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A MERIT FUNCTION APPROACH FOR DIRECT SEARCH∗

S. GRATTON† AND L. N. VICENTE‡

Abstract. In this paper it is proposed to equip direct-search methods with a general procedure
to minimize an objective function, possibly nonsmooth, without using derivatives and subject to
constraints on the variables. One aims at considering constraints, most likely nonlinear or nonsmooth,
for which the derivatives of the corresponding functions are also unavailable. The novelty of this
contribution relies mostly on how relaxable constraints are handled. Such constraints, which can
be relaxed during the course of the optimization, are taken care of by a merit function and, if
necessary, by a restoration procedure. Constraints that are unrelaxable, when present, are treated
by an extreme barrier approach. One is able to show that the resulting merit function direct-search
algorithm exhibits global convergence properties for first-order stationary constraints. As in the
progressive barrier method [C. Audet and J. E. Dennis Jr., SIAM J. Optim., 20 (2009), pp. 445–
472], we provide a mechanism to indicate the transfer of constraints from the relaxable set to the
unrelaxable one.

Key words. derivative-free optimization, direct-search methods, constraints, merit function,
penalty parameter, random directions, nonsmooth optimization
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1. Introduction. Consider the problem

min f(x)

s.t. x ∈ Ω = Ωr ∩ Ωnr.
(1)

The feasible region of this problem is defined by relaxable and/or unrelaxable con-
straints. The nonrelaxable constraints correspond to Ωnr ⊆ R

n. Such constraints have
to be satisfied at all iterations in an algorithmic framework for which the objective
function is evaluated. Typically they are bounds or linear constraints but they can
also include hidden constraints (constraints which are not part of the problem spec-
ification/formulation and their manifestation comes in the form of some indication
that the objective function could not be evaluated). In contrast, relaxable constraints
need only be satisfied approximately or asymptotically. In our notation Ωr is the set
of relaxable constraints, which is assumed to take the form

Ωr = {x ∈ R
n : ci(x) ≤ 0 ∀i ∈ I} .

Finally, the objective function f : Rn → R and the relaxable constraint functions ci
are only assumed to be locally Lipschitz continuous (in the sense that the conver-
gence analysis holds if f and the ci’s are Lipschitz continuous near an accumulation
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point produced by the algorithm). Most of the globally convergent derivative-free
approaches for handling nonlinear constrained problems have been of direct search or
line search type.1

Feasible methods may be the only option when all the constraints are unrelaxable
(Ωr = R

n). In addition they generate a sequence of feasible points, thus allowing the
iterative process to be terminated prematurely with a guarantee of feasibility for the
best point tested so far. One way of designing feasible methods is by means of the
barrier function

(2) fΩnr
(x) =

{

f(x) if x ∈ Ωnr,
+∞ otherwise.

Following the notation in [5], we refer to such a barrier function as the extreme barrier 
function. It is not necessary to evaluate f at infeasib

 
le points since the value of the

extreme barrier function is set to +∞ at such point s. Direct-search methods take 
action solely based on function values comparisons and are thus appropriate to use in
conjunction with an extreme barrier function. In the c ontext of direct-search methods 
of directional type using such functions, there are two k nown ways of designing globally 
convergent algorithms. In any of the cases, one must use sets of directions whose union 
(after normalization if needed) is asymptotically dense  in the unit sphere of Rn, even if 
the objective function is smooth. The first approach re quires only a simple decrease to 
accept new iterates but imposes integer requirements  throughout the algorithm (and 
in particular in the generation of the directions). This approach is known as mesh 
adaptive direct-search (MADS) and has been developed by Audet and Dennis [5]. One 
can, however, relax such integer lattice requirements an d freely generate the directions 
densely in the unit sphere at the price of imposing a s ufficient decrease condition on 
the acceptance of new iterates (see Vicente and Custó dio [25])—in practice, sufficient 
decrease can be imposed as not to differ much from s imple decrease. An alternative 
to extreme barrier when designing feasible methods  is the use of projections onto 
the feasible set, although this might require the know ledge of the derivatives of the 
constraints and be expensive or unpractical in many ins tances (see Lucidi, Sciandrone, 
and Tseng [21] for such an approach).

In the case where there are no unrelaxable cons traints, one can use a penalty 
term by adding to the objective function a measure of constraint violation multiplied 
by a penalty parameter, and thus allowing one to star t infeasible with respect to the 
relaxable constraints. In this vein, Lewis and Torczon  [18] (see also [17]) suggested an 
approach based on an augmented Lagrangian method.  They consider the solution of a 
sequence of subproblems where the augmented Lagrang ian function takes into account 
only the nonlinear constraints and is minimized subje ct to the remaining constraints 
(bounds on the variables or more general linear constr aints). Each problem can then 
be approximately solved using an appropriate directio nal direct-search method. This 
application of augmented Lagrangian methods yields global convergence results to 
first-order stationary points of the same type of thos e obtained under the presence 
of derivatives. Diniz-Ehrhardt, Mart́ınez, and Pedro so [15] studied a more general 
augmented Lagrangian setting where the problem con

 
straints imposed as subproblem 

constraints are not necessarily of linear type. In tur n, Liuzzi and Lucidi [19] and 
Liuzzi, Lucidi, and Sciandrone [20] developed and ana lyzed algorithms for inequality

1On the model-based trust-region side of optimization witho ut derivatives, nonlinear constraints 
have been considered mostly in implementations (see [8, 9, 11, 12, 24]), and as far as we know no 
convergence theory has yet been developed.



 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 

 
 

 

 

 

constrained problems, based on nonsmooth and smooth, respectively, penalty func-
tions. They imposed sufficient decrease and handled bound and linear constraints
separately, proving that a subset of the set of limit points of the sequence of iter-
ates satisfy the first-order necessary conditions of the original problem. Mart́ınez and
Sobral [22] proposed an algorithm for problems with “thin” constraints based on re-
laxing feasibility and performing a subproblem restoration procedure. Filter methods
may also be appropriate to handle relaxable constraints, and the first step in this di-
rection was done by Audet and Dennis [4]. The filter approach of Dennis, Price, and
Coope [14] guarantees global convergence to a first-order stationary point by means
of an envelope around the filter as means of measuring sufficient decrease.

The first general approach to consider both relaxable and unrelaxable constraints
is called progressive barrier and has been suggested by Audet and Dennis [6], ex-
hibiting some global convergence properties. It allows the handling of both types of
constraints by combining mesh adaptive direct search for unrelaxable constraints with
nondominance filter type concepts for the relaxable constraints (see the consequent
developments in [7]). An interesting feature is that a constraint can be considered
relaxable until it becomes feasible whereupon it is transferred to the set of unrelaxable
constraints.

In this paper, we develop an alternative approach to progressive barrier [6], han-
dling the relaxable constraints by means of a merit function instead of a filter. For
such a purpose, we consider a constraint violation function of the type

(3) g(x) =
∑

i∈I

max(ci(x), 0)

and the merit function

(4) M(x;µ) = f(x) + µg(x),

where µ ∈ R is a positive penalty parameter. The meri t function and the correspond-
ing penalty parameter are only used in the evaluation o f an already computed step, to
decide whether it will be accepted or not. The merit f unction (4) using (3) is known 
in nonlinear programming (see [23, section 17.2]) as t

 
he ℓ1 penalty function and has 

been extensively used in implementations (see [23, sec tion 17.5]).
Our treatment of the nonrelaxable constraints wil l implicitly consider the use of 

extreme barrier functions of the type (2). In practice  what we optimize is fΩnr since 
the nonrelaxable constraints restrict the evaluation of the objective function f . For 
generality, one considers here that Ωnr also constrains

 
the evaluation of the relaxable 

constraints, and thus implicitly consider gΩnr instead  of g in our proposed algorithm. 
Due to the presence of (derivative-free) unrelaxable  constraints and/or of the non-
smoothness of the objective function, the directions  used in the algorithm must be 
generated densely in the unit sphere of Rn.

Our merit function approach has been designed  in a simple and modular way. 
A successful iteration is defined by a sufficient decre ase in the constraint violation 
measure (3) (sufficiently away from feasibility) or a s ufficient decrease in the merit 
function (4) for an appropriate value of the penalty pa rameter. Whenever a sufficient 
decrease in the constraint violation measure (3) is ob served at the expense of a sig-
nificant increase in the objective function, a restoratio n of feasibility mode is entered 
with the single purpose of minimizing (3).

This paper is organized as follows. We start by describing the merit function 
algorithm in section 2. The convergence theory of t he proposed approach is then



 
 
 
 
 

 
 

 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 

 
 

 
 

 
 
 

 

 

 

 
 
 

 
 
 

divided in four sections: section 3 for the behavior of the step size parameter; section 4
for the case where restoration is only entered a finite number of times; section 5 for
the case where restoration is entered but never left; section 6 for the case where
restoration is entered an infinite number of times. In section 7 we discuss how the
theory particularizes in the presence of smoothness. In section 8 we show a few runs
of the algorithm as a proof of concept. Finally, section 9 contains some concluding
remarks and Appendix A summarizes a few notions of Clarke nonsmooth calculus
needed in this paper.

2. A merit function algorithm. In our algorithm framework an iteration is
considered successful in two situations. To describe them in some detail let us assume
a given iterate xk and a step size αk > 0. Each iteration is divided in a search and
a poll step, but the latter is the one responsible for the convergence properties of
the algorithm (and thus we ignore the search step for most of this discussion). Also,
let d be a direction considered in the poll step and ρ(α) a forcing function, i.e., a
positive and nondecreasing function verifying limα↓0 ρ(α)/α = 0. The directions used
in the poll step belong to a set Dk which does not necessarily have to span R

n with
nonnegative coefficients as it happens in traditional direct-search methods for smooth
problems.

The first possibility of success is that a certain sufficient decrease in the constraint
violation measure g is attained (g(xk + αkd) < g(xk)− ρ(αk)) and one is sufficiently
away from the feasible region g(xk) > Cρ(αk) for some constant C > 1.

The other situation where success is declared is when the merit function is suf-
ficiently decreased (M(xk + αkdk;µk) < M(xk;µk) − ρ(αk)) for a certain choice of
the penalty parameter µk. The update of the penalty parameter follows a classical
one [23, formula (18.33)] since what we use in (5) below is essentially the formula

[f(xk + αkdk)− f(xk)]/αk

ρ(αk)/αk

,

where the nominator corresponds to ∇f(xk)
⊤dk in the classical update (where f is

typically continuously differentiable) and the denominator replaces the value of g(xk)
in the classical update (and we will observe later that when ρ(αk)/αk goes to zero
so does, in principle, g(xk); see Theorems 4.1, 5.1-ii, and 6.1 and their proofs). We
summarize below the definition of a successful point (to be used in both search and
poll steps).

Begin (successful point). Given xk and αk, a point yk (either in the search or
in the poll step) is successful if

g(yk) < g(xk)− ρ(αk) and g(xk) > Cρ(αk)

or, if that is false, if

M(yk;µk) < M(xk;µk)− ρ(αk),

where

(5) µk = max

{

µ̄,
f(yk)− f(xk)

Cρ(αk)

}

and µ̄ > 0 and C > 1 are constants independent of k.
End (successful point). However, before measuring success, our algorithm

framework considers a phase to restore feasibility or decrease the amount of constraint



 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 
 
 

 

 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 

 
 
 

violation. A Restoration is entered (in the poll step) when there exists a d ∈ Dk such
that g(xk + αkd) < g(xk)− ρ(αk), g(xk) > Cρ(αk), and M(xk + αkd; µ̄) ≥ M(xk; µ̄),
for a sufficiently large value µ̄ of the penalty parameter. Notice that the first and
third of these conditions imply

f(xk + αkd)− f(xk) ≥ µ̄[g(xk)− g(xk + αkd)] > µ̄ρ(αk).

Thus, when Restoration is entered it is because a direction d has been found for which
g is sufficiently reduced (g(xk +αkd) < g(xk)− ρ(αk)) at a point xk sufficiently away
from being feasible (g(xk) > Cρ(αk)) and for which f has considerably increased
(f(xk + αkd) − f(xk) > µ̄ρ(αk)). Restoration can also be entered in the search step
and so we define below the notion of a Restoration identifier in general terms, to be
used in both search and poll steps.

Begin (Restoration identifier). Given xk and αk, a point yk is a Restoration
identifier (either in the search or in the poll step) if

g(yk) < g(xk)− ρ(αk) and g(xk) > Cρ(αk)

and

M(yk; µ̄) ≥ M(xk; µ̄),

where µ̄ > 0 and C > 1 are constants independent of k.
End (Restoration identifier). Our merit function approach is described below

in Algorithm 2.1. All directions in the sets Dk for all k are considered normalized.
Algorithm 2.1 (A merit function algorithm (Main)).

Initialization
Choose x0 ∈ Ωnr, α0, µ̄ > 0, C > 1, 0 < β1 ≤ β2 < 1, and γ ≥ 1.

For k = 0, 1, 2, . . .

1. Search step (optional): Evaluate the functions f and g at a finite
number of points in Ωnr. Enter Restoration (with kr = k) if any of
those points is a Restoration identifier. Otherwise, if any of those
points (say x) is a successful point, then set xk+1 = x, declare the
iteration and the search step successful, and skip the poll step.

2. Poll step: Select a finite subset of directions Dk. If xk + αkd /∈ Ωnr

for all d ∈ Dk, the iteration is declared unsuccessful. Otherwise, remove
from Dk all directions d such that xk + αkd /∈ Ωnr.
If any of the points xk+αkd, with d ∈ Dk, is a Restoration identifier,
then enter Restoration (with kr = k).
Otherwise, if there is a successful point of the form xk + αkdk with
dk ∈ Dk, then xk+1 = xk + αkdk and declare the iteration and the poll
step successful.
Otherwise, declare the iteration unsuccessful and set xk+1 = xk.

3. Step size parameter update: If the iteration was successful, then
maintain or increase the step size parameter: αk+1 ∈ [αk, γαk]. Other-
wise, decrease the step size parameter: αk+1 ∈ [β1αk, β2αk].

As we said before, if g can be sufficiently reduced (sufficiently away from feasibil-
ity) while f is considerably increased, we need to focus totally on a reduction of the
constraint violation, and such a procedure is described in Algorithm 2.2. Restora-
tion is then left when progress in the reduction of the constraint violation cannot be



 
 
 

 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

 

 
 

 

further achieved and such a considerable increase in f is no longer observed (we will
later see in section 5 the appropriateness of such a leaving criterion).

Algorithm 2.2 (A merit function algorithm (Restoration)).

Initialization
Start from xkr

∈ Ωnr given from the Main algorithm and consider the same
parameters as in there.

For k = kr, kr + 1, kr + 2, . . .

1. Search step (optional):
Evaluate the function g at a finite number of points in Ωnr. If any of
those points (say x) is such that g(x) < g(xk) − ρ(αk) and g(xk) >
Cρ(αk), then set xk+1 = x, declare the iteration and the search step
successful, and skip the poll step.

2. Poll step: Select a finite subset of directions Dk. If xk + αkd /∈ Ωnr

for all d ∈ Dk, the iteration is declared unsuccessful. Otherwise, remove
from Dk all directions d such that xk + αkd /∈ Ωnr.
Declare the poll step and the iteration successful if there exists a dk ∈ Dk

such that

g(xk + αkdk) < g(xk)− ρ(αk) and g(xk) > Cρ(αk).

In such a case, set xk+1 = xk + αkdk.
Otherwise, declare the iteration unsuccessful and set xk+1 = xk.
Leave Restoration and return to the Main algorithm (starting at a new
(k + 1)th iteration using xk+1 and αk+1) if the iteration is unsuccessful
and M(xk + αkd; µ̄) < M(xk; µ̄) for some d ∈ Dk.

3. Step size parameter update: As in Step 3 of the Main algorithm.

3. Step size behavior. As it is classic in direct-search methods or other tech-
niques for derivative-free optimization, we start our analysis of global convergence
by showing that the step size parameter approaches zero. We will do this under the
condition that Restoration is not entered an infinite number of times (and postpone
to section 6 the analysis of this situation).

Theorem 3.1. Assume that f is bounded below. Assume that Restoration is
entered finitely many times.

Then,

lim inf
k→+∞

αk = 0.

Proof. Suppose that there exists k̄ ∈ N and ᾱ > 0 such that αk ≥ ᾱ and the kth
iteration is a Main one for every k ≥ k̄.

Let us assume now that there exists an infinite subsequence J1 of successful iter-

ations after k̄. We thus know that xk ∈ Ωnr for all k ∈ J1. In the derivation below 
we will omit the unsuccessful iterations, since at thos e iterations the iterates do not
move.

If [g(xk+1) < g(xk) − ρ(αk) and g(xk) > Cρ(αk )] is true for sufficiently large 
k ∈ J1, then

g(xk+1) < g(xk) − ρ(αk) ≤ g(x 
 
k) − ρ(ᾱ)

for those indices k, which renders a contradiction sinc e g is bounded below by 0.



 
 
 

 
 
 
 
 

 

 

 

 
 

 
 

 

 

 
 
 
 

 
 

 
 
 

 
 
 
 

 

 
 
 
 
 

 
 

Thus, there must exist an infinite subsequence J2 ⊆ J1 of iterates for which
M(xk+1;µk) < M(xk;µk)− ρ(αk). Here we consider two possibilities.

In the first case, all these iterates are such that µk = µ̄ for sufficiently large k. In
such an occurrence one has that

M(xk+1; µ̄) < M(xk; µ̄)− ρ(αk) ≤ M(xk; µ̄)− ρ(ᾱ)

for all k ∈ J2 sufficiently large. However, in the successful iterations where [g(xk+1) <
g(xk) − ρ(αk) and g(xk) > Cρ(αk)], since Restoration was not entered (k̄ was con-
sidered sufficiently large for this purpose), one knows that M(xk+1; µ̄) < M(xk; µ̄).
Thus, M(xk; µ̄) tends to −∞, which is a contradiction given the boundedness from
below of both f and g.

In the second possibility, there is an infinite number of iterations in J2 such that

µk =
f(xk+1)− f(xk)

Cρ(αk)
.

Let us choose just one of these iterations. For such an iteration k, either g(xk+1) ≥
g(xk)− ρ(αk) or g(xk) ≤ Cρ(αk). Thus, either

f(xk+1)− f(xk) = µkCρ(αk) ≥ µk[g(xk)− g(xk+1)]

(since C > 1) or

f(xk+1)− f(xk) = µkCρ(αk) ≥ µkg(xk) ≥ µk[g(xk)− g(xk+1)],

both leading toM(xk+1;µk) ≥ M(xk;µk), which contradictsM(xk+1;µk) < M(xk;µk)
− ρ(αk).

We have proved under the assumption of contradiction that one cannot have an
infinity of successful iterations. On the other hand, if all iterations are unsuccessful
after a certain order that also contradicts the assumption of contradiction.

The following corollary organizes the relevant information regarding unsuccessful
iterations and step size behavior for the analysis in the next sections.

Corollary 3.2. Assume that f is bounded below. Assume that Restoration is
entered finitely many times.

Then, there exists at least one refining subsequence of Main iterations (i.e., a
subsequence K composed of unsuccessful Main iterations for which αk → 0 for k ∈
K).

Proof. The proof can be found, for instance, in [13] but it is given here for
completeness. From Theorem 3.1 we conclude that there must exist a subsequence J
of unsuccessful iterations (or unsuccessful poll steps). Thus, from the way we update
the step size parameter, there must exist a subsequence of unsuccessful iterations
K ⊂ J such that αk+1 → 0 for k ∈ K. Since, αk ≤ (1/β1)αk+1 for k ∈ K, we obtain
αk → 0 for k ∈ K.

4. Convergence assuming restoration is never entered after a certain
order. The analysis of global convergence of Algorithm 2.1 is made by inspecting the
sign of appropriate Clarke directional derivatives. Let h (e.g., h = f, g) be Lipschitz
continuous near x∗ and be restricted to Ωnr ⊆ R

n. We will use the following definition
of the Clarke generalized derivative of h at x∗ along d:

h◦(x∗; d) = lim sup
x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

h(x+ td)− h(x)

t
,



 
 
 
 

 
 
 
 

 
 
 

 
 
 

 

 
 
 
 

 
 
 
 

 
 
 
 
 

 
 
 

 

 
 

 

 
 

 
 

 
 
 

where d must be in the hypertangent TH
Ωnr

(x∗) cone to Ωnr at x∗ (i.e., d must be in the

interior of the tangent cone TCl
Ωnr

(x∗) to Ωnr at x∗). In Appendix A of this paper we
provide the rigorous definitions of these derivatives as well as the definitions of tangent
and hypertangent cones. We assume throughout this paper that the hypertangent
TH
Ωnr

(x∗) is nonempty.
The sign of the Clarke derivatives is then analyzed at limit points of refining sub-

sequences along refining directions. As we said before, by a refining subsequence [3],
we mean a subsequence of unsuccessful Main iterates for which the step-size parameter
converges to zero. By a refining direction [5] (in TH

Ωnr
(x∗)) associated with a refining

subsequence K converging to x∗, one means a limit point of {dk} (in TH
Ωnr

(x∗)) where
k ∈ K is taken sufficiently large such that xk + αkdk ∈ Ωnr. Given that our working
directions in the sets Dk’s are normalized, so are the refining directions.

4.1. Results on feasibility. We start by considering the determination of fea-
sibility. (Note that since Ωnr is not necessarily by assumption a closed set, one must
assume below that the limit point of a refining subsequence verifies the nonrelaxable
constraints.)

Theorem 4.1. Assume that f is bounded below. Assume that Restoration is
entered finitely many times.

Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ωnr and assume that
d ∈ TH

Ωnr
(x∗) is a refining direction associated with K and x∗. Assume that g is

Lipschitz continuous near x∗. Then either g(x∗) = 0 (implying x∗ ∈ Ωr and thus
x∗ ∈ Ω) or g◦(x∗; d) ≥ 0.

Proof. By assumption there exists a subsequence K1 ⊆ K and a corresponding
subsequence {dk}k∈K1

of polling directions such that {dk} converges to d ∈ TH
Ωnr

(x∗)
inK1 and αk goes to zero inK1. Thus, one must necessarily have that xk+αkdk ∈ Ωnr

for k sufficiently large in K1.
Since the iteration k ∈ K1 is unsuccessful, g(xk + αkdk) ≥ g(xk) − ρ(αk) or

g(xk) ≤ Cρ(αk), and then either there exists an infinite number of the first or of the
second. In the latter case, it is then trivial to obtain g(x∗) = 0 from the fact that
αk → 0 in K1 and the continuity of g. In the former case, there exists a subsequence
K2 ⊆ K1 such that

g(xk + αkdk)− g(xk)

αk

≥ −ρ(αk)

αk

∀k ∈ K2.

On the other hand, from the definitions of lim sup and K2,

lim sup
x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

g(x+ td)− g(x)

t
≥ lim sup

k∈K2

g(xk + αkd)− g(xk)

αk

.

Since g is Lipschitz continuous near x∗ (with constant Lg),

g(xk + αkdk)− g(xk)

αk

− Lg‖dk − d‖ ≤ g(xk + αkd)− g(xk)

αk

.

One then obtains g◦(x∗; d) ≥ 0 since both ‖dk − d‖ and ρ(αk)/αk tend to zero in
K2.

By assuming that appropriate refining directions are dense in TCl
Ωnr

(x∗)∩{d ∈ R
n :

‖d‖ = 1}, one can show that the limit point x∗ is Clarke stationary for the constraint



 

 
 

 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 

 

 
 
 
 
 
 
 

 
 

 

 

 

 
 

violation problem

min g(x)

s.t. x ∈ Ωnr.
(6)

Theorem 4.2. Assume that f is bounded below. Assume that Restoration is
entered finitely many times.

Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ωnr. Assume that g is
Lipschitz continuous near x∗.

Assume that TCl
Ωnr

(x∗) has a nonempty interior.

Then either g(x∗) = 0 (implying x∗ ∈ Ωr and thus x∗ ∈ Ω) or if the set of
refining directions associated with K ′ (where K ′ is formed by the indices in K such
that g(xk +αkdk) ≥ g(xk)−ρ(αk)) and x∗ is dense in TCl

Ωnr
(x∗)∩{d ∈ R

n : ‖d‖ = 1},
then g◦(x∗; v) ≥ 0 for all v ∈ TCl

Ωnr
(x∗), and x∗ is a stationary point of the constraint

violation problem (6).

Proof. Following the proof of Theorem 4.1, if there exists an infinite number of
cases where g(xk) ≤ Cρ(αk), then g(x∗) = 0.

Now, let v be such that v ∈ TCl
Ωnr

(x∗) and ‖v‖ = 1. Then v is the limit of a

sequence D of refining directions d associated with K ′ and x∗ such that d ∈ TH
Ωnr

(x∗).
For each such d one can apply the proof of Theorem 4.1 and obtain g◦(x∗; d) ≥ 0.
Thus, g◦(x∗; v) = limd∈TH

Ωnr
(x∗),d∈D g◦(x∗; d) ≥ 0. The result then holds for nonnor-

malized v’s given that TCl
Ωnr

(x∗) is a cone and the Clarke derivatives are homogeneous
in their second arguments.

4.2. Results on optimality. We now move to an intermediate optimality re-
sult. One does not explicitly use x∗ ∈ Ωr in the proof, but one notes that g◦(x∗; d) ≤ 0
only describes the cone of first-order linearized directions under the feasibility assump-
tion x∗ ∈ Ωr.

Theorem 4.3. Assume that f is bounded below. Assume that Restoration is
entered finitely many times.

Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ω. Assume that f and
g are Lipschitz continuous near x∗. Assume that d ∈ TH

Ωnr
(x∗) is a refining direction

associated with K and x∗ such that g◦(x∗; d) ≤ 0. Then f◦(x∗; d) ≥ 0.

Proof. By assumption there exists a subsequence K1 ⊆ K and a corresponding
subsequence {dk}k∈K1

of polling directions such that {dk} converges to d ∈ TH
Ωnr

(x∗)
inK1 and αk goes to zero inK1. Thus, one must necessarily have that xk+αkdk ∈ Ωnr

for k sufficiently large in K1.

Since the iteration k ∈ K1 is unsuccessful, one is sure that M(xk + αkdk;µk) ≥
M(xk;µk)− ρ(αk), where µk is given by (5).

If µk = [f(xk + αkdk) − f(xk)]/[Cρ(αk)], then it is because [f(xk + αkdk) −
f(xk)]/[Cρ(αk)] ≥ µ̄, and thus

(7)
f(xk + αkdk)− f(xk)

αk

≥ Cµ̄
ρ(αk)

αk

.

If not, then M(xk + αkdk; µ̄) ≥ M(xk; µ̄)− ρ(αk), and thus

(8)
f(xk + αkdk)− f(xk)

αk

≥ µ̄
g(xk)− g(xk + αkdk)

αk

− ρ(αk)

αk

.



 
 
 
 
 

 
 

 

 
 

 
 

 
 

 

 

 

 
 

 

 

 
 
 
 

 
 
 
 
 
 
 

 

On the other hand, from the definition of lim sup a nd the assumption g◦(x∗; d) ≤
0,

lim sup
k∈K1

g(xk + αkd)− g(xk)

αk

≤ lim sup
x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

g(x+ td)− g(x)

t
≤ 0.

Since g is Lipschitz continuous near x∗ and the fact that dk → d (and using an
argument already seen in the proof of Theorem 4.1),

lim sup
k∈K1

g(xk + αkdk)− g(xk)

αk

= lim sup
k∈K1

g(xk + αkd)− g(xk)

αk

≤ 0.

Thus, one can say that there exists {ǫk}, with ǫk → 0, such that

g(xk + αkdk)− g(xk)

αk

≤ ǫk ∀k ∈ K1,

which then implies when (8) occurs

(9)
f(xk + αkdk)− f(xk)

αk

≥ −µ̄ǫk −
ρ(αk)

αk

.

Now we know already that

lim sup
x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

f(x+ td)− f(x)

t
≥ lim sup

k∈K1

f(xk + αkd)− f(xk)

αk

= lim sup
k∈K1

f(xk + αkdk)− f(xk)

αk

.

The proof is completed since the right-hand sides of (7) and (9) tend to zero in
K1.

Finally, we make use of the density of the refining directions in the set

(10) T (x∗) = TH
Ωnr

(x∗) ∩ {d ∈ R
n : ‖d‖ = 1, g◦(x∗; d) ≤ 0}

to derive the complete optimality result.
Theorem 4.4. Assume that f is bounded below. Assume that Restoration is

entered finitely many times.
Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ω. Assume that f and

g are Lipschitz continuous near x∗.
Assume that TH

Ωnr
(x∗) ∩ {d ∈ R

n : g◦(x∗; d) ≤ 0} has a nonempty interior.
If the set of refining directions associated with K and x∗ is dense in T (x∗), then

f◦(x∗; v) ≥ 0 for all v ∈ TCl
Ωnr

(x∗) such that g◦(x∗; v) ≤ 0, and x∗ is a stationary
point of (1).

Proof. Let v be such that v ∈ TCl
Ωnr

(x∗), g
◦(x∗; v) ≤ 0, and ‖v‖ = 1. Then v

is the limit of a sequence D of refining directions d associated with K and x∗ such
that d ∈ TH

Ωnr
(x∗) and g◦(x∗; d) ≤ 0. For each such d one can apply Theorem 4.3

and obtain f◦(x∗; d) ≥ 0. Thus, f◦(x∗; v) = limd∈TH

Ωnr
(x∗),d∈D f◦(x∗; d) ≥ 0. The

result then holds for nonnormalized v’s given that TCl
Ωnr

(x∗) is a cone and the Clarke
derivatives are homogeneous in their second arguments.



 
 
 
 
 

 

 

 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 
 

 

5. Never leaving restoration. The analysis of an infinite run of consecutive
steps inside Restoration shows that such a behavior would lead to feasibility and
optimality results similar as in the previous case. By a refining subsequence below,
we now mean a subsequence of unsuccessful Restoration iterates for which the step-
size parameter converges to zero. The definition of refining direction is the same as
before. (Again, since Ωnr is not necessarily by assumption a closed set, one must
assume below that x∗ belongs to Ωnr.)

Theorem 5.1. Assume that f is bounded below. Assume that Restoration is
entered and never left.

(i) Then there exists a refining subsequence.
(ii) Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ωnr and assume

that d ∈ TH
Ωnr

(x∗) is a refining direction associated with K and x∗. Assume that g
is Lipschitz continuous near x∗. Then either g(x∗) = 0 (implying x∗ ∈ Ωr and thus
x∗ ∈ Ω) or g◦(x∗; d) ≥ 0.

(iii) Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ω and assume that
d ∈ TH

Ωnr
(x∗) is a refining direction associated with K and x∗ such that g◦(x∗; d) ≤ 0.

Assume that f is also Lipschitz continuous near x∗. Then f◦(x∗; d) ≥ 0.
Proof. (i) There must exist a refining subsequence K within this call of the

Restoration (this is essentially the argument of the third paragraph of the proof of
Theorem 3.1). By assumption there exists a subsequenceK1 ⊆ K and a corresponding
subsequence {dk}k∈K1

of polling directions such that {dk} converges to d ∈ TH
Ωnr

(x∗)
inK1 and αk goes to zero inK1. Thus, one must necessarily have that xk+αkdk ∈ Ωnr

for k sufficiently large in K1.
(ii) Since the iteration k ∈ K1 is unsuccessful in the Restoration, g(xk +αkdk) ≥

g(xk)− ρ(αk) or g(xk) ≤ Cρ(αk), and the proof follows an argument already seen (in
the second paragraph of the proof of Theorem 4.1).

(iii) Since at the unsuccessful iteration k ∈ K1, Restoration is not left, it must be
becauseM(xk+αkdk; µ̄) ≥ M(xk; µ̄) for all k ∈ K1, and the proof follows an argument
also already seen (see the fourth paragraph of the proof of Theorem 4.3).

By assuming density of appropriate refining directions in certain cones, we could
also establish stationary results for problems (1) and (6) as in Theorems 4.2 and 4.4,
respectively.

6. Entering and leaving restoration an infinite number of times. It re-
mains to analyze the case when one enters (and thus leaves) Restoration an infinite
number of times. In this case the conditions under which the global convergence re-
sults are derived are not the ideal ones since we will have the need to assume that
the search step is not performed (or not performed when it requires restoration) and
that the step size is not increased (or not increased as frequently as it is decreased).

Theorem 6.1. Assume that f is bounded below. Assume that Restoration is
entered and left an infinite number of times.

Assume that αk is never increased, that the search step is not applied in the Main
algorithm, and that {xk} converges to x∗.

Let d be a direction which is the limit point of {dk 
 

} for both the sequences where 
Restoration is entered and left.

Assume that f and g are Lipschitz continuous n 
 
ear x∗. Then x∗ ∈ Ωnr and

either g(x∗) = 0 (implying x∗ ∈ Ωr and thus x∗ ∈ Ω)
 
or g◦(x∗; d) ≥ 0. Furthermore, 

f◦(x∗; d) ≥ 0 if g◦(x∗; d) ≤ 0.
Proof. Let J1 and J2 be two subsequences of i terations where Restoration is 

entered and left, respectively.

 



 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 

 
 
 
 

Since for k ∈ J2 one knows that αk is reduced and the step parameter is never
increased, one obtains αk → 0.

Also, by assumption there exists a subsequence J3 ⊆ J2 and a corresponding
subsequence {dk}k∈J3

of polling directions such that {dk} converges to d ∈ TH
Ωnr

(x∗) in
J3 and αk goes to zero in J3. Thus, one must necessarily have that xk+αkdk ∈ Ωnr for
k sufficiently large in J3. Thus, from g(xk+αkdk) ≥ g(xk)−ρ(αk) or g(xk) ≤ Cρ(αk),
for all k ∈ J3, one concludes that g◦(x∗; d) ≥ 0 or g(x∗) = 0.

Now, for k ∈ J1, M(xk + αkdk; µ̄) ≥ M(xk; µ̄), and from this we conclude that
f◦(x∗; d) ≥ 0 if g◦(x∗; d) ≤ 0.

To derive a result of the form of Theorem 4.4, one would need to impose that the
directions used when entering Restoration are dense in the set (10).

To establish Theorem 6.1 we needed to make sure that αk goes zero, and since we
already had a subsequence of step size decreases, one way to ensure such a property
was to rule out step size increases. Note also that we can allow search steps as long
as they are skipped when they require Restoration.

An alternative to this result is to consider a certain maximum number N of
Restoration calls, after which one decides to unrelax the relaxable constraints. In
this approach, at the (N + 1)th call to Restoration, one enters a slightly different
Restoration algorithm with the single purpose of minimizing g (i.e., Algorithm 2.2
without the condition of leaving Restoration). After such a call, if one arrives at a
point where g is zero, one redefines Ωnr as the intersection of the originals Ωnr and Ωr,
and start from there an approach strictly based on the minimization of the extreme
barrier function fΩnr

. This procedure can be applied to the relaxable constraints
ci(x) ≤ 0, i ∈ I, individually.

7. Particularization to smoother settings. When f is strictly differentiable
at x∗ in the sense of Clarke [10], there exists ∇f(x∗) such that f◦(x∗; d) = 〈∇f(x∗), d〉
for all d. Furthermore, if the ci’s are smoother (for instance, continuously differen-
tiable at x∗), then g in (3) is regular [10], and its Clarke directional derivatives coin-
cide with the traditional ones, i.e., g◦(x∗; d) = g′(x∗; d). Thus, under these smoother
assumptions, the results would read as follows: (i) g′(x∗; d) ≥ 0 (in the relaxable con-
straints criticality result of Theorem 4.1); (ii) the projection of ∇f(x∗) is zero onto
the set of directions v such that v ∈ TCl

Ωnr
(x∗) and g′(x∗; v) ≤ 0 (in the optimality

result of Theorem 4.4).

When f and ci, i ∈ I, are continuously differentiable and Ωnr = R
n, there is

no need to use sets of polling directions dense in the unit sphere. The algorithms
(Main and Restoration) can then consider in this smooth setting, in their poll steps,
directions belonging to positive spanning sets Dk. To better extend the result of
Theorem 4.1 to such a setting one would have to consider a continuously differentiable
version for g, such as

(11) g(x) =
∑

i∈I

[max(ci(x), 0)]
2.

Theorem 7.1. Assume that f is bounded below. Assume that Restoration is
entered finitely many times.

Let {xk}k∈K be a refined subsequence converging to x∗. Suppose that Dk converges
in K to a positive spanning set D∗. Assume that Ωnr = R

n, that ci, i ∈ I, are
continuously differentiable at x∗, and that g is given by (11). Then either g(x∗) = 0
(and thus x∗ ∈ Ω) or ∇g(x∗) = 0.



 
 
 
 
 

 
 

 

 
 

 
 
 

 
 
 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

Proof. Since the iteration k ∈ K is unsuccessful, g(xk + αkdk) ≥ g(xk) − ρ(αk)
for all d ∈ Dk or g(xk) ≤ Cρ(αk), and then either there exists an infinite number of
the first or of the second. In the latter case, it is then trivial to obtain g(x∗) = 0 from
the fact that αk → 0 in K and the continuity of g. In the former case, there exists a
subsequence K1 ⊆ K such that

g(xk + αkd)− g(xk)

αk

≥ −ρ(αk)

αk

∀d ∈ Dk, ∀k ∈ K1.

Applying the mean value theorem, for some tdk ∈ (0, 1),

〈∇g(xk + tdkαkd), d〉 ≥ −ρ(αk)

αk

∀d ∈ Dk, ∀k ∈ K1,

which then implies 〈∇g(x∗), d〉 ≥ 0 for all d ∈ D∗, and thus ∇g(x∗) = 0.
Theorem 4.3 can also be adapted to the continuously differentiable case.
Theorem 7.2. Assume that f is bounded below. Assume that Restoration is

entered finitely many times.
Let {xk}k∈K be a refined subsequence converging to x∗ ∈ Ω. Assume that Ωnr =

R
n and that f , ci, i ∈ I, are continuously differentiable at x∗. Let g be given by (3)

or (11). Suppose that Dk converges to a set D∗ containing positive generators for
(12)
G(x∗) = {v ∈ R

n : g′(x∗; v) ≤ 0} = {v ∈ R
n : 〈∇ci(x∗), v〉 ≤ 0 when ci(x∗) = 0}.

Then the projection of ∇f(x∗) onto G(x∗) is zero.
Proof. The proof of Theorem 4.3 shows that for all limit points d of polling

directions, if d ∈ G(x∗), then 〈∇f(x∗), d〉 ≥ 0. Thus, for all positive generators
of G(x∗) in D∗, 〈∇f(x∗), d〉 ≥ 0, and this implies the result.

8. Numerical illustration. We illustrate the performance of the merit function
algorithm on three test problems, which were also tested in [6] to assess the progressive
barrier method. The first two problems are defined by a simple algebraic formulation
whereas the third one comes from an application.

A simple implementation of Algorithm 2.1 was made in MATLAB without any
parameter tuning. The step size updating parameters were set to α0 = 1, β1 = β2 =
0.5, and γ = 2. The forcing function was set chosen as ρ(α) = min{10−5, 10−5α2

k}. For
the update of the penalty parameter we picked µ̄ = max{10, g(x0)} and C = 100. No
search step was attempted. The measure of constraint violation was the nonsmooth
one (3). As for the polling directions, those were randomly generated each step with
norm one. We show results for |Dk| = n/2, n + 1, 2n. There is no guarantee, even
in the cases |Dk| = n + 1, 2n, of having computed a positive spanning set, but one
knows that that is not required in the convergence theory. A study of random positive
spanning sets is out of the scope of this paper. The results presented are the average
of 40 runs (corresponding to 40 values of the seed of the MATLAB random generator
randn).

In the first problem [5], one minimizes a linear function in a convex domain:

min

n
∑

i=1

xi

s.t.

n
∑

i=1

x2
i ≤ 3n.

(13)



 
 
 
 

 
 

Two starting points are considered, one feasible (0, . . . , 0)⊤ and the other infeasible
(3, . . . , 3)⊤. There is a single (global) solution (−

√
3, . . . ,−

√
3)⊤, with optimal value

−
√
3n. In the second problem [6], the objective is still linear but the feasible region

is nonconvex:

min xn

s.t.
n
∑

i=1

(xi − 1)2 ≤ n2 ≤
n
∑

i=1

(xi + 1)2.
(14)

Two starting points are also considered, one feasibl e (n, 0, . . . , 0)⊤ and the other
i
o
n
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lu
,
e
0,
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. . . ,

n.
0, −n)⊤. There is a single (global) 

 
solution (1, . . . , 1, 1−n)⊤, with

−

The results for problems (13)–(14) are depicted in Figures 1–2 for the case n = 
50. One can see that convergence is attained in all  the cases and that the results 
must be considered good when compared to those r eported in [6]. One observes 
the nonmonotonicity in the value of the objective fun ction (especially when starting 
infeasible), while reaching feasibility or within the com promise promoted by the merit 
function. This effect is even visible while approachin g the minimizer (which lies at 
the boundary) for problem (13). One also observes tha t most of the progress is made
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to be the less robust for these test problems. In addit ion, the number of iterations is
much lower (most of the cases below 1000 and never exceeding 2000 for the chosen 
budget size) meaning that the parallelization of the alg orithm would bring significant 
gains in the overall computational time.

We also ran the code on the truth model of a probl em defined by the optimization 
of a styrene process production process (see [2]). Th e problem has eight variables, 
four unrelaxable constraints (of the type yes-no), an d seven relaxable constraints.
The variables have lower and upper bounds (xi ∈ [0,  100], i = 1, . . . , n), which were 
treated by us as unrelaxable constraints. We interfac ed the C++ code available in
NOMAD [1] for this problem to our MATLAB opti mizer. We considered the two 
initial points also used in [6], namely

x0 = 100[0.54, 0.66, 0.86, 0.08, 0.29, 0.51, 0.32, 0.15]⊤(fe asible for the relaxable const.)
x0 = 100[0.44, 0.99, 0.76, 0.39, 0.39, 0.48, 0.43, 0.05]⊤(in feasible for the relaxable const.).

The plots in Figure 3 depict the performance of the a lgorithm for these two starting
points when using n/2, n+1, and 2n polling directions. Again the version |Dk| = n/2 
appeared as the less robust one. One can see that the results for this third problem
must also be considered good when compared to those reported in [6].

Finally, we point out that, for all the instances  run, the returned points were 
always feasible with respect to the relaxable constrain ts and that the update of the 
penalty parameter has never posed any problem of sca ling or magnitude. Restoration 
was only entered a negligible number of times.

9. Concluding remarks. We have introduced a globalization procedure to in-
clude relaxable constraints in direct-search methods, a llowing starting infeasible with 
respect to these constraints. The procedure introduc ed requires the evaluation of a 
merit function for the purposes of measuring success of an iteration. The penalty 
parameter present in the merit function does not, thu s, play any explicit role in the

. 
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Fig. 1. Two runs of Algorithm 2.1 on problem (13) whe n n = 50 (and a budget of 600n is 
given). The optimal value is approximately 86.6025. On the l eft (resp., on the right) the starting 
point is feasible (resp., infeasible).

computation of the step. It is also important to stres s that no type of boundedness 
of the penalty parameter was assumed to derive the  global convergence results. We 
included a scheme to restore feasibility associated wit h these constraints (or just to 
significantly reduce such a constraint violation) as it seemed to us as a potentially 
useful tool.

The convergence analysis is organized depending o n the number of times Restora-
tion is entered. When Restoration is entered finitely of ten, we showed in Theorem 4.2 
that the limit points of certain subsequences of iterates (called refining and composed 
of unsuccessful iterations for which αk goes to zero) a re either feasible or Clarke sta-
tionary for the constraint violation problem (6). The n, we showed in Theorem 4.4 
that such limit points, when feasible to the original  problem, are Clarke stationary 
for (1). Our theory provides similar results when Resto ration is entered but never left 
(see section 5). The remaining case is when Restoratio n is entered and left an infinite 
number of times (section 6). Here, to guarantee the sa me type of results, we required 
the algorithm to meet two additional criteria related t o the application of the search
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Fig. 2. Two runs of Algorithm 2.1 on problem (14) whe n n = 50 (and a budget of 600n is 
given). The optimal value is −49. On the left (resp., on the right) the starting point is feasible 
(resp., infeasible).

step and the update of the step size αk in successful i terations.

As a referee pointed out to us, our algorithmic fra mework could be simplified by 
setting µk = µ̄ without affecting the theoretical prop

 
erties. Having µk = µ̄ would 

implicitly maintain the presence of a penalty parame ter. For the sake of generality 
and algorithmic flexibility, we maintained the more gen eral penalty parameter update.

A number of issues remain to be better investiga ted, in particular how our ap-
proach would rank in a comprehensive numerical com parison of the existing direct-
search type methods for nonlinear constrained deriva  tive-free optimization. The few 
numerical tests made until now are relatively promising and indicated the need to a 
better understanding of the use of random directions  and random positive spanning 
sets in direct search, a study which we are currently  undertaking. Other algorithmic 
options are likely to also have a significant impact like t he application of a search step, 
the choice of parameters such as the initial threshold µ̄ for the penalty parameter, 
and the resetting of the step size before and after a cha nge in optimization state (such
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Fig. 3. Two runs of Algorithm 2.1 on the styrene problem for a budget of 300 function evalu-
ations. On the left (resp., on the right) the starting point is feasible (resp., infeasible) with respect
to the unrelaxable constraints.

as the Restoration).

Appendix A. Cones and derivatives in the constrained case. A vector is
said tangent to Ωnr at x if it satisfies the following definition.

Definition A.1. A vector d ∈ R
n is said to be a Clarke tangent vector to the

set Ωnr ⊆ R
n at the point x in the closure of Ωnr if for every sequence {yk} of

elements of Ωnr that converges to x and for every sequence of positive real numbers
{tk} converging to zero, there exists a sequence of vectors {wk} converging to d such
that yk + tkwk ∈ Ωnr.

The Clarke tangent cone to Ωnr at x, denoted by TCl
Ωnr

(x), is then defined as the
set of all Clarke tangent vectors to Ωnr at x. The Clarke tangent cone generalizes the
tangent cone in nonlinear programming [23], but one can think about the latter one
for gaining the necessary geometric motivation.

Given x∗ ∈ Ωnr and d ∈ TCl
Ωnr

(x), one is not sure that x + td ∈ Ωnr for x ∈ Ωnr

arbitrarily close to x∗. Thus, for this purpose, one needs to consider directions in
the interior of the Clarke tangent cone. The hypertangent cone appears then as the



 
 
 
 
 
 
 
 
 

 
 

 
 

 
 
 

 
 

 

 
 

 
 
 
 
 
 

 
 
 
 
 

 

 
 
 
 

interior of the Clarke tangent cone (when such interior is nonempty, as we assume in
this paper). In what follows, B(z; r) denotes {w ∈ R

n : ‖w − z‖ < r}.
Definition A.2. A vector d ∈ R

n is said to be a hypertangent vector to the set
Ωnr ⊆ R

n at the point x in Ωnr if there exists a scalar ǫ > 0 such that

y + tw ∈ Ωnr ∀y ∈ Ωnr ∩B(x; ǫ), w ∈ B(d; ǫ), and 0 < t < ǫ.

The hypertangent cone to Ωnr at x, denoted by TH
Ωnr

(x), is then the set of all
hypertangent vectors to Ωnr at x. The closure of the hypertangent cone is the Clarke
tangent one (when the former is nonempty).

If we assume that h is Lipschitz continuous near x∗, we can define the Clarke–
Jahn generalized derivative along directions d in the hypertangent cone to Ωnr at
x∗,

h◦(x∗; d) = lim sup
x → x∗, x ∈ Ωnr

t ↓ 0, x+ td ∈ Ωnr

h(x+ td)− h(x)

t

= lim
ǫ↓0

sup
x ∈ B(x∗; ǫ) ∩ Ωnr

t ∈ (0, ǫ), x+ td ∈ Ωnr

{

h(x+ td)− h(x)

t

}

.

These derivatives are essentially the Clarke generalized directional derivatives [10],
generalized by Jahn [16] to the constrained setting. Given a direction v in the tangent
cone, one can consider the Clarke–Jahn generalized derivative to Ωnr at x∗ as the limit
h◦(x∗; v) = limd∈TH

Ωnr
(x∗),d→v h

◦(x∗; d) (see [5]).

The point x∗ is considered stationary for problem (1) when Ω = Ωnr if f
◦(x∗; v) ≥

0 for all v ∈ TCl
Ωnr

(x∗).
When Ωr 6= R

n, then the point x∗ is considered stationary for problem (1) if
f◦(x∗; v) ≥ 0 for all v ∈ TCl

Ωnr
(x∗) ∩ {d ∈ R

n : g◦(x∗; d) ≤ 0}.
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