
HAL Id: hal-03519763
https://hal.science/hal-03519763

Submitted on 12 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the modularity of theories
Andreas Herzig, Ivan Varzinczak

To cite this version:
Andreas Herzig, Ivan Varzinczak. On the modularity of theories. 5th Conference on Advances in
Modal logic (AiML 2004), Sep 2004, Manchester, United Kingdom. pp.93-109. �hal-03519763�

https://hal.science/hal-03519763
https://hal.archives-ouvertes.fr

On modularity of theories

Andreas Herzig Ivan Varzinczak∗

Institut de Recherche en Informatique de Toulouse (IRIT)
118 route de Narbonne

F-31062 Toulouse Cedex 4 (France)
e-mail: {herzig,ivan}@irit.fr

http://www.irit.fr/recherches/LILAC

Keywords: modularity, interpolation

1 Introduction

In many cases knowledge is represented by logical theories containing multi-
ple modalities α1, α2, . . . Then it is often the case that we have modularity,
in the sense that our theory T can be partitioned in a union of theories

T = T ∅ ∪ T α1 ∪ T α2 ∪ . . .
such that

• T ∅ contains no modal operators, and

• the only modality of T αi is αi.

We call these subtheories modules. Examples of such theories can be found
in reasoning about actions, where each T αi contains descriptions of the
atomic action αi in terms of preconditions and effects, and T ∅ is the set
of static laws (alias domain constraints, alias integrity constraints), i.e. those
formulas that hold in every possible state of a dynamic system. For ex-
ample, T marry = {¬married → 〈marry〉>, [marry]married}, and T ∅ =

∗Supported by a fellowship from the government of the Federative Republic of Brazil.
Grant: CAPES BEX 1389/01-7.

1

{¬(married ∧ bachelor)}. Another example is when mental attitudes such
as knowledge, beliefs or goals of several independent agents are represented:
then each T αi contains the respective mental attitude of agent αi.

1

Let the underlying multimodal logic be independently axiomatized (i.e.
the logic is a fusion and there is no interaction between the modal opera-
tors), and suppose we want to know whether T |= ϕ, i.e. whether a formula
ϕ follows from the theory T . Then it is natural to expect that we only have
to consider those elements of T which concern the modal operators occur-
ring in ϕ. For instance the proof of some consequences of action α1 should
not involve laws for other actions α2; querying the belief base of agent α1

should not require bothering with that of agent α2. Moreover, intensional
information in any T αi should not influence information about the laws of
the world encoded in T ∅.

Similar modular design principles can be found in structural and object-
oriented programming. We have advocated and investigated the case of rea-
soning about actions in [3].

2 Preliminaries

Let MOD = {α1, α2, . . .} be the set of modalities. Formulas are constructed
in the standard way from these and the set of atomic formulas ATM. They
are denoted by ϕ, ψ, Formulas without modal operators (propositional
formulas) are denoted by PFOR = {A,B,C, . . .}.

Let mod(ϕ) return the set of modalities occurring in formula ϕ, and let
mod(T) =

⋃
ψ∈T mod(ψ). For instance mod([α1](p → [α2]q)) = {α1, α2}. If

M ⊆ MOD is a set of modalities then we define

T M = {ϕ ∈ T : mod(ϕ) ∩M 6= ∅}

Hence T ∅ is a set of formulas without modal operators. Another example is

T {marry,divorce} =

{ ¬married→ 〈marry〉>, [marry]married,
married→ 〈divorce〉>, [divorce]¬married

}

We write T α instead of T {α}.
1Here we should assume more generally that [αi] is the only outermost modal operator

of T αi ; we think that this case could be analyzed in a way that is similar to ours. Things
get just more complicated.

2

We suppose from now on that T is partitioned, in the sense that {T ∅} ∪
{T αi : αi ∈ MOD} is a partition of T . We thus exclude T αi containing more
than one modal operator.

Models of the logic under concern are of the form M = 〈W,R, V 〉, where
W is a set of possible worlds, R : MOD −→W×W associates an accessibility
relation to every modality, and V : W −→ 2ATM associates a valuation to
every possible world.

Satisfaction of a formula ϕ in world w of model M (M,w |= ϕ) and truth
of a formula ϕ in M (noted M |= ϕ) are defined as usual. Truth of a set
of formulas T in M (noted M |= T) is defined by: M |= T iff M |= ψ for
every ψ ∈ T . T has global consequence ϕ (noted T |= ϕ) iff M |= T implies
M |= ϕ.

We suppose that the logic under concern is compact.

3 Modularity

Under the hypothesis that {T ∅} ∪ {T αi : αi ∈ MOD} partitions T , we are
interested in the following principle of modularity:

Definition 3.1 A theory T is modular if for every formula ϕ,

T |= ϕ implies T mod(ϕ) |= ϕ

Modularity means that when investigating whether ϕ is a consequence of T ,
the only formulas of T that are relevant are those whose modal operators
occur in ϕ.

This is reminiscent of interpolation, which more or less2 says:

Definition 3.2 A theory T has the interpolation property if for every for-
mula ϕ, if T |= ϕ then there is a theory Tϕ such that

• mod(Tϕ) ⊆ mod(T) ∩mod(ϕ)

• T |= ψ for every ψ ∈ Tϕ
• Tϕ |= ϕ

2We here present a version in terms of global consequence, as opposed to local conse-
quence or material implication versions that can be found in the literature [4, 5]. We were
unable to find such global versions in the literature.

3

Our definition of modularity is a strengthening of interpolation because it
requires Tϕ to be a subset of T .

Contrarily to interpolation, modularity does not generally hold. For ex-
ample, let

T = {p ∨ [α]⊥, p ∨ ¬[α]⊥}
Then T ∅ = ∅, and T α = T . Now T |= p, but clearly T ∅ 6|= p.

Being modular is a useful feature of theories: beyond being a reasonable
principle of design that helps avoiding mistakes, it clearly restricts the search
space, and thus makes reasoning easier. To witness, if T is modular then con-
sistency of T amounts to consistency (in classical logic) of the propositional
part T ∅.

4 Propositional modularity

How can we know whether a given theory T is modular? The following
criterion is simpler:

Definition 4.1 A theory T is propositionally modular if for every proposi-
tional formula A,

T |= A implies T ∅ |= A

And it will suffice to guarantee modularity:

Theorem 4.1 Let T be a partitioned theory. If T is propositionally mod-
ular then T is modular.

Proof: Let T be propositionally modular. Suppose T mod(ϕ) 6|= ϕ. Hence
there is a model M = 〈W,R, V 〉 such that M |= T mod(ϕ), and there is some
w in M such that M,w 6|= ϕ. We prove that T 6|= ϕ by constructing from M
a model M ′ such that M ′ |= T and M ′, w 6|= ϕ.

First, as we have supposed that our logic is compact, propositional mod-
ularity implies that for every propositional valuation val ⊆ 2ATM which is a
model of T ∅ there is a possible worlds model Mval = 〈Wval, Rval, Vval〉 such
that Mval |= T , and there is some w in Mval such that Vval(w) = val. In other
words, for every propositional model of T ∅ there is a model of T containing
that propositional model.

4

Second, taking the disjoint union of all these models we obtain a ‘big
model’ Mbig such that Mbig |= T , and for every propositional model val ⊆
2ATM of T ∅ there is a possible world w in Mbig such that V (w) = val.

Now we can use the big model to adjust those accessibility relations R(α)
of M whose α does not appear in ϕ, in a way such that the resulting model
satisfies the rest of the theory T \ T mod(ϕ): let M ′ = 〈W ′, R′, V ′〉 such that

• W ′ = {uv : u ∈ W, v ∈ Wbig, and V (u) = Vbig(v)}
• if α ∈ mod(ϕ) then uvR

′(α)u′v′ iff uRu′

• if α 6∈ mod(ϕ) then uvR
′(α)u′v′ iff vRv′

• V ′(uv) = V (u) = Vbig(v)

W ′ is nonempty becauseM ′ is ‘big enough’ and contains every possible propo-
sitional model of T ∅. Then for the sublanguage constructed from mod(ϕ) it
can be proved by structural induction that for every formula ψ of the sub-
language and every u ∈ W and v ∈ Wbig, M,u |= ψ iff M ′, uv |= ψ. The
same can be proved for the sublanguage constructed from MOD \ mod(ϕ).
As T ∅ and each of our modules T α are in at least one of these sublanguages
(in both sublanguages in the case of T ∅), we have thus proved that M ′ |= T ,
and M ′, wv 6|= ϕ for every v.

5 Action theories

In the rest of the paper we investigate how it can be automatically checked
whether a given theory T is modular or not. We do this for a particular kind
of theories that are commonly used in reasoning about actions. For such
theories we also show how the parts of the theory that are responsible for the
violation of modularity can be identified. First of all we say what an action
theory is.

Every action theory contains a representation of action effects. We call
effect laws formulas relating an action to its effects. Executability laws in turn
stipulate the context where an action is guaranteed to be executable. Finally,
static laws are formulas that do not mention actions and express constraints
that must hold in every possible state. These are our four ingredients that
we introduce more formally in the sequel.

5

Static laws Frameworks which allow for indirect effects make use of logical
formulas that link invariant propositions about the world. Such formulas
characterize the set of possible states. They do not refer to actions, and we
suppose they are formulas of classical propositional logic A,B, . . . ∈ PFOR.

A static law 3 is a formula A ∈ PFOR that is consistent. An example is
Walking→ Alive, saying that if a turkey is walking, then it must be alive [10].

Effect laws Here MOD is the set of all actions. To speak about action
effects we use the syntax of propositional dynamic logic (PDL) [2]. The
formula [α]A expresses that A is true after every possible execution of α.

An effect law4 for α is of the form A→ [α]C, where A,C ∈ PFOR. The
consequent C is the effect which obtains when α is executed in a state where
the antecedent A holds. An example is Loaded→ [shoot]¬Alive, saying that
whenever the gun is loaded, after shooting the turkey is dead. Another one is
[tease]Walking: in every circumstance, the result of teasing is that the turkey
starts walking.

A particular case of effect laws are inexecutability laws of the form A →
[α]⊥. For example ¬HasGun → [shoot]⊥ expresses that shoot cannot be
executed if the agent has no gun.

Executability laws With only static and effect laws one cannot guarantee
that shoot is executable if the agent has a gun. 5 In dynamic logic the dual
〈α〉A, defined as ¬[α]¬A, can be used to express executability. 〈α〉> thus
reads “the execution of action α is possible”.

An executability law6 for α is of the form A → 〈α〉>, where A ∈ PFOR.

3Static laws are often called domain constraints, but the different laws for actions that
we shall introduce in the sequel could in principle also be called like that.

4Effect laws are often called action laws, but we prefer not to use that term here because
it would also apply to executability laws that are to be introduced in the sequel.

5Some authors [9, 1, 7, 10] more or less tacitly consider that executability laws should
not be made explicit, but rather inferred by the reasoning mechanism. Others [6, 11] have
executability laws as first class objects one can reason about. It seems a matter of debate
whether one can always do without, but we think that in several domains one wants to
explicitly state under which conditions a given action is guaranteed to be executable, e.g.
that a robot should never get stuck and should always be able to execute a move action.
In any case, allowing for executability laws gives us more flexibility and expressive power.

6Some approaches (most prominently Reiter’s) use biconditionals A ↔ 〈α〉>, called
precondition axioms. This is equivalent to ¬A ↔ [α]⊥, which illustrates that they thus
merge information about inexecutability with information about executability.

6

For instance HasGun→ 〈shoot〉> says that shooting can be executed when-
ever the agent has a gun, and 〈tease〉> says that the turkey can always be
teased.

Action theories S ⊆ PFOR denotes the set of all static laws of a domain.
For a given action α ∈ MOD, Eα is the set of its effect laws, and Xα is the set
of its executability laws. We define E =

⋃
α∈MOD Eα, and X =

⋃
α∈MODXα.

An action theory is a tuple of the form 〈S, E ,X〉. We suppose that S, E and
X are finite.

6 Checking modularity of action theories

How can we check whether a given action theory T = 〈S, E ,X〉 is modular?
Assuming T is finite, the algorithm below does the job:

Algorithm 6.1 (Modularity check)

input: S, E ,X
output: a set of implicit static laws SI
SI:= ∅
for all α do

for all J ⊆ Eα do
AJ:=

∧{Ai : Ai → [α]Ci ∈ J}
CJ:=

∧{Ci : Ai → [α]Ci ∈ J}
if S ∪ {AJ} 6` ⊥ and S ∪ {CJ} ` ⊥ then

for all B → 〈α〉> ∈ X do
if AJ ∧B 6` ⊥ then
SI:= SI ∪ {¬(AJ ∧B)}

Theorem 6.1 An action theory 〈S, E ,X〉 is modular iff SI = ∅.

The proof of this theorem relies on a sort of interpolation theorem for
multimodal logic, which basically says that if Φ |= Ψ and Φ and Ψ have
no action symbol in common, then there is a classical formula A such that
Φ |= A and A |= Ψ.7

7The detailed proof can be found in http://www.irit.fr/ACTIVITES/LILaC/Pers/
Herzig/P/AiML04.html

7

Remark 6.1 In [3] a monotonic solution to the frame problem has been in-
tegrated in such an algorithm. This makes the algorithm a bit more complex
as it involves computing of prime implicates. For the sake of simplicity this
has not been done here.

7 Discussion and conclusion

In the perspective of independently axiomatized multimodal logics we have
investigated several criteria of modularity for simple theories. We have
demonstrated the usefulness of modularity in reasoning about actions, where
we have given an algorithmic checking for modularity of a given action theory.

We can have our criterion of modularity refined by taking into account po-
larity. Let mod±(ϕ) be the set of modalities of MOD occurring in ϕ together
with their polarity. For instance mod±([α1]([α2]p → q)) = {+α1,−α2}.
mod±(T) is defined accordingly. If M is a set of modalities with polarity
then we define: T M = {ϕ ∈ T : mod±(ϕ) ∩M 6= ∅}.

Definition 7.1 A theory T is ±-modular if for every formula ϕ,

T |= ϕ implies T mod±(ϕ) |= ϕ

There are other theories that are modular but not ±-modular, e.g.

T = {¬[α]p, [α]p ∨ [α]¬p}

Indeed, T |= [α]¬p, but T +α 6|= [α]¬p.
For the restricted case of action theories this has been proved in [3].

References

[1] P. Doherty, W. Lukaszewicz, and A. Sza las. Explaining explanation clo-
sure. In Proc. Int. Symposium on Methodologies for Intelligent Systems,
Zakopane, Poland, 1996.

[2] D. Harel. Dynamic logic. In D. M. Gabbay and F. Günthner, editors,
Handbook of Philosophical Logic, volume II, pages 497–604. D. Reidel,
Dordrecht, 1984.

8

[3] A. Herzig and I. Varzinczak. Domain descriptions should be modu-
lar. In L. Saitta, editor, Proc. Eur. Conf. on Artificial Intelligence
(ECAI’2004), Valencia, Spain, aug. 2004.

[4] M. Kracht and F. Wolter. Properties of independently axiomatizable
bimodal logics. J. of Symbolic Logic, 56(4):1469–1485, 1991.

[5] M. Kracht and F. Wolter. Simulation and transfer results in modal logic:
A survey. Studia Logica, 59:149–177, 1997.

[6] F. Lin. Embracing causality in specifying the indirect effects of actions.
In Mellish [8], pages 1985–1991.

[7] N. McCain and H. Turner. A causal theory of ramifications and quali-
fications. In Mellish [8], pages 1978–1984.

[8] C. Mellish, editor. Proc. 14th Int. Joint Conf. on Artificial Intelligence
(IJCAI’95), Montreal, 1995. Morgan Kaufmann Publishers.

[9] L. K. Schubert. Monotonic solution of the frame problem in the situation
calculus: an efficient method for worlds with fully specified actions. In
H. E. Kyberg, R. P. Loui, and G. N. Carlson, editors, Knowledge Rep-
resentation and Defeasible Reasoning, pages 23–67. Kluwer Academic
Publishers, 1990.

[10] M. Thielscher. Computing ramifications by postprocessing. In Mellish
[8], pages 1994–2000.

[11] D. Zhang and N. Y. Foo. EPDL: A logic for causal reasoning. In
B. Nebel, editor, Proc. 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI’01), pages 131–138, Seattle, 2001. Morgan Kaufmann Publish-
ers.

9

