N

N
N

HAL

open science

Cohesion, coupling and the meta-theory of actions

Andreas Herzig, Ivan Varzinczak

» To cite this version:

Andreas Herzig, Ivan Varzinczak. Cohesion, coupling and the meta-theory of actions. 19th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI 2005), The International Joint Conferences

on Artificial Intelligence, Jul 2005, Edinburgh, United Kingdom. pp.442-447. hal-03519768

HAL Id: hal-03519768
https://hal.science/hal-03519768

Submitted on 11 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03519768
https://hal.archives-ouvertes.fr

Cohesion, coupling and the meta-theory of actions

AndreasHerzig and Ivan Varzinczak*
IRIT — Université Paul Sabatier
118 route de Narbonne — 31062 Toulouse Cedex 04 France
e-mail: {herzig,ivan}@irit.fr

Abstract

In this work we recast some design principles com-
monly used in software engineering and adapt them
to the design and analysis of domain descriptions
in reasoning about actions. We show how the infor-
mal requirements of cohesion and coupling can be
turned into consistency tests of several different ar-
rangements of modules. This gives us new criteria
for domain description evaluation and clarifies the
link between software and knowledge engineering
in what concerns the meta-theory of actions.

1 Introduction

Among the principles of the object-oriented paradigm are the
following:

1. Work with modules (or components, functions, etc.).
2. Minimize interactions between such modules.

3. Organize the modules into well-defined layers to help
minimize interactions. The goal is to have components
of one layer using only components from immediate
neighbors, wherever possible.

4. Anticipate what kind of extensions or modifications
might be made in the future, and support this at design
time so that one can extend the system with minimal dis-
ruption later.

There seems to be an agreement that such principles for
object-oriented programming or design are the same as for
knowledge representation. To witness, the design of domain
descriptions in reasoning about actions has much more in
common with software engineering than one might think: in
the same way as for software projects, one can talk about con-
sistency, evolution and correctness of domain descriptions.

All the principles above can be applied to the design of do-
main descriptions, too. We argue that a good domain descrip-
tion should be one whose consistency check and maintenance
complexities are minimized, so that any further modification
is localized, with a bounded scope.

*Supported by a fellowship from the government of the FEDER-
ATIVE REPUBLIC OF BRAZIL. Grant: CAPES BEX 1389/01-7.

With this in mind, one can see the specification of domain
descriptions as a task similar to project development in soft-
ware engineering: Item 4 above is what has been called elab-
oration tolerance [McCarthy, 1988]. In this way a represen-
tation is elaboration tolerant to the extent that the effort re-
quired to add new information (a new action or effect) to the
representation is proportional to the complexity of that infor-
mation [Shanahan, 1997]. Items 1, 2 and 3 reflect the concept
of modularity, which means that different modules have no
elements in common. Such a notion of modularity is going to
lead us along the present work.

This paper is an elaboration of the results we have pre-
sented in [Herzig and Varzinczak, 2004]. Here we pursue the
following plan: in Section 2 we recall some important con-
cepts from software engineering; after discussing the ontol-
ogy of dynamic domains (Section 3) we apply the concepts
of Section 2 to the design of domain descriptions (Sections 4
and 5) making a step towards formal criteria for domain de-
scription evaluation. In Section 6 we present the main results
that follow from our approach, and before concluding we ad-
dress related work found in the literature on this subject.

2 Some principles of software engineering

One of the first steps in software development is that of ab-
straction. Abstraction consists mainly in rendering lower-
level details invisible to upper levels in order to facilitate the
understanding and design of complex systems. As an exam-
ple, a specification of a data or knowledge base query does
not need to take into account the algorithmic process that will
be carried out in order to answer the query.

In parallel to abstraction, one of the most important guide-
lines in project design is that of modularity: dividing the soft-
ware into modules, based on their functionality or on the simi-
larity of the information they handle. This means that instead
of having a “jack of all trades” program, it is preferable to
split it up into specialized subprograms. For instance, a pro-
gram made of a module for querying a database and a module
for checking its integrity is more modular than a single mod-
ule that does these two tasks at the same time.

Among the major benefits of modular systems are reusabil-
ity, scalability and better management of complexity.

There is more than one way to split up a program. One
of the most used techniques is that of forcing functional in-

dependence of its modules. One ensures functional indepen-
dence in a project by defining modules with only one pur-
pose and “aversion” to excessive interaction with other mod-
ules [Pressman, 1992].

Among the criteria commonly used for evaluating func-
tional independence of modules (and thus how modular a
piece of software is) are the informal notions of cohesion and
coupling.

Cohesion is how closely related pieces of a single compo-
nent are to each other. A module is cohesive when at the high
level of abstraction it does only a single task. The more a
module is focused on a precise goal the more it is cohesive.

A highly cohesive module will be simpler to understand,
having to do only a single task, while a lowly cohesive mod-
ule, performing so many tasks, will be difficult to understand.

It is difficult to reuse a task-overloaded module, while a
highly cohesive module is simpler to reuse and to extend.

Coupling is the interdependency between a method and the
environment (other methods, objects and classes). Low cou-
pling means to keep dependencies (communication, informa-
tion sharing) between components at a minimum.

A design that has low coupling is more amenable to
change, since it reduces the probability of changes cascading
and affecting a larger part of the system.

Unanimously in object-oriented development, the best way
to design a software is to have low coupling and high cohe-
sion. We sum this up in two informal design principles:

P1. Maximal cohesion: Every module should be conceived
in such a way that it is maximally cohesive.

P2. Minimal coupling: All modules should be conceived in
such a way that they minimize coupling.

3 Natural modulesin domain descriptions

Like in object-oriented programming, in describing a domain
different entities should be separated in different modules.
Moreover, each module should be conceived in such a way
that it has no direct access to the contents of the others. In
reasoning about actions, accessing a module means using it
to perform reasoning tasks like prediction, postdiction, plan-
ning and others. This amounts to using its logical formulas
in inferences. In this section we establish the ontology of do-
main descriptions and present the way we arrange in different
modules the axioms commonly used to describe them.

Every domain description contains a representation of ac-
tion effects. We call effect laws formulas relating an action
to its effects. Statements of conditions under which an ac-
tion cannot be executed are called inexecutability laws. Ex-
ecutability laws in turn stipulate the context where an action
is guaranteed to be executable. Finally, state constraints are
formulas that do not mention actions and express constraints
that must hold in every possible state. These are our four in-
gredients that we introduce more formally in the sequel.

If we think of a domain description as a software appli-
cation, we can imagine its organization in an object-oriented
view and attempt to have a kind of class diagram for it. This

is illustrated by Figure 1, where we can see the relationship
among the different types of entities.

A domain description consists of a description of effects
of actions, their non-effects, executabilities, inexecutabilities
and also state constraints that do not depend on any particular
action.

domain description

effects non-effects exec. inexec. state constraints

Figure 1: “Class diagram” of modules in designing domain descrip-
tions. Edges represent has-a relations.

Among the effects of actions, we can distinguish direct ef-
fects and indirect effects (ramifications).

Non-effects of actions are related with the frame prob-
lem [McCarthy and Hayes, 1969], and indirect effects with
the ramification problem [Finger, 1987]. In this work we
abstract from these problems and assume we have a con-
sequence relation powerful enough to derive the intended
conclusions. We suppose given a ‘doped’ consequence re-
lation k¢, which encapsulates some traditional approach in
the literature (e.g., [Schubert, 1990; Lin, 1995; McCain and
Turner, 1995]), with which all intended frame axioms and in-
direct effects can be derived, and we use it henceforth. As
examples we have

{loaded(s)} ke loaded(do(wait, s))
(i.e., waiting does not change the status of loaded) and

walking(So),
{ walking(s) — alive(s), } R —walking(do(shoot, Sp))
—alive(do(shoot, s))

Hence shooting has the indirect effect that the victim will no
longer be walking.

We use small letters to denote variables, and capital letters
to denote constant symbols. Free variables are supposed to
be universally quantified.

To sum it up, our main concern here will be with direct
effects (henceforth effects), inexecutabilities, executabilities
and state constraints. We introduce this in what follows.

Effect laws Logical frameworks for reasoning about ac-
tions contain expressions linking actions and their effects. We
suppose that such effects might be conditional, and thus get a
third component of such axioms. An effect law for action a is
of the form

Poss(a, s) — (®(s) — ¥(do(a, s)))

where ®(s) is a simple state formula about situation s, and
¥(do(a, s)) is a simple state formula about situation do(a, s).

A simple state formula about a situation term ¢ contains no
Poss-predicate and no situation terms other than ¢ [Lin, 1995].

An example of effect law is

Poss(shoot, s) — (loaded(s) — —alive(do(shoot, s))),
saying that whenever shoot is executable and the gun is
loaded then after shooting the turkey is dead. Another one
is Poss(tease, s) — walking(do(tease, s)): the result of teas-
ing is that the turkey starts walking.

Inexecutability laws The design of domain descriptions
must also provide a way to express qualifications of actions,
i.e., conditions under which an action cannot be executed
at all. An inexecutability law for action a is of the form

®(s) — —Poss(a, s)

where ®(s) is a simple state formula about s.
For example, —HasGun(s) — —Poss(shoot, s) states that
shoot cannot be executed if the agent has no gun.

State constraints (aliasdomain constraints) Frameworks
allowing for indirect effects make use of formulas that link
invariant propositions about the world. Such formulas char-
acterize the set of possible states. A state constraint is a sim-
ple state formula about the situation term s that is consistent.
An example is walking(s) — alive(s), saying that if a turkey
is walking, then it must be alive [Thielscher, 1995].

Executability laws With only state constraints and effect
laws one cannot guarantee that action shoot is executable if
the agent has a gun. An executability law for action a is of
the form ®(s) — Poss(a, s), where ®(s) is a simple state
formula about s. For instance HasGun(s) — Poss(shoot, s)
says that shooting can be executed whenever the agent has a
gun, and Poss(tease, s) that the turkey can always be teased.

Whereas all the extant approaches in the literature that al-
low for indirect effects of actions contain state constraints
and effect laws, the status of executability laws is less con-
sensual: some authors [Schubert, 1990; Doherty et al., 1996;
McCain and Turner, 1995; Thielscher, 1995] more or less tac-
itly consider that executability laws should not be made ex-
plicit but rather inferred by the reasoning mechanism. Others
[Lin, 1995; Zhang et al., 2002] have executability laws as first
class objects one can reason about.

We nevertheless would like to point out that maximizing
executability, as usually done in the literature, is not always
intuitive: suppose we know that if we have the ignition key,
the tank is full, ..., and the battery tension is beyond 10V,
then the car (necessarily) will start. Suppose we also know
that if the tension is below 8V, then the car will not start. What
should we conclude in situations where we know that the ten-
sion is 9V? Maximizing executabilities makes us infer that it
will start, but such reasoning is not what we want if we would
like to be sure that all possible executions lead to the goal.

It seems a matter of debate whether one can always do
without executabilities. We think that in several domains one
wants to explicitly state under which conditions a given ac-
tion is guaranteed to be executable, such as that a robot should
never get stuck and should always be able to execute a move
action. In any case, allowing for executability laws gives us
more flexibility and expressive power.

Domain descriptions Given the four types of entities de-
fined above, we arrange them in the following way: for a
given action a, Eff, is the set of its effect laws, Inex, is the
set of its inexecutability laws, and Exe, is the set of its ex-
ecutability laws. Stat denotes the set of all state constraints
of a given domain. Thus, Eff,, Exe, and Inex,, for each
action a, and Stat are the natural modules we consider here
in designing a domain description.

For parsimony’s sake, we define Eff = |J Eff,, Inex =
U Inex,, and Exe = | Exe,. We suppose all these sets are
consistent.

A domain description D is a tuple of the form
(Eff, Inex, Exe, Stat).

Once the information contained in a module is not mixed
with others’, it can be expected that undesirable side effects
due to further modifications are less likely to propagate to
other parts of the domain description. The same thing can be
obtained for the consistency check if beyond of being sepa-
rated the modules are designed in such a way that their inter-
action is minimized. This is what we address in this section.

As we have seen, in software engineering functional inde-
pendence is evaluated by means of two criteria: cohesion, a
criterion for evaluating the relative functional strength of a
module, and coupling, an assessment of relative interdepen-
dence among different modules. Both these notions are quite
informal, even in software engineering, and cannot be mea-
sured in an objective way.

Here we explore these concepts when applied to domain
descriptions and show how the informal requirements of soft-
ware engineering can be turned into tests of consistency of
several different arrangements of modules.

4 Cohesion

Normally cohesion comes with modularization, and its eval-
uation depends mainly on the entities that one takes into ac-
count when describing a domain.

In talking about sets of logical formulas we take cohesion
as how simple or well-defined a logical module is, consider-
ing the different types of formulas that can be derived from it.
We thus refine our first design principle:

P1’. The less types of laws a given module entails alone, the
more cohesive it is.

As an example consider the following module:

—HasGun(s) — —Poss(shoot, s),
HasGun(s) — Poss(shoot, s)

From such a set alone one can derive both —HasGun(s) —
—Poss(shoot, s) and HasGun(s) — Poss(shoot, s), which are
formulas of two different kinds. In this case we say that such a
set is a lowly cohesive module, for alone it functions to derive
executabilities and inexecutabilities. A better approach would
be to decompose such a module into the following ones:

Inexgoot = {—HasGun(s) — —Poss(shoot, s)}

Exegoot = {HasGun(s) — Poss(shoot, s)}

Total cohesion is not always easy to achieve. Suppose, for
instance, a hypothetical situation in which we reason about
the effects of drinking a cup of coffee:

Poss(drink, s) —

(sugar(s) — happy(do(drink, s)),
Poss(drink, s) —

(salt(s) — —happy(do(drink, s))

Eff gink =

Then, Eff gink entails (sugar(s) Asalt(s)) — —Poss(drink, s).
This means that from Eff 4 alone we do not get only effect

laws but also inexecutability laws. Therefore Eff i iS not

as cohesive as one might have expected.

One step towards augmenting cohesion of a module of ef-
fect laws can be by completely specifying the preconditions
of effects of actions. For example, the weaker effect laws

Poss(drink, s) —
(sugar(s) A —salt(s)) — happy(do(drink, s)),

Eff,. = .
drink Poss(drink, s) —

(salt(s) A —sugar(s)) — —happy(do(drink, s))

guarantee a higher cohesion of module Eff g, in comparison
to that of Eff grink.

By the definition of Stat, it is easy to see that from the
state constraints we can derive formulas of any type, so Stat
is by nature a lowly cohesive module.

We are thus interested in refining even more our principle
of high cohesion P1” by the following ones:

P1’-1. If Inex R ®(s), then @ ®(s).

P1’-2. If Inex Rk ®(s) — Poss(a,s), then @ r ®(s) —
Poss(a, s).

P1’-3. If Exe ke ®(s), then @ ke ®(s).

P1’-4. If Exe k ®(s) — —Poss(a,s), then k ®(s) —
—-Poss(a, s).

P1’-5. If Exe R Poss(a, s) — (®(s) — ¥(do(a, s))), then
0 ke Poss(a, s) — (®(s) — ¥(do(a,s))).

P1’-6. IfEff r ®(s), then § R ®(s).

PL’-7. If Eff o ®(s) — Poss(a,s), then § k ®(s) —
Poss(a, s).

P1’-8. If Eff r ®(s) — —Poss(a,s), then B ®(s) —
—Poss(a, s).

All these principles say is that a formula of a given type

entailed by a module of a different type must be a theorem of
the logic.

5 Coupling

As we have seen, coupling evaluates how much a module is
tied to or dependent upon other modules. We take as coupling
of two or more sets of different types of action laws how much
interaction among them is needed to derive a formula of a
given type. Interaction here means sharing logical formulas.
Now we refine our second design principle:

P2’. The less new consequences two or several modules
have, the less coupled they are.

(The new consequences of modules M; and M, are those
consequences of M; U M, that are not consequences neither
of M; nor of M- alone.)

For instance, consider the domain description Dy :

Poss(tease, s) — walking(do(tease, s)),

Poss(shoot, s) —
(loaded(s) — —alive(do(shoot, s)))

Eﬁ.l =

Inex; = {—alive(s) — —Poss(tease, s)}, Exe; =)

Stat, { walking(s) — alive(s), }

dead(s) < —alive(s)

Observe that to derive the domain constraint walking(s) —
—dead(s) one only needs Stat,, i.e., no other module is re-
quired for that. On the other hand, to conclude dead(s) —
—Poss(tease, s) one needs both Stat; and Inex; .

Totally decoupled descriptions are not common in appli-
cations of real interest. For the example above, it seems to
be impossible to diminish the interaction between Stat; and
Inex; without abandoning the concept of state constraints.

On the other hand, if Exe; in our example contained
Poss(tease, s), things would be different: in this case, with
Inex; one would be able to infer the state constraint alive(s),
but such a law cannot be derived from Stat; alone. A higher
degree of interaction between this set and the others is nec-
essary in order to do that. In such a case one would say that
there is a high coupling among D, ’s modules.

The principle of minimal coupling P2’ can be refined in
two more specific design principles:
P2’-1. Noimplicit inexecutability laws:
if D ke ®(s) » —Poss(a, s), then
Inex, Stat g $(s) — —Poss(a, s)
P2’-2. Noimplicit state constraints:
if D k ®(s), then Stat = ®(s).

P2’-2 is a useful feature of descriptions: beyond being a
reasonable principle of design that helps avoiding mistakes,
it clearly restricts the search space, and thus makes reasoning
easier. To witness, if D satisfies P2’-2, then its consistency
amounts to that of Stat:

Theorem 5.1 If D has no implicit state constraints, then
D Rk L iff Stat = L.

5.1 Noimplicit inexecutability laws

Consider the following domain description D»:

Poss(tease, s) — walking(do(tease, s)),

Poss(shoot, s) —
(loaded(s) — —alive(do(shoot, s)))

Eff, =

Inex; = Exe; = (), Stat, = {walking(s) — alive(s)}

From Poss(tease, s) — walking(do(tease, s)) it follows with
Stat, that Poss(tease, s) — alive(do(tease, s)), i.e., in every
situation, after teasing the turkey is alive:

Eff,, Stat, | Poss(tease, s) — alive(do(tease, s))

Now as D, ke —alive(s) — —alive(do(tease, s)), the sta-
tus of fluent alive is not modified by the tease action,
and we have Eff», Stat, ke (Poss(tease, s) A —alive(s)) —
(alive(do(tease, s)) A—alive(do(tease, s))). From this it fol-
lows D, | —alive(s) — —Poss(tease, s), i.e., the turkey can-
not be teased if it is dead. But Inex,, Stat, B —alive(s) —
—Poss(tease, s), hence Principle P2’-1 is violated. The for-
mula —alive(s) — —Poss(tease, s) is an example of what we
call an implicit inexecutability law.

In the literature, such laws are also known as implicit qual-
ifications [Ginsberg and Smith, 1988], and it has been argued
that it is a positive feature of reasoning about actions frame-
works to leave them implicit and provide mechanisms for in-
ferring them [Lin, 1995; Thielscher, 1995]. The other way
round, one might argue as well that implicit qualifications in-
dicate that the domain has not been described in an adequate
manner: inexecutability laws have a form simpler than that of
effect laws, and it might be reasonably expected that it is eas-
ier to exhaustively describe them. (Note that nevertheless this
is not related to the qualification problem, which basically
says that it is difficult to state all the executability laws of a
domain.) Thus, all the inexecutabilities should be explicitly
stated, and this is what Principle P2’-1 says.

5.2 Noimplicit state constraints

Executability laws increase expressive power, but might con-
flict with inexecutability laws. For instance, let D3 be such
that Eff; = Eff 5, Inex3 = {—alive(s) — —Poss(tease, s) },
Exe; = {Poss(tease,s)}, and Stat; = Stat,. (Note
that Principle P2’-1 is satisfied.) We have the unintuitive
Inexs, Exe; 2 alive(s): the turkey is immortal! This is
an implicit state constraint because alive(s) does not follow
from Stats alone: P2’-2 is violated.

The existence of implicit state constraints may thus in-
dicate too strong executability laws: in our example, one
wrongly assumed that tease is always executable. 1t may also
indicate that the inexecutability laws are too strong, or that
the state constraints are too weak.

6 Resultsfor a dependence based solution to
the frame problem

Given an axiomatic theory of actions with a solution to the
frame and the ramification problems, we are interested in
knowing whether domain descriptions encoded in it satisfy
or not our set of design principles. Here we chose to use the
modal framework of LAP... [Castilho et al., 1999], which
has been shown to support Reiter’s solution to the frame prob-
lem [Demolombe et al., 2003] and also proposes an assess-
ment of the ramification problem.

Let trsi:caic be a translation of a domain description in
LAP.. into the Situation Calculus. Dependences a ~» [
are translated into predicates dep (a,), meaning that action a
may cause literal [to be true. The extension of dep is then cir-
cumscribed (cf. Schubert’s explanation closure assumption).
As examples, dep(shoot, —walking) means that shoot may
cause walking to be false, and the absence of dep (tease, alive)
induces the frame axiom —alive(s) — —alive(do(tease, s)).

Theorem 6.1 If D, 4p_ is a domain descriptionin LAP..,,
then ¢rsitcac (D cap.,) satisfies Principles P1’-1—P1°-7.

Even in LAP..., however, it is possible to derive inexe-
cutabilities from Eff (see the example in Section 4), which
violates Principle P1’-8. Establishing maximal cohesion of
EfT in this case involves weakening of preconditions of ac-
tion effects. Anyway, conceiving an algorithm to accomplish
this task is not difficult (due to space limitations we omit its
presentation here).

Checking whether a domain description satisfies Princi-
ple P2’-2 can be made with little adaptation of the material
on the subject present in the literature [Zhang et al., 2002;
Lang et al., 2003; Herzig and Varzinczak, 2004]. We do not
deepen into further details here, and just present the main re-
sults that we obtain when considering descriptions that satisfy
the design principles that have been proposed (due to space
limits no proof is given).

Theorem 6.2 Let D be the translation
tion Calculus of a domain description
If D has no implicit state constraints, then
D R Poss(a,s) — (®(s) — ¥(do(a,s))) iff
Eff,,Inex,, Stat R Poss(a,s) — (®(s) — ¥(do(a, s))).

This means that under P2’-2 one has modularity inside EAF,
too: when deducing the effects of action a we need not con-
sider the action laws for the other actions. \ersions for exe-
cutability and inexecutability can be stated as well.

into Situa-
in LAP.,.

Theorem 6.3 There exist descriptions D not satisfying P2’-2
such that D ke Poss(a,s) — (®(s) — ¥(do(a,s))) and
Eff,, Inex,, Stat g Poss(a,s) — (®(s) — ¥(do(a, s))).

For example, just take D3 as before:

D3 ke Poss(shoot, s) — (—alive(s) — alive(do(shoot, s))),
however Effsqq, Inexsgor, Stats B Poss(shoot,s) —
(—alive(s) — alive(do(shoot, s))).

7 Reated work

Pirri and Reiter [1999] have investigated the metatheory of
the Situation Calculus. In a spirit similar to ours, they use
executability laws and effect laws. Contrarily to us, their
executability laws are equivalences and are thus at the same
time inexecutability laws. There are no state constraints, i.e.,
Stat = . For this setting they give a syntactical con-
dition on effect laws forcing them not to interact with ex-
ecutability laws, which precludes implicit state constraints.
Basically, the condition says that when there are effect laws
Poss(a,s) — (®(s) — &(do(a,s))) and Poss(a,s) —
(®'(s) — ®'(do(a,s))), then ®(s) and ®'(s) are inconsis-
tent (which essentially amounts to having in their domain de-
scriptions a kind of “implicit state constraint schema” of the
form —(®(s) A ®'(s))).

This then allows them to show that such descriptions are al-
ways consistent. Moreover they thus simplify the entailment
problem for this calculus, and show for several problems such
as consistency or regression that only some of the modules of
a domain description are necessary.

Amir [2000] focuses on design and maintenance of ac-
tion descriptions applying concepts of the object-oriented
paradigm in the Situation Calculus. In that work, guidelines
for a partitioned representation of a given description are pre-
sented, with which the inference task can also be optimized,
as it is restricted to the part of the domain description that is
really relevant to a given query. This is observed specially
when different agents are involved: the design of an agent’s
description can be done with no regard to others’, and after
the integration of multiple agents, queries about an agent’s
beliefs do not take into account the belief state of other agents.

In that work, executabilities are as in [Pirri and Reiter,
1999] and the same condition on effect laws is assumed,
which syntactically avoids implicit state constraints.

Despite of using many of the object-oriented paradigm
tools and techniques, no mention is made to the concepts of
cohesion and coupling. In the approach presented in [Amir,
2000], even if modules are highly cohesive, they are not lowly
coupled, due to the dependence between objects in the rea-
soning process defined there. We do not investigate this fur-
ther here, but conjecture that this could be done there by, dur-
ing the reasoning process, avoiding passing to a module a
formula of a type different from those it contains.

The present work generalizes and extends Pirri and Reiter’s
result to the case where Stat # () and both [Pirri and Reiter,
1999; Amir, 2000] where the syntactical restriction on effect
laws is not made. This gives us more expressive power, as we
can reason about inexecutabilities, and a better modularity in
the sense that we do not combine formulas that are conceptu-
ally different (viz. executabilities and inexecutabilities).

8 Conclusion

We have established a link between knowledge engineering
and software engineering showing that many of the concepts
and techniques developed for the latter are useful in the de-
sign and maintenance of domain descriptions. In particular,
with the concepts of cohesion and coupling we get better cri-
teria for domain description evaluation.

Our central hypothesis is that the different types of axioms
should be neatly separated and only interfere in one sense:
state constraints together with action laws may have conse-
quences that do not follow from the action laws alone. The
other way round, action laws should not allow to infer new
state constraints, effect laws should not allow to infer inexe-
cutability laws, etc.

At first glance, because of Stat’s interaction with other
modules, it could be said that domain descriptions described
in our way do not completely minimize coupling. However,
given the intrinsic nature of Stat, observe that we cannot do
otherwise: in the same way it is not possible to write com-
pletely decoupled methods (or the program will not work!),
we cannot have totally decoupled domain descriptions (un-
less, of course, we constrain ourselves to domains without
ramifications like in [Pirri and Reiter, 1999]).

It could be argued that unintuitive consequences in domain
descriptions are mainly due to badly written axioms and not
to the lack of modularity. True enough, but what we have
presented here is the case that making a domain description
modular gives us a tool to detect at least some of such prob-
lems and correct it. (But note that we do not claim to correct
badly written axioms automatically and once for all). Besides
this, having separate entities in the ontology and controlling
their interaction help us to localize where the problems are,
which can be crucial for real world applications.

References

[Amir, 2000] E. Amir. (De)composition of situation calculus
theories. In Proc. AAAI’2000, pages 456-463, 2000.

[Castilho et al., 1999] M. A. Castilno, O. Gasquet, and
A. Herzig. Formalizing action and change in modal logic
I: the frame problem. J. of Logic and Computation,
9(5):701-735, 1999.

[Demolombe et al., 2003] R. Demolombe, A. Herzig, and
I. Varzinczak. Regression in modal logic. J. of Applied
Non-classical Logics (JANCL), 13(2):165-185, 2003.

[Doherty et al., 1996] P. Doherty, W. tukaszewicz, and
A. Szalas. Explaining explanation closure. In Proc. Intl.
Symp. on Methodologies for Int. Systems, 1996.

[Finger, 1987] J. J. Finger. Exploiting constraints in design
synthesis. PhD thesis, Stanford University, 1987.

[Ginsberg and Smith, 1988] M. L. Ginsberg and D. E. Smith.
Reasoning about actions 11: The qualification problem. Ar-
tificial Intelligence, 35(3):311-342, 1988.

[Herzig and Varzinczak, 2004] A. Herzig and I. Varzinczak.
Domain descriptions should be modular. In Proc.
ECAI’04, pages 348-352, 2004.

[Lang et al., 2003] J. Lang, F. Lin, and P Marquis. Causal
theories of action — a computational core. In Proc. 13-
CAI’03, pages 1073-1078, 2003.

[Lin, 1995] F. Lin. Embracing causality in specifying the in-
direct effects of actions. In Proc. 1JCAI’95, pages 1985—
1991, 1995.

[McCain and Turner, 1995] N. McCain and H. Turner. A
causal theory of ramifications and qualifications. In Proc.
IJCAI’95, pages 1978-1984, 1995.

[McCarthy and Hayes, 1969] J. McCarthy and P. J. Hayes.
Some philosophical problems from the standpoint of ar-
tificial intelligence. In Machine Intelligence, volume 4,
pages 463-502. 19609.

[McCarthy, 1988] J. McCarthy. Mathematical logic in artifi-
cial intelligence. Daedalus, 1988.

[Pirri and Reiter, 1999] F. Pirri and R. Reiter. Some contri-
butions to the metatheory of the situation calculus. Journal
of the ACM, 46(3):325-361, 1999.

[Pressman, 1992] R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, 1992.

[Schubert, 1990] L. K. Schubert. Monotonic solution of
the frame problem in the situation calculus: an efficient
method for worlds with fully specified actions. In Knowl-
edge Representation and Defeasible Reasoning, pages 23—
67. Kluwer, 1990.

[Shanahan, 1997] M. Shanahan. Solving the frame problem:
a mathematical investigation of the common sense law of
inertia. MIT Press, Cambridge, MA, 1997.

[Thielscher, 1995] M. Thielscher. Computing ramifications
by postprocessing. In Proc. IJCAI’95, pages 1994-2000,
1995.

[Zhang et al., 2002] D. Zhang, S. Chopra, and N. Y. Foo.
Consistency of action descriptions. In PRICAI’02, Topics
in Artificial Intelligence. Springer-Verlag, 2002.

