_{i} \phi .
$$

From that we get with $\left(\mathrm{NL}_{\text {Choice }}^{i}\right.$) that

$$
\text { Choice }_{i}[\alpha] \perp \vee[\alpha] \text { Choice }_{i} \diamond \text { Bel }_{i} \phi .^{\text {. }}
$$

We inherit the properties of achievement goals concerning logical principles, the side effect problem, and persistence.

7.1 Comparison with C\&L

C\&L's original definition is that a persistent goal that ϕ is an achievement goal that ϕ that can only be abandoned if

1. ϕ is achieved, or
2. the agent learns that ϕ can never be achieved, or
3. for some other reason.

This leads to their principle

$$
P \operatorname{Goal}_{i} \phi \rightarrow[\alpha]\left(\text { PGoal }_{i} \phi \vee \operatorname{Bel}_{i} \phi \vee \operatorname{Bel}_{i} \square \neg \phi \vee \psi\right),
$$

where ψ is an unspecified condition accounting for case (3). Our theorem makes (3) more precise by identifying it with the occurrence of an unwanted event, which is the only case when achievement goals have to be revised. ${ }^{11}$ Indeed, the theorem tells us that C\&L's case (2) is excluded when \neg Choice $_{i}[\alpha] \perp$ holds: in this case we are guaranteed that i will not learn through α that ϕ will be false henceforth. Given our hypothesis that events are uninformative, this is as it should be.

8 Intentions

C\&L have distinguished intentions-to-do and intentions-to-be. We here only consider the latter, which, following Bratman, C\&L have defined as particular persistent goals: the agent must be committed to achieve the goal, in the sense that he must believe that he will perform an action which will lead to the goal.

Definition. Agent i has the intention that ϕ if (1) i has the achievement goal that ϕ, and (2) i does not believe $B e l_{i} \phi$ will obtain anyway:

$$
\operatorname{Int}_{i} \phi \stackrel{\text { def }}{=} A \operatorname{Goal}_{i} \phi \wedge \neg \operatorname{Bel}_{i} \diamond B e l_{i} \phi \quad \quad\left(\operatorname{Def}_{I n t_{i}}\right)
$$

[^5]Hence intentions are achievement goals which do not automatically obtain in the future. As $\neg \operatorname{Bel}_{i} \diamond \operatorname{Bel}_{i} \phi$ implies $\neg \operatorname{Bel}_{i} \phi$, it follows that $\operatorname{Int}_{i} \phi \leftrightarrow$ Choice $_{i} \diamond \operatorname{Bel}_{i} \phi \wedge$ $\neg B e l_{i} \diamond B e l_{i} \phi$. If not explicitly, this implicitly links i 's intending that ϕ to i 's choosing actions that get him closer to ϕ : Int $t_{i} \phi$ triggers i 's planning for ϕ. Therefore it seems justified to say that our definition captures the spirit of Bratman's intentions.

What is the status of achievement goals when $\operatorname{Bel}_{i} \diamond B e l_{i} \phi$ holds? In this case, $A G o a l_{i} \phi \wedge \operatorname{Bel}_{i} \diamond B e l_{i} \phi$ is equivalent to $\operatorname{Bel}_{i} \diamond \operatorname{Bel}_{i} \phi \wedge \neg B e l_{i} \phi: i$ believes ϕ will be achieved in the future, no matter what continuation of his possible histories occurs. Then according to our definition i has to abandon $\operatorname{Int}_{i} \phi$ at w_{1}. This is reminiscent of McDermott's Little Nell example: suppose that i intends that ϕ at w_{0}, and that i successfully plans and acts in a way such that later on at w_{1} he is sure ϕ will be achieved in the future, i.e. $\operatorname{Bel}_{i} \diamond \operatorname{Bel}_{i} \phi$ holds at w_{1}. According to McDermott i then abandons his intention that ϕ too early, and will never achieve ϕ. We believe the problem can be solved by separating planning-oriented (future-oriented) intention from intention-in-action: at w_{1} agent i switches from the planning-oriented intention $\operatorname{Int}_{i} \phi$ to the intention-in-action to execute the plan (alias complex action) which he believes ensures that ϕ will obtain. i will stick to this plan from w_{1} on and as long as no unforeseen events occur. ${ }^{12}$

Again, we inherit the properties of achievement goals concerning logical principles, the side effect problem, and in particular persistence:
THEOREM. $\models_{A B C}\left(\right.$ Int $_{i} \phi \wedge \neg$ Choice $\left._{i}[\alpha] \perp\right) \rightarrow[\alpha]\left(\right.$ Int $\left._{i} \phi \vee \operatorname{Bel}_{i} \diamond B e l_{i} \phi\right)$
Proof. The theorem of the previous section establishing that achievement goals are also persistence goals, a look at the proof tells us that

$$
\left(\text { AGoal }_{i} \phi \wedge \neg \text { Choice }_{i}[\alpha] \perp\right) \rightarrow[\alpha] \text { Choice }_{i} \diamond \text { Bel }_{i} \phi
$$

Therefore by classical principles

$$
\begin{aligned}
& \left(\text { AGoal }_{i} \phi \wedge \neg \text { Choice }_{i}[\alpha] \perp\right) \rightarrow \\
& \quad[\alpha]\left(\left(\text { Choice }_{i} \diamond \text { Bel }_{i} \phi \wedge \neg \text { Bel }_{i} \diamond \text { Bel }_{i} \phi\right) \vee \text { Bel }_{i} \diamond \text { Bel }_{i} \phi\right)
\end{aligned}
$$

from which the present theorem follows by the definition of intention.
Hence intentions persist as long as there are no unwanted action occurrences.

8.1 Comparison with C\&L

Our definition of $I n t_{i} \phi$ differs from C\&L's in a fundamental way because it does not mention actions: C\&L basically stipulate that in every preferred history there must be some action α whose author is i and which brings about ϕ.

Using quantification over actions this could be approximated by:

$$
\operatorname{Int}_{i}^{C L} \phi \stackrel{\text { def }}{=} \neg \text { Bel }_{i} \phi \wedge \text { Choice }_{i} \diamond \exists i: \alpha\langle i: \alpha\rangle \text { Bel }_{i} \phi .
$$

[^6]But as pointed out by Sadek [23] and Bretier [9], such a definition is too strong in particular in cooperative contexts, where it often suffices for i to trigger actions of some other agent j which will achieve the goal. They have advocated a correction, which we roughly approximate here by:

$$
\begin{aligned}
& \text { Int }_{i}^{S} \phi \stackrel{\text { def }}{=} \neg \text { Bel }_{i} \phi \wedge \text { Choice }_{i} \diamond \text { Bel }_{i} \phi \wedge \\
& \quad \text { Choice }_{i} \forall i: \alpha\left(\text { Bel }_{i}\langle i: \alpha\rangle \diamond \text { Bel }_{i} \phi \rightarrow \text { Choice }_{i} \diamond\langle i: \alpha\rangle \top\right) .
\end{aligned}
$$

Again, this is too strong: my intention to go to Vancouver in june here would force me to choose the action of hiring an aircraft. In another sense, both C\&L's and Sadek's definitions are too weak because they lack a causal connection between the action and the goal: basically they entitle me to entertain the intention that it be sunny in Vancouver in june if each of my preferred histories has some action of mine leading to a state where this holds.

As our definition of intention does not mention events at all, this example also illustrates that our definition is also too weak in this respect.

9 Conclusion

We have integrated action, time, belief, and choice in a simple propositional modal logic that is sound, complete and decidable, and which we think provides the basic framework for the logical analysis of interaction. We have shown how different notions of goal and intention can be expressed in it, and have identified the conditions under which such motivational attitudes persist.

Although Cohen and Levesque's papers are standard references, to the best of our knowledge such a simplification has never been undertaken. Our completeness, decidability and complexity results pave the way for methods of mechanical deduction.

In $A B C$ logic we have also in part solved the frame problem for belief and intention. While the frame problem for belief has been investigated extensively in the literature, there is not too much work in the literature on the frame problem for intentions, and the only references we are aware of are [28, 29, 30]. These accounts are preliminary, in particular they lead to fanatic agents.

What is lacking for a comprehensive solution to the frame problem for intention is the integration of belief and choice revision (sometimes called intention reconsideration in agent theories [32, 27]). We leave this important issue to future work.

What remains also to be addressed is the question of how intentions lead to actions. This is is the topic of plan generation, which still has to be integrated in our logic.

References

[1] Douglas Appelt and Kurt Konolige. A nonmonotonic logic for reasoning about speech acts and belief revision. In M. Reinfrank, J. de Kleer, M. Ginsberg, and E. Sandewall, editors, Proc. 2nd Int. Workshop on Non-monotonic Reasoning, number 346 in LNAI, pages 164-175. Springer Verlag, 1989.
[2] F. Bacchus, J.Y. Halpern, and H. Levesque. Reasoning about noisy sensors in the situation calculus. In Proc. 14th Int. Joint Conf. on Artificial Intelligence (IJCAI'95), pages 1933-1940, 1995.
[3] F. Bacchus, J.Y. Halpern, and H. Levesque. Reasoning about noisy sensors in the situation calculus. Artificial Intelligence, 111:131-169, 1999.
[4] Alexandru Baltag. A logic of epistemic actions. Technical report, CWI, 2000. http://www.cwi.nl/~abaltag/papers.html.
[5] Alexandru Baltag, Lawrence S. Moss, and Slawomir Solecki. The logic of public announcements, common knowledge, and private suspicions. In Proc. TARK'98, pages 43-56. Morgan Kaufmann, 1998.
[6] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2001.
[7] M. E. Bratman. Intentions, plans, and practical reason. Harvard University Press, MA, 1987.
[8] Michael E. Bratman. What is intention? In Philip R. Cohen, Jerry Morgan, and Martha E. Pollack, editors, Intentions in Communication, chapter 2, pages 15-31. MIT Press, Cambridge, MA, 1990.
[9] Philippe Bretier. La communication orale coopérative : contribution à la modélisation logique et à la mise en œuvre d'un agent rationnel dialoguant. PhD thesis, Université Paris Nord, Paris, France, 1995.
[10] Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artificial Intelligence J., 42(2-3):213-261, 1990.
[11] Philip R. Cohen and Hector J. Levesque. Persistence, intentions, and commitment. In Philip R. Cohen, Jerry Morgan, and Martha E. Pollack, editors, Intentions in Communication, chapter 3, pages 33-69. MIT Press, Cambridge, MA, 1990.
[12] David Harel. Dynamic logic. In Dov M. Gabbay and Franz Günthner, editors, Handbook of Philosophical Logic, volume II, pages 497-604. D. Reidel, Dordrecht, 1984.
[13] Andreas Herzig and Dominique Longin. Belief dynamics in cooperative dialogues. J. of Semantics, 17(2), 2000. vol. published in 2001.
[14] Andreas Herzig and Dominique Longin. Sensing and revision in a modal logic of belief and action. In Frank van Harmelen, editor, Proc. ECAI2002, pages 307311. IOS Press, 2002.
[15] Kurt Konolige and Martha E. Pollack. A representationalist theory of intention. In Proc. 13th Int. Joint Conf. on Artificial Intelligence (IJCAI'93), pages 390-395, Chambery, France, 1993. Morgan Kaufmann.
[16] Vincent Louis. Conception et mise en œuvre de modèles formels du calcul de plans d'action complexes par un agent rationnel dialoguant. PhD thesis, Université de Caen, France, December 2003.
[17] Maarten Marx. Complexity of products of modal logics. J. of Logic and Computation, 9(2):221-238, 1999.
[18] Robert C. Moore. A formal theory of knowledge and action. In J.R. Hobbs and R.C. Moore, editors, Formal Theories of the Commonsense World, pages 319358. Ablex, Norwood, NJ, 1985.
[19] C. Raymond Perrault. An application of default logic to speech act theory. In Philip R. Cohen, Jerry Morgan, and Martha E. Pollack, editors, Intentions in Communication, chapter 9, pages 161-185. MIT Press, Cambridge, MA, 1990.
[20] Anand S. Rao and Michael P. Georgeff. Modeling rational agents within a BDIarchitecture. In J. A. Allen, R. Fikes, and E. Sandewall, editors, Proc. 3rd Int. Conf. on Knowledge Representation and Reasoning (KR'91), pages 473-484, San Mateo, CA, 1991. Morgan Kaufmann.
[21] Anand S. Rao and Michael P. Georgeff. An abstract architecture for rational agents. In Bernhard Nebel, Charles Rich, and William Swartout, editors, Proc. 4th Int. Conf. on Knowledge Representation and Reasoning (KR'92), pages 439449, Cambridge, Massachusetts, 1992. Morgan Kaufmann.
[22] M. D. Sadek. A study in the logic of intention. In Bernhard Nebel, Charles Rich, and William Swartout, editors, Proc. 4th Int. Conf. on Knowledge Representation and Reasoning (KR’92), pages 462-473, Cambridge, Massachusetts, October 1992. Morgan Kaufmann.
[23] M. D. Sadek. Dialogue acts are rational plans. In M.M. Taylor, F. Néel, and D.G. Bouwhuis, editors, The structure of mutimodal dialogue, pages 167188, Philadelphia/Amsterdam, 2000. John Benjamins publishing company. From ESCA/ETRW, Workshop on The Structure of Multimodal Dialogue (Venaco II), 1991.
[24] H. Sahlqvist. Completeness and correspondence in the first and second order semantics for modal logics. In Stig Kanger, editor, Proc. 3rd Scandinavian Logic Symposium 1973, number 82 in Studies in Logic. North Holland, 1975.
[25] Richard Scherl and Hector J. Levesque. The frame problem and knowledge producing actions. In Proc. Nat. Conf. on AI (AAAI’93), pages 689-695. AAAI Press, 1993.
[26] Richard Scherl and Hector J. Levesque. The frame problem and knowledge producing actions. Artificial Intelligence, 144(1-2), 2003.
[27] Martijn Schut and Michael Wooldridge. Principles of intention reconsideration. In Proc. AGENTS'01. ACM Press, 2001.
[28] S. Shapiro and Yves Lespérance. Modeling multiagent systems with the cognitive agents specification language - a feature interaction resolution application. In C. Castelfranchi and Y. Lespérance, editors, Intelligent Agents Vol. VII - Proc. 2000 Workshop on Agent Theories, Architectures, and Languages (ATAL-2000). Springer-Verlag, 2000.
[29] S. Shapiro, Yves Lespérance, and Hector J. Levesque. Specifying communicative multi-agent systems with ConGolog. In Working notes of the AAAI fall symposium on Communicative Action in Humans and Machines, pages 75-82. AAAI Press, 1997.
[30] S. Shapiro, Yves Lespérance, and Hector J. Levesque. Specifying communicative multi-agent systems. In W. Wobcke, M. Pagnucco, and C. Zhang, editors, Agents and Multi-Agent Systems - Formalisms, Methodologies, and Applications, pages 1-14. Springer-Verlag, LNAI 1441, 1998.
[31] S. Shapiro, M. Pagnucco, Y. Lespérance, and H. J. Levesque. Iterated belief change in the situation calculus. In Proc. KR2000, pages 527-538, 2000.
[32] Richmond H. Thomason. Desires and defaults: A framework for planning with inferred goals. In Proc. of the Seventh International Conference Knowledge Representation and Reasoning (KR'2000), pages 702-713. Morgan Kaufmann Publishers, 2000.
[33] Michael Wooldridge. Reasonning about Rational Agent. MIT Press, Cambridge, Massachusetts, 2000.

[^0]: *Our work has benefitted from numerous discussions with colleagues, in particular with Robert Demolombe, Jérôme Lang, Philippe Balbiani, Jacques Virbel, Olivier Gasquet, Yves Lespérance, Daniel Vanderveken, Mehdi Dastani, Jan Broersen, Leon van der Torre, Joris Hulstijn. Thanks are due to Maarten Marx and Tinko Tinchev for information on the complexity of product logics, and to Hector Levesque for clarifications on the C\&L approach. Part of the material in this paper has been presented at the Seventh Workshop on the Semantics and Pragmatics of Dialogue (DiaBruck 2003).

[^1]: ${ }^{1}$ For every $w \in W, w \mathcal{R}_{\square} w$.
 ${ }^{2}$ If $w_{1} \mathcal{R}_{\square} w_{2} \mathcal{R}_{\square} w_{3}$ then $w_{1} \mathcal{R}_{\square} w_{3}$.
 ${ }^{3}$ If $w \mathcal{R}_{\square} w_{1}$ and $w \mathcal{R}_{\square} w_{2}$ then there is a w_{3} such that $w_{1} \mathcal{R}_{\square} w_{3}$ and $w_{2} \mathcal{R}_{\square} w_{3}$.
 ${ }^{4}$ The most important criticism that has been made to KD45 is that it accepts omniscience, i.e. an agent's beliefs are closed under tautologies, conjunction, and logical consequences. In particular the latter point, viz. that an agent believes all the consequences of his beliefs, has been considered to be unrealistic. We here accept omniscience to simplify the framework.

[^2]: ${ }^{5}$ For every $w \in W, \mathcal{B}_{i} \neq \emptyset$
 ${ }^{6}$ for all $w \in W$, if $v, v^{\prime} \in \mathcal{B}_{i}(w)$ then $v^{\prime} \in \mathcal{B}_{i}(v)$ and $v \in \mathcal{B}_{i}\left(v^{\prime}\right)$.
 ${ }^{7}$ While C\&L use a modal operator 'goal' (probably in order to have a uniform denomination w.r.t. the different versions of goals they study), it seems more appropriate to us to use the term 'choice'.

[^3]: ${ }^{9}$ We are indebted to Maarten Marx for pointing this out.

[^4]: ${ }^{10}$ As C\&L's admit, this is 'for the wrong reasons': their stronger definition of achievement goals is responsible for $A G o a l_{i} \phi \rightarrow$ Bel $_{i} \neg \phi$, which warrants axiom D for $A G o a l_{i}$. Note that they do not validate the stronger but equally intuitive principle $\frac{\neg(\phi \wedge \psi)}{\neg\left(\text { GGoal }_{i} \phi \wedge A G o a l_{i} \psi\right)}$. Apparently this has not been noted in the literature.

[^5]: ${ }^{11}$ In the case where i is the agent of α (noted $i: \alpha$) one might reasonably suppose that Choice ${ }_{i}[i: \alpha] \perp \rightarrow$ $[i: \alpha] \perp$, i.e. there are no such unwanted action occurrences. We then get unconditioned persistence of achievement goals: $A G o a l_{i} \phi \rightarrow[i: \alpha]\left(A G o a l_{i} \phi \vee \operatorname{Bel}_{i} \phi\right)$. This is related to intentional actions as discussed in C\&L's [10, section 4.2.1], where moreover $B e l_{i}[i: \alpha] \perp \vee B e l_{i} \neg[i: \alpha] \perp$ is assumed. We just note that such principles are of the Sahlqvist type, and can be added to $A B C$ logic without harm.

[^6]: ${ }^{12} \mathrm{We}$ could pursue this and define future-directed intention-to-do α as Choice ${ }_{i} \diamond\langle i: \alpha\rangle \top$.

