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Abstract

Protected areas are at the heart of current global policies against the
erosion of biodiversity. For instance, to meet the pressing challenge of
covering 30% of the surface of the sea under jurisdiction with a network of
marine protected areas by 2030, reserve site selection models are increas-
ingly mobilised. These models address the optimisation problem that
seeks to cover biodiversity features at a minimum cost on human activi-
ties. A presentation set, i.e. a pool of alternative solutions, is often needed
to increase the chances of satisfying unmodeled objectives that may be
non-negligible in a conservation problem composed of various interests.
The widely used Marxan repeats a metaheuristic algorithm based on ran-
dom processes to produce diversity in the presentation set. Several works
already demonstrated how exact optimisation methods outperform meta-
heuristics both in computation time and optimality. However, the gener-
ation of multiple solutions is still raised as a key feature of metaheuristics.
In this work, we proposed two algorithms to generate a presentation set
with exact optimisation methods using recursive procedures based on
an explicit difference criterion. The resulting alternative solutions were
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generated by controlling the optimality gap but also the difference with
the optimal solution. This work showed that the presentation set offered
by metaheuristics can be outstripped by an explicit, transparent and
replicable presentation set built by exact optimisation methods. Allow-
ing to understand precisely why and how the result was arrived at, the
framework presented here should contribute to a more equitable nego-
tiation among stakeholders engaged in conservation planning processes.

Keywords: optimal reserve site selection; presentation set; protected areas;
conservation planning; integer linear programming; decision support tool.
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1 Introduction

Biodiversity and habitats are threatened worldwide [1] and one of the com-
mon conservation instrument used to combat this is to build comprehensive
networks of nature reserves [2–4] known to bring benefits [5–7]. At sea for
instance, current political objectives are to cover 30% of the waters under
jurisdiction by 2030 with marine protected areas [8–10]. Similar concerns also
exist on land [11, 12]. Given these objectives, there is a strong constraint
to find the best compromises between the protection of biodiversity and
the sustainability of human uses of these spaces. To do so, and to take into
account the wide variety and heterogeneity of information required to analyse
such problems, numerical optimisation methods are commonly implemented
[13–16]. Such methods are often embedded in a software, e.g. Marxan or pri-
oritizr. They are designed to systematically select reserve sites and are used
as a decision support tools in real world cases1 [17].

In such a decision-making framework, the views and objectives of stakeholders
are usually competing, the spatial information documenting the region rarely
exhaustive, and some issues at stake in the negotiations may not be easy to
formulate in the context of a spatially-explicit numerical optimisation. The
decision process, based in fine on negotiations, thus requires some latitude
on the possible solutions to be considered. In addition, generating alternative
solutions gives conservation practitioners the possibility of finding a solution
that could be more satisfactory with respect to unmodeled objectives. For
these reasons, the ability of decision support tools to produce a range of
solutions instead of a single one, has been put forward frequently in conser-
vation literature [18–21]. Recently, and more generally, [22] calls for more
effort in the design of alternatives in decision aiding processes. That is why in
conservation biology, reserve site selection tools such as Marxan or prioritizr
also focus on generating near-optimal alternatives [23–25]. In particular, in a
survey realised among Marxan users [26], ”flexibility of generating multiple
solutions was by far the most commonly noted strength of Marxan” over
other optimization solvers.

More generally, the ability to produce alternative solutions were often pre-
sented as a key strength of metaheuristic algorithms over exact optimization
approaches [18–21]. However, recent advances made exact solvers more attrac-
tive for conservation practitioners [27–30]. The ”flexibility” claim thus seems
to be the last argument remaining in favour of metaheuristic algorithms in
the conservation biology literature. Technically speaking, metaheuristics rely
on the repetition of random processes to implicitly create diversity in the
generated solutions (see Appendix B-2.1 in [31]). On the contrary, exact
solving methods usually produce the same solution if repeated and therefore
cannot easily produce a range of different solutions. This major limitation

1More case study examples can be found at https://marxansolutions.org/community/ and
https://prioritizr.net/articles/publication record.html.

https://marxansolutions.org/community/
https://prioritizr.net/articles/publication_record.html
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severely restricts exact solving methods ability to inform real-world conser-
vation problems. Yet, and in the absence of explicit criteria, metaheuristic
approaches do not provide any control over the alternatives generated nor
they guarantee to have truly different solutions. However, the search for
near-optimal alternative solutions with exact solvers was an issue addressed
by the ”modeling to generate alternatives” literature [32–35]. In particular,
this point was already discussed by [36] who call on exact solving methods to
seriously address the issue of generating alternatives close to optimality by
relying on the existing literature of multi-objective optimisation. Few existing
works in the conservation biology literature also had the concern of showing
that alternative solutions can be generated with exact solving methods. [37]
developed an algorithm to compute the exhaustive set of optimal solutions in
the maximum coverage formulation with presence/absence data. In the same
spirit, [38] described a branch and bound screening algorithm to show how
suboptimal solutions, called the second-best solutions, can be derived with
exact methods. As mentioned before, the reserve site selection tool prioritizr
also provides additional functions2 allowing users to build a ”portfolio” of
alternative solutions.

The main objective of this work was to show conservation practitioners how
we could generate different near-optimal solutions of the reserve site selection
problem thanks to exact solving methods. In particular, we proposed two
recursive algorithms incorporating an explicit distance criterion to build a
range of near-optimal solutions that were different from each other. Therefore,
alternative solutions were selected based on a controlled optimality gap but
also thanks to an explicit distance criterion. To choose a relevant difference
criterion, we discussed and compared two metrics in our conservation biology
context. Indeed, the natural distance metric led to generate alternative solu-
tions that strictly included the optimal one. Observing that this was not a
valuable alternative but only a degraded solution, the other distance metric
that we proposed allowed to discriminate such case. Although similar ideas
were discussed in a more operations research context [33, 34], we still think
these ideas are not common in conservation biology. Practically, one of the
contribution comes from the developments of these two recursive procedures
that allow to guarantee the generation of alternatives different not only from
the optimal solution but also from each other. These procedures occasioned
the formulation of mixed integer linear programs solved using exact methods.
Another important contribution is the comparative analysis of these two
procedures in terms of solutions quality and difference.

The code related to this work is open, free and available3. We used Gurobi
solver called through a code developed in Julia language [39, 40] using the
JuMP optimisation library [41]. Gurobi is a commercial solver available under

2https://prioritizr.net/reference/portfolios.html
3https://github.com/AdrienBrunel/rssp presentation set.git

https://prioritizr.net/reference/portfolios.html
https://github.com/AdrienBrunel/rssp_presentation_set.git
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a free academic licence. We could have also solved the problem with the free
and open-source integer programming solver Cbc [42]. The developed methods
were numerically tested on the real example of Fernando de Noronha Brazilian
archipelago in the tropical Atlantic composed of 3 conservation features and
756 planning units. We also assessed the generality of the approach by consid-
ering generated test cases. In brief, we proposed a methodology using exact
solving methods to build a range of near-optimal solutions which are explicitly
different from each other. This way, we hope to build alternative solutions that
better fill unmodeled objectives in real-world conservation planning problems.

At this point, it seemed necessary to us to be more precise about terminology
used in order to dissipate any ambiguity when one speaks about the generation
of alternative solutions of an optimisation problem. Indeed, this concept had
several names in the conservation biology literature. For example, [26] spoke of
”flexibility” to designate this feature of Marxan. However, in the same context,
this term referred to the ability of an optimisation model to be easily tuned
[43, 44]. We thus preferred to avoid the term ”flexibility”. In prioritizr, the
term ”portfolio” was used in the name of functions generating alternative
solutions. But again, we did not use this word in our work in order to avoid any
confusion with the ”modern portfolio theory” often referred in the risk-averse
optimisation literature. Finally, in the ”modelling to generate alternatives”
literature, the term used was ”presentation set” which made explicit the fact
that these alternative solutions were intended to be presented to decision-
makers and decided upon. That is why we used the word ”presentation set”
in this work to name the set of alternative solutions.



Springer Nature 2021 LATEX template

6 Preprint

2 Methods

2.1 General formulation of the reserve site selection
problem

In a reserve site selection problem, the study area is discretized into a set of
J planning units within which a set of I conservation features are distributed.
The amount of conservation feature i in the planning unit j was denoted aij .
Each planning unit has a cost cj usually understood as the socio-economic cost
associated with the closure of this unit. One then seeks to find the collection
of planning units covering sufficient levels of each conservation features at a
minimum cost. The covering of a conservation feature i is judged sufficient if it
exceeds the user-defined level that we noted ti. The decision is about whether
to include the planning unit in the reserve. Thus, xj = 1 if a planning unit
j is selected in the reserve and xj = 0 otherwise. Moreover, a compactness
parameter β allows computing a more or less aggregated reserve, as it directly
penalises the reserve perimeter within the objective function. The perimeter
is computed as the total length of the boundaries between reserved and non-
reserved planning units. To model this, the length of the shared boundary
between planning unit j1 and j2 was denoted bj1j2 . Mathematically speak-
ing, the general problem of reserve site selection is expressed as the following
minimum set optimisation problem P0:

P0 :


min
x

∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2)

s.t.
∑
j∈J

aijxj ≥ ti ∀i ∈ I

xj ∈ {0, 1} ∀j ∈ J

(1)

This combinatorial optimisation problem is a minimum set cover problem
known to be NP-hard [45]. Also, it is a non-convex problem due to the binary
nature of the decision variables. Yet, it can be expressed as an integer linear
program (see Appendix A for the linearised model) and known solvers (like
Gurobi or CbC) can solve it for realistic instances in a reasonable time. In
the following, we denoted x? and z? respectively the optimal solution and the
associated objective value of the original minimum set cover problem P0. Let
γ = (z−z?)/z? be the algebraic relative variation of score z with respect to z?.

2.2 Measure of diversity between two reserve solutions

As a premise of our contribution, we needed a function characterising the
difference between two solutions. The first natural idea was to use the distance
defined by the absolute-value norm:

D(x, y) =
∑
j∈J

|xj − yj | (2)
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When x, y ∈ {0, 1}N , the distance D(x, y) was simply the total number of
differences between x and y. It is a rigorous mathematical distance as function
D verifies the symmetry, separation and triangular inequality properties. In
order to avoid the absolute value in the distance definition, we considered the
following linear expression, strictly equivalent4 when x, y ∈ {0, 1}N :

D(x, y) =
∑
j∈J

xj(1− yj) + yj(1− xj) (3)

However, we could easily build an alternative solution with a non-zero distance
from the optimal solution x? by choosing any solution that strictly includes x?.
Such solution would logically meet the covering requirements, as it includes
the optimal solution. Then, this solution would be at a distance from x? equal
to the number of planning units outside x?. Yet, we wanted to avoid this type
of degenerated solutions as we thought they were not relevant alternatives
but simply worse alternatives. Consequently, we finally selected the pseudo-
distance d(x, y) defined as the number of planning units selected in x and not
in y:

d(x, y) =
∑
j∈J

xj(1− yj) (4)

The term pseudo-distance is used as it can be understood as a distance,
although it does not verify the rigorous mathematical definition of a distance.
Observe that D(x, y) = d(x, y) + d(y, x). In conclusion, the pseudo-distance d
excluded alternative solutions we considered irrelevant, while the distance D
would have tolerated these solutions. To illustrate our words, Figure 1 displays
three examples where the distance D and pseudo-distance d were computed.
The left and right panels show two specific examples: the green reserve is
strictly included in the red reserve, while it has an empty intersection with the
yellow reserve. The example shown in the middle panel is a more generic case,
as the blue reserve has planning units both shared and not shared with the
green reserve. In particular, we visually understand why the red solution is sim-
ply a worse alternative to the green solution and that we wanted to avoid this
case. Then, the distance between red and green reserves is D(x̂, x) = 2 while
the pseudo-distance is d(x̂, x) = 0. Consequently, according to the pseudo-
distance d, the green and red reserve are the same. We wanted to use this
feature to our advantage, as we did not want the red reserve to belong to the
pool of alternative solutions. The pseudo-distance d could thus help to discrim-
inate this type of reserve, while distance D could not. Finally, as illustrated
with the blue and yellow reserve examples, the pseudo-distance still allows us
to characterise differences between two reserves as much as distance D.

4Compare truth tables of these two expressions to be convinced.
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(a) d(x̂, x) = 0, d(x, x̂) =
2, D(x̂, x) = 2.

(b) d(x̂, x) = 2, d(x, x̂) =
4, D(x̂, x) = 6.

(c) d(x̂, x) = 6, d(x, x̂) =
8, D(x̂, x) = 14.

Fig. 1: Numerical examples of pseudo-distance d and distance D. The nominal reserve
x̂, depicted in green, includes 6 planning units. Other reserves, hatched in red, blue and yellow,
include 8 planning units.

2.3 Imposing a pseudo-distance

2.3.1 Produce one alternative

Finding alternative solutions diverse enough can be done through adding a
set of constraints to the initial optimisation problem P0. Indeed, we proposed
to explicitly constrain an alternative solution to differ, where diversity was
measure with the pseudo-distance, from a given solution by at least δ planning
units. We thus introduced the constraint cd(x̂, δ) which compelled the reserve
solution x to have at least δ planning units selected in x̂ that were not included
in x:

cd(x̂, δ) : d(x̂, x) =
∑
j∈J

x̂j(1− xj) ≥ δ (5)

As discussed previously (cf. Section 2.2) and illustrated in Figure 2, the pseudo-
distance d allowed forbidding the strict inclusion of the solution x̂ within the
considered alternatives thanks to cd(x̂, δ).

x̂ x d(x̂, x)
1
0
0
1




0
0
1
1


+1
+0
+0
+0
≥ δ

Fig. 2: Illustration of constraint cd(x̂, δ). Example of pseudo-distance d(x̂, x) between
solutions x̂ and x.

2.3.2 Generate the presentation set

The most natural idea to produce a pool of diverse enough alternative solu-
tions would be to repeat the procedure by excluding the alternative found the
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iteration before. This way, we would successively find the alternative solutions
at a predefined pseudo-distance from the optimal solution x?. However, this
approach did not ensure alternative solutions to be different from one another.
To avoid the pitfall of producing similar alternative solutions although differ-
ent from the optimal solution, we recursively constrained the alternative to
differ not only from the optimal solution but also from every alternative solu-
tion found before. Practically, at each iteration k ≥ 0, we successively added
the constraint cd(x

k−1, δ) to the initial optimisation problem P0. If we denote
x? = x0 and {x1, . . . , xk−1} the set of alternative solutions derived before
iteration k ≥ 0, the integer linear program solved at iteration k is the following:

P k1 :


min
x

∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2)

s.t.
∑
j∈J

aijxj ≥ ti ∀i ∈ I

d(xl, x) ≥ δ ∀l ∈ [[0, k − 1]]
xj ∈ {0, 1} ∀j ∈ J

(6)

We detailed in Algorithm 1 the pseudocode of the recursive procedure
described above. The procedure would have stopped whether the problem
became infeasible or the maximum number of iteration n was reached. Infea-
sibility of the problem can be reached if the user requires alternative solutions
with too many differences with one another.

Algorithm 1 Recursive search of n alternative solutions of problem P0 with
at least δ new planning units between successive iterated solutions.

Require: P0, x?, n, δ
Ensure: x1, . . ., xk

1: k ← 0; P ← P0; x0 ← x? . initialisation
2: while P is feasible & k < n do . stop when infeasible or enough

solutions
3: k ← k + 1
4: add cd(x

k−1, δ) to P . impose pseudo-distance with past iterate

5: solve P . get an optimal solution xk or detect that P is infeasible
6: end while

2.4 Maximise the pseudo-distance

2.4.1 Produce one alternative

Another idea we developed was to seek for the most pseudo-distant solution
at a user-defined extra cost relatively to the optimal score. Stated otherwise,
we maximised the pseudo-distance from the optimal solution x? under a fixed
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extra cost budget γz?. The corresponding integer linear program is given by:

P2 :



max
x

d(x?, x)

s.t.
∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≤ (1 + γ)z?∑
j∈J

aijxj ≥ ti ∀i ∈ I

xj ∈ {0, 1} ∀j ∈ J

(7)

2.4.2 Generate the presentation set

Once again, our interest was to produce a pool of alternative solutions. The
most natural idea would have been to recursively produce the n most pseudo-
distant alternative solutions from the optimal solution x? at a fixed relative
extra cost γ by successively excluding from the search space the solution
found the iteration before. However, this method would have not ensured dif-
ference between alternatives and might produce a pool of similar alternative
solutions, although at a maximum distance to the optimal solution x?. We
thus preferred to recursively search for the solution maximising the minimum
pseudo-distance from the past iterates. More precisely, let xl be the solution
found at iteration l ∈ [[0, k − 1]]. Let x be a candidate solution at iteration k
and δ(x) = min {d(xl, x), l ∈ [[0, k − 1]]}. We proposed to search for a solution
xk that maximised δ(x) among the solutions that did not exceed the degraded
cost (1 + γ)z?. Practically, the integer linear program P k2 solved at iteration k
is the following:

P k2 :



max
x,δ

δ

s.t.
∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≤ (1 + γ)z?∑
j∈J

aijxj ≥ ti ∀i ∈ I∑
j∈J

xlj(1− xj) ≥ δ ∀l ∈ [[0, k − 1]]

xj ∈ {0, 1} ∀j ∈ J
δ ∈ R+

(8)
The objective value δ would be the maximum of the minimum of the set
of pseudo-distances with every past iterates. Variable δ was constrained
to be smaller than every pseudo-distances, so was the minimum. As we
wanted to maximise δ, it would logically have taken the value of one of the
pseudo-distances, i.e. the smallest. Therefore, we maximised the minimum
pseudo-distance with every past iterate. One should be careful as δ is a deci-
sion variable and no longer a parameter as in Section 2.3. In order to better
understand what Algorithm 2 is doing, we gave more numerical details in
Section 3.4. The corresponding procedure written in pseudocode is presented
below:
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Algorithm 2 Recursive search of n alternative solutions maximising the
minimum pseudo-distance from every past iterates at a relative extra cost γ.

Require: P2, x?, z?, n, γ
Ensure: x1, . . ., xk

1: k ← 0; P ← P2; x0 ← x? . initialisation
2: change the objective of P to δ
3: while P is feasible & k < n do . stop when infeasible or enough

solutions
4: k ← k + 1
5: add cd(x

k−1, δ) to P . impose pseudo-distance with past iterate

6: solve P . get an optimal solution xk or detect that P is infeasible
7: end while

2.5 Schematic illustration of methods used for
generating a presentation set

The objective of Figure 3 was to show schematically how the alternative solu-
tions selected by different methods were positioned in a well-chosen plane,
namely the optimality gap versus pseudo-distance to the optimum plane. We
illustrated in Figure 3a that the repetition of a metaheuristic algorithm, e.g.
simulated annealing, produces solutions that would be scattered in the consid-
ered plane. They have no guarantee to be both close to optimality and different
from the optimal solution. The algorithm presented in the Appendix B or the
add gap portfolio function of prioritizr have the principle of selecting the alter-
native solutions in a given optimality interval. This interval was materialised
by the red dotted vertical lines in Figure 3b. As illustrated, the selected alter-
native solutions can have a pseudo-distance to the optimum more or less high
without any guarantee. In Figure 3c, we showed how Algorithm 1 would select
the leftmost solution from the solutions above the red dashed line. In other
words, algorithm 1 would select the solution closest to the optimum at a fixed
pseudo-distance. Similarly, for algorithm 2, the first alternative selected would
be the solution with the largest pseudo-distance to a given optimality gap. In
Figure 3d, this corresponds to the topmost solution among the solutions to
the left of the red dashed line.
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(a) Alternative solutions selected
repeating a metaheuristic algo-
rithm.

(b) Alternative solutions selected
according to a predefined optimal-
ity gap, as in the add gap portfolio
function of prioritizr.

(c) Alternative solution derived by
algorithm 1 at the first iteration:
the best solution at a predefined
pseudo-distance δ is selected.

(d) Alternative solution derived by
algorithm 2 at the first iteration:
the most pseudo-distant solution
involving at worse a budget γ is
selected.

Fig. 3: Illustration of alternative solutions selected by metaheuristics, the
add gap portfolio function of prioritizr, Algorithm 3 and 2. Each circle represent a reserve
solution. The reserve solutions are represented by the optimality gap and pseudo-distance to the
optimal solution d(x?, x). The optimal solution x? is circled in green at the bottom left of this
plan. The bigger the circle, the greater the pseudo-distance to the optimal solution. Alternative
solutions selected by an algorithm are depicted with orange circles.
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3 Case study

3.1 Data preparation

The numerical assessment of the methods previously presented was mainly
done on the real case of Fernando de Noronha. Other tests were also performed
to get insights about the generality of the approach (cf. Appendix C).
Fernando de Noronha is a small oceanic archipelago in the western tropical
Atlantic, made up of 21 islands, islets and rocks with a total surface area of
26 km2, and constituting a genuine Brazilian natural and cultural heritage.
Fernando de Noronha is a conservation showcase in Brazil, but it also faces
many interests (oil industry, tourism intensification, fisheries) which results in
an open laboratory for marine spatial planning. We used this region as a case
study for the algorithms described in the previous section. The corresponding
input data was processed in a study available in preprint5. We only summa-
rize the main characteristics of the dataset below.

The geographical area was discretised according to a rectangular grid made
of N=36×21=756 planning units with longitude and latitude respectively in
[32.65°W, 32.30°W] and [3.95°S, 3.75°S] ranges. Planning units taking place in
Fernando de Noronha land and harbour were a priori excluded from potential
reserve site candidates. The scenario feeding the nominal optimisation prob-
lem P0 through this work then considered three conservation features: fish
biomass, continental shelf and shelf break habitats. Each feature was given
a targeted protection level of 50%. The cost layer was made of the fishing
pressure intensity. The compactness parameter considered was β = 1. We
show in Figure 4 the details of the input data involved in the case study.

To get the cost and conservation features, the values of fish biomass was first
estimated as the sum of fish echoes in nautical area back-scattering strength,
i.e., sA, over the water column. Interpolating between sample data allowed
producing a continuous fish distribution within the sampling area. Outside
this area, values were set to 0, although the actual fish distribution over there
was unknown. Ocean depths were obtained from GEBCO online platform6

and used as a surrogate of two suitable fish habitats, expressed as binary
conservation features: the continental shelf and shelf break habitats, defined
by specific ocean depth intervals. Finally, a segmentation model was applied
to fisher GPS trajectories to derive one behavioural state for every measured
location: fishing or travelling. This was used to build a quantitative proxy
representing the intensity of the fishery activity.

5https://hal.archives-ouvertes.fr/hal-03445922
6GEneral Bathymetric Chart of the Ocean, https://download.gebco.net/

https://hal.archives-ouvertes.fr/hal-03445922
https://download.gebco.net/
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Fig. 4: Processed input data layers feeding the conservation problem. (A) Fishery-based
cost layer is shown with a continuous orange colour gradient. (B) Fish Biomass conservation
feature surrogate is depicted with a discrete purple colour gradient. (C) Continental shelf and (D)
Shelf break habitat conservation feature surrogates are respectively illustrated in light and deep
blue. Transparent grey pixels are the planning units a priori excluded from the solution.

3.2 Presentation set imposing an optimality gap

Exhaustive set of optimal solutions (γ1 = γ2 = 0)

We applied Algorithm 3 with γ1 = γ2 = 0 to derive the exhaustive set of
optimal solutions. In this numerical application, it turned out we have 16
optimal solutions with an objective value z? = 197.71. Panel A of Figure 5
illustrates a map showing the selection frequency among optimal solutions,
i.e., the percentage of time a planning unit was selected among the 16 optimal
solutions. We observed a small variability as 84/93 planning units were selected
at a 100% frequency. The nine planning units that changed were likely to be
interchangeable (same cost and amount of each conservation features).

Alternative solutions in increasing order of optimality gap (γ1 = 0,
γ2 > 0)

We computed the n = 500 following suboptimal solutions searched by
increasing score order, thus from best to worst objective value, as it was a min-
imisation problem. The recursive procedure of Algorithm 3 was either stopped
by γ2 criterion or when the maximum amount of alternative solutions n was
reached. To get n alternative solutions with this algorithm, we thus set γ2 to a
large value. The objective value of the last and worst solution returned by the
algorithm was 198.98, which corresponded to γ = 0.64% relatively to the opti-
mal score. So any value of γ2 larger than 0.64 would have led to the same result.
As above, Panel B of Figure 5 illustrates the selection frequency of these 500
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alternative solutions7. Again, a small variability was observed, because many
planning units had the same characteristics and can be interchangeable. The
global visual impression was thus similar to the optimal solution exhaustive
set.

Alternative solutions within a targeted optimality gap (γ1 > 0,
γ2 > 0)

We set γ1 > 0 voluntarily to get suboptimal solutions where the relative opti-
mality gap was at least γ1. We chose γ2 high enough to have n = 100 alternative
solutions. Panel C and D in Figure 5 respectively show results for γ1 = 0.05
and γ1 = 0.15. Visually, we observed a greater variability, but when compar-
ing to Figure 4, many planning units were selected while they did not increase
the amount of conservation feature nor decrease the reserve perimeter. Con-
sequently, these were planning units only useful to deteriorate the objective
value and thus satisfy the optimality gap constraint. Although the variability
appeared greater in Panel C and D compared to other panels, the core of the
reserve was still globally similar to the optimal solutions.

Fig. 5: Selection frequency among alternative solutions obtained with Algorithm 3.
Selected planning units of alternative reserve solutions are represented with a green transparency
gradient according to selection frequency expressed in percentage (black number inside planning
unit).

3.3 Presentation set imposing a pseudo-distance

In this section, we applied Algorithm 1 to our case study. Therefore, we directly
constrained successive alternative solutions to be pseudo-distant of at least δ

7among which we had 16 optimal solutions
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planning units with every past iterates. Figure 6 shows four alternative exam-
ples of reserve solution found by the recursive procedure for δ = 20. The
optimal solution x? is represented with planning units delimited by a thick
black border. We first observed that at least 20 planning units selected in the
optimal solution x? were not found in the current solution. Those correspond
to the white planning units with a thick black border. Indeed, Algorithm 1
found new planning units, because it forbade to have too many common pixels
with the optimal solution. At first sight, the visual difference with the optimal
solution appeared clearer than alternatives obtained with Algorithm 3. The
alternative solutions proposed in Figure 6 seemed to visit different regions of
the archipelago, although limited by the fact that positive conservation fea-
ture values are concentrated around the main island. In particular, in Panel B
the southern region was privileged whereas north and east of Fernando de
Noronha were preferred in Panel C. Panel A shows a solution similar to the
optimal one, although two planning units were selected at the extreme west of
the study area. Panel D displayed a solution cut into several pieces all around
the main island.

Fig. 6: Example of alternative solutions obtained with Algorithm 1 for δ = 20. The
alternative reserve solution is represented in green, while the optimal solution x? is depicted with
planning units delimited by a thick black border.

3.4 Presentation set maximising the minimum
pseudo-distance between iterates

In this numerical application, we applied Algorithm 2 to find the n = 4 alter-
native solutions maximising the minimum pseudo-distance from past iterates.
To do so, the integer linear program P k2 was solved recursively. An example
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of derived reserve solutions is illustrated in Figure 7 for a relative extra cost
budget γ = 10%. Interestingly, a clear visual difference between the four
alternative reserves appeared in Figure 7. The reserve in Panel A proposed a
solution cut into 4 pieces, favouring the east of the archipelago. Reserve in
Panel B showed a clear preference for the south of the island. Panel C was
perhaps the most resembling to the optimal solution, although two planning
units were found at the extreme west of the main island. Reserve in Panel D
presented a reserve with two pieces, one in the north and one in the south.

Fig. 7: Example of alternative solutions maximising the minimum pseudo-distance to
past iterates at a fixed extra cost. We show four successive alternatives with an extra cost
budget γ = 10%. The alternative reserve solution is represented in green, whereas the optimal
solution x? is depicted with planning units delimited by a thick black border.

Find below more numerical details on what is realised in Algorithm 2:

• Reserve in Panel A is pseudo-distant of 27 planning units to the optimal
solution x?. The first iteration simply solves P2 which maximise the pseudo-
distance to the optimal solution.

• The reserve in Panel B is pseudo-distant of 22 and 22 planning units respec-
tively to the optimal solution and the reserve in Panel A. So the maximum
minimum pseudo-distance between past iterates is 22.

• The reserve in Panel C is pseudo-distant of 22, 22 and 24 planning units
respectively to the optimal solution, the reserve in Panel A and Panel B. So
the maximum minimum pseudo-distance between past iterates is 22.

• The reserve in Panel D is pseudo-distant of 20, 20, 20 and 20 planning units
respectively to the optimal solution, the reserve in Panel A, Panel B and
Panel C. So the maximum minimum pseudo-distance between past iterates
is 20.
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3.5 Score versus pseudo-distance

We compared the mean relative scores and pseudo-distances of alternative
solutions obtained with Algorithm 3, 1 and 2 for various values of parame-
ters involved. More precisely, we performed a sensitivity analysis on γ1 for
Algorithm 3, δ for Algorithm 1 and γ for Algorithm 2. We observed a global
increasing trend for all curves as the mean relative score was deteriorated with
the pseudo-distance to the optimal solution. As expected, the highest curve
was obtained with Algorithm 2 because it explicitly sought to maximise the
minimum pseudo-distance to past iterates. Similarly, as pseudo-distance was
not considered at all in Algorithm 3 but only the optimality gap, it was logical
to observe the curve was the lowest and was not strictly increasing. Finally,
the curve obtained with Algorithm 1 was in between the two others because
it explicitly accounted for the pseudo-distance but did not seek to maximise
it. We plotted mean relative scores and mean pseudo-distances computed on
the number of alternatives, so these quantities are dependent on the number
of iterations n.

Fig. 8: Relative score γ versus pseudo-distance d(x?, ·). Algorithm 3 for γ1 ∈ [[1%, 15%]]
and n = 100, Algorithm 1 for δ ∈ [[1, 22]] and n = 20, Algorithm 2 for γ ∈ [[1%, 15%]] and n = 4.
Relative scores and pseudo-distances are averaged on every alternative solution obtained with the
considered algorithm.
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4 Discussion

In this work, we demonstrated how we can produce a presentation set using
exact solving methods in the reserve site selection optimisation problem. The
presentation set is composed of alternative solutions that are not only differ-
ent from the optimal solution but also different from each other thanks to the
recursive modification of the optimisation problem. Indeed, we proposed two
procedures to build a range of alternative reserve solutions according to an
explicit difference criterion. We numerically illustrated the proposed methods
on the real world example of Fernando de Noronha.

Our results showed that generating alternative solutions according to the
optimality gap could result in a weak variability among solutions as they were
very similar to each other. Indeed, these solutions which only differed by a
few planning units turned out to be quite uninformative. Even worse, further
from the optimal score, the variability among alternative solutions appeared
irrelevant because the procedure artificially increased the objective value by
including empty planning units. These planning units are pointless because
they are empty relatively to the conservation features and do not contribute to
decrease the reserve perimeter. Anyway, it poorly answered the conservation
literature need for both good and different alternative solutions. This major
limitation could also be found in the prioritizr add gap portfolio function or
in the existing conservation literature [37, 38]. However, the diversity measure
that we explicitly incorporate allowed to overcome this limitation. Indeed, the
proposed algorithms explicitly sought to generate differences between reserve
solutions which can be seen in the resulting alternatives. Similarly as in
[33, 34], the diversity measure we chose allowed to avoid alternative reserves
where the optimal solution is encompassed. Another pitfall, particularly strik-
ing in metaheuristic approaches, is the need to generate numerous alternative
solutions in order to widely explore the solution space. This large amount
of alternative solutions means a post-processing effort is needed to sort and
identify a few distinct solutions. In particular, it often requires additional
statistical analyses, e.g. the selection frequency of reserve sites or clustering
analysis [26, 46]. On the contrary, our work directly provided a presentation
set composed of very distinct solutions. This aimed to illustrate that a few
alternatives that are both good and different from each other can be sufficient
to feed a conservation planning process. In particular, no additional statistics
were needed for our study case.

In summary, the strength of this work lies in the fact that only a few iter-
ations are needed to generate a presentation set of truly different solutions.
Moreover, the methods developed are highly customisable. For example, other
metrics could be used in the our recursive procedures to judge the difference
of solutions in the same spirit as in [35]. Indeed, this difference only depends
on the definition of an arbitrary metric, this one can be adapted according to
the application case. Then, another advantage of this type of approach is to be
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able to explicitly quantify the quality of the alternative solutions generated.
Since the search for alternative solutions is carried out by exact resolution
methods, this allows us to know the optimality gap which gives more control
to the end user. Finally, the production of the presentation set is completely
controlled by two parameters. Thus, it is the user who chooses exactly the
trade-off between the difference of the alternative solutions and their opti-
mality gap. The sensitivity analysis showing the difference of the alternative
solutions relatively to their optimality gap for each algorithm is in particular
a good illustration of this trade-off. Regarding the weaknesses, the proposed
approaches are mostly limited by the computation time required. It can be
significant on some instances and increases with the number of alternatives
requested. However, the improvement of the computation time has not been
the object of our attention and was not the focus of this work. In the current
state of the algorithms, we can provide orders of magnitude of the computa-
tion time with a personal computer on generated instances (see Appendix) to
generate 4 alternatives:

• 2-3 minutes for 500 planning units et 3 conservation features with Algo-
rithm 2

• 10-20 seconds for 500 planning units et 3 conservation features with
Algorithm 1

• 10-60 minutes for 1000 planning units et 5 conservation features with
Algorithm 2

• 2-15 minutes for 1000 planning units et 5 conservation features with
Algorithm 1

These computation times must be put into perspective. If we are not neces-
sarily looking for a proof of optimality, they can be much lower. Indeed, our
algorithms allow us to quickly provide interesting and feasible solutions if we
decide to keep the current solution after a given maximum time. Finally, we
recall that producing only 4 alternatives is a choice because they are really
different alternatives that do not require additional statistical analysis.

In conclusion, although metaheuristics have been historically preferred to
address the reserve site selection optimisation problem, several works demon-
strated to what extent exact methods outperform metaheuristics [27, 29]. The
last argument standing in favour of metaheuristics was the apparent impos-
sibility to produce a presentation set with exact solving methods. However,
our work suggested several methods showing how to build a relevant presenta-
tion set. Indeed, unlike what is commonly stated in the conservation literature
[19, 26], our work showed that exact solvers used for the reserve site selection
problem can also be advantageous to produce a range of alternative solutions.
This ability is not inherent to metaheuristics. Besides, the inclusion of an
explicit diversity criterion directly within a new optimisation model allowed to
build a more controlled and transparent presentation set. Therefore, by seek-
ing truly different solutions, we increase the chance to address objectives that
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are not necessarily modelled, such as socio-political or management objectives.
In addition, we think the low number of alternatives needed with our methods
may avoid unnecessary noise in the decision-making process. In other words,
the proposed algorithms can potentially empower conservation practitioners by
giving them more control over the alternatives produced and by removing the
post-processing analysis usually needed. Therefore, we hope that these meth-
ods can at least shed a new light in conservation discussions and eventually
bring more success in conservation decisions in practice.
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Appendix A Linearised model

Parameters and variables were defined in Section 2.1. Sets of planning units
a priori excluded or included in the reserve are respectively noted LO and
LI. We can linearise the quadratic term of the objective function when
decision variables are binary [47]. Considering this linearisation but also locked-
in and locked-out planning units, we ended up with the full mathematical
optimisation problem P f0 of reserve site selection:

P f0 :



min
x,z

∑
j∈J

cjxj + β(
∑
j1∈J

∑
j2∈J

bj1j2zj1j2 +
∑
j∈J

xjb
∗
j,N+1)

s.t.
∑
j∈J

aijxj ≥ ti ∀i ∈ I

zj1j2 ≤ xj1 ∀j1 ∈ J, ∀j2 ∈ J
zj1j2 ≤ xj2 ∀j1 ∈ J, ∀j2 ∈ J
zj1j2 ≥ xj1 + xj2 − 1 ∀j1 ∈ J, ∀j2 ∈ J
xj = 0 ∀j ∈ LO
xj = 1 ∀j ∈ LI
xj ∈ {0, 1} ∀j ∈ J
zj1j2 ∈ {0, 1} ∀j1 ∈ J, ∀j2 ∈ J

We also accounted for the correction of the compactness parameter β
undesirable edge effect8, leading to the introduction of b∗ where:

∀j ∈ J = {1, · · · , N},

b∗j,N+1 =


1, if pixel j shares a single side with the outer boundary

2, if pixel j shares 2 sides with the outer boundary (i.e. located at a corner)

0, otherwise

8more details in https://hal.archives-ouvertes.fr/hal-03445922

https://hal.archives-ouvertes.fr/hal-03445922
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Appendix B Imposing an optimality gap

We show here how we produced the presentation set composed of alternative
solutions located at a predefined optimality gap. We developed our own algo-
rithm but the function add gap portfolio of prioritizr allows to generate the
same set of alternative solutions.

B.1 Optimality gap constraint

We present a set of constraints which compels a reserve score to fall within
a predefined interval. Let γ1 ∈ R+ and γ2 ∈ R+, γ1 ≤ γ2, be the bound-
aries of the relative optimality gap interval. The constraints cl(γ1) and
cu(γ2) are imposing the objective to fall within a relaxed score interval
[(1 + γ1)z?, (1 + γ2)z?] relatively to the optimal score z?.

cl(γ1) :
∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≥ (1 + γ1)z?

cu(γ2) :
∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≤ (1 + γ2)z?

Note that if γ1 = γ2 = 0, we explore only the optimal solutions set while for
γ1 > 0, we explore strict suboptimal solutions with a maximum gap equal to
γ2.

B.2 Distance constraint

We present a constraint which compels the reserve to differ from another given
solution by at least δ planning units. Indeed, the constraint cD(x̂, δ) makes
the solution x to have at least δ different planning units with respect to x̂
(cf. Figure 2). Importantly, for δ = 1, we are simply forbidding x and x̂ to be
strictly equal.

cD(x̂, δ) : D(x̂, x) =
∑
j∈J

x̂j(1− xj) + xj(1− x̂j) ≥ δ

B.3 Generate the presentation set

We detailed in Algorithm 3 a simple recursive procedure which explored
suboptimal alternative solutions with an a priori defined relative optimality
gap interval [γ1, γ2]. If γ1 = γ2 = 0, we provided the exhaustive set of optimal
solutions. First, as we wanted to explore suboptimal alternatives, we forced
the objective value to fall within the user-defined relaxation threshold. Prac-
tically, we imposed the optimisation problem to respect cl(γ1) and cu(γ2) at
the beginning. Then, to derive a pool of alternative solutions, we excluded at
iteration k the solution xk−1 derived at the previous iteration. For this, at
each iteration k, we added the constraint cD(xk−1, 1) which forbade the exact
similarity with the solution xk−1 found at the previous iteration.
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As we recursively excluded solutions from best to worst, the procedure would
stop whether the objective function value exceeded the upper bound γ2 or
the maximum number of iteration n was reached. Importantly, if we set γ2
high enough, the stopping criterion met would be the maximum number of
iteration, which was what we generally wanted. For instance, if γ1 = 0 and
γ2 were high enough, Algorithm 3 returned the n solutions with the smallest
score. If n was chosen high enough, Algorithm 3 returned the exhaustive set of
solutions with a relative optimality gap within [γ1, γ2]. Unlike metaheuristics
where the optimality gap is unknown, we a priori established it thanks to this
algorithm, thus offering users more control over the flexibility provided.

Practically, the integer linear program P k3 solved at iteration k is the following:

P k3 :



min
x

∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2)

s.t.
∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≤ (1 + γ2)z?∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≥ (1 + γ1)z?∑
j∈J

aijxj ≥ ti ∀i ∈ I∑
j∈J

xj(1− xlj) + xlj(1− xj) ≥ 1 ∀l ∈ [[0, k − 1]]

xj ∈ {0, 1} ∀j ∈ J

The corresponding algorithm can be found below:

Algorithm 3 Recursive search of n best alternative solutions with a relative
optimality gap in [γ1, γ2] relatively to score z? of solution x? of problem P0.

Require: P0, x?, z?, n, γ1, γ2
Ensure: x1, . . ., xk

1: k ← 0; P ← P0; x0 ← x? . initialisation
2: add cl(γ1) and cu(γ2) to P
3: while P is feasible & k < n do . stop when infeasible or enough

solutions
4: k ← k + 1
5: add cD(xk−1, 1) to P . exclude previous solution

6: solve P . get an optimal solution xk or detect that P is infeasible
7: end while
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Appendix C The presentation set computed
on generated data

For testing purposes, we developed a systematic way of building user-defined
scenarios for reserve site selection optimisation problems. The idea is to provide
the conservation literature tools to facilitate benchmarks of developed methods
in conservation planning. Therefore, the main ambition is to generate realistic
discrete spatial distributions of the considered conservation features.

C.1 Data generation

Technically speaking, we arbitrarily chose to compute the amount aij of a
conservation feature i ∈ I in a planning unit j ∈ J by randomly drawing this
value in a Gaussian distribution.

aij ∼ N (mij , σ
2
ij)

The mean value mij of the Gaussian distribution only depends on the distance
dij to the closest (chosen or randomly drawn) Nepi epicentres associated to the
conservation feature i ∈ I. To be more precise, the mean value mij depends
on dαi

ij , where αi is a predefined parameter for each conservation feature i ∈ I
controlling the dispersion of the mean values distribution relatively to the
epicentres.

mij = µi

[
1−

(
dij
dmax

)αi
]

The maximum mean value, i.e. the mean value at the epicentres, is a chosen
parameter µi for each conservation feature i ∈ I. If no epicentres are provided,
the mean value of the Gaussian distribution depends on the distance to the
locked-out planning units supposed to represent a shoreline. The standard
deviation σij of the Gaussian distribution is such as σij = σimij where σi
is a chosen parameter for each conservation feature i ∈ I. The code used to
generate data is available in open access9. The instance is characterised by the
rectangular grid size Nx and Ny and the number of conservation features Ncf .

C.2 Scenarios

We build several scenarios to have some order of magnitudes for the compu-
tation time of the algorithms proposed in this work. We show the generated
spatial distributions of two conservation features resulting from the data
generation procedure in Figure C1. An example of a presentation set is given
in Figure C2.

9https://github.com/AdrienBrunel/data generation

https://github.com/AdrienBrunel/data_generation
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(a) Spatial distribution of the
mean value mij when epicentres
correspond to the locked-out plan-
ning units. The maximum mean
value is 5.7.

(b) Random drawing from the
Gaussian distribution, where
the mean values are shown in
Panel C1a. Dispersion coefficient
is αi = 0.75.

(c) Spatial distribution of the
mean value mij where 2 epicentres
are randomly drawn among plan-
ning units. The maximum mean
value is 2.9.

(d) Random drawing from the
Gaussian distribution where
the mean values are shown in
Panel C1c. Dispersion coefficient is
αi = 0.78.

Fig. C1: Example of the generated spatial distribution for two different conservation
features in a 25 × 20 rectangular grid. The amounts of considered conservation feature are
shown with a yellow to red gradient. The corresponding numerical values are written in black
inside the planning units. Locked-out planning units are represented in grey. We chose σi = 0.20.
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(a) Alternative reserve solution
found at iteration 1 with Algo-
rithm 2.

(b) Alternative reserve solution
found at iteration 2 with Algo-
rithm 2.

(c) Alternative reserve solution
found at iteration 3 with Algo-
rithm 2.

(d) Alternative reserve solution
found at iteration 4 with Algo-
rithm 2.

Fig. C2: Presentation set computed with Algorithm 2. The considered scenario was made
of 40× 25 planning units and 5 conservation features. We chose an extra cost budget of γ = 0.10.
Relative targets for every conservation features were set to 25%. Green planning units represents
the alternative reserve solution. Planning units with a black border indicates the initial optimal
solution.
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[38] Önal, H.: First-best, second-best, and heuristic solutions in conservation
reserve site selection. Biological Conservation 115(1), 55–62 (2004). https:
//doi.org/10.1016/S0006-3207(03)00093-4. Accessed 2021-03-23

[39] Bezanson, J., Karpinski, S., Shah, V.B., Edelman, A.: Julia: A Fast
Dynamic Language for Technical Computing. arXiv:1209.5145 [cs] (2012).
arXiv: 1209.5145. Accessed 2021-03-16

[40] Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A Fresh
Approach to Numerical Computing. arXiv:1411.1607 [cs] (2015). arXiv:
1411.1607. Accessed 2021-03-02

[41] Dunning, I., Huchette, J., Lubin, M.: JuMP: A Modeling Language for
Mathematical Optimization. SIAM Review 59(2), 295–320 (2017). https:

https://doi.org/10.1111/j.1467-9787.1982.tb00754.x
https://doi.org/10.1111/j.1467-9787.1982.tb00754.x
https://doi.org/10.1287/mnsc.28.3.221
https://doi.org/10.1287/mnsc.28.3.221
https://doi.org/10.1029/WR018i001p00058
https://doi.org/10.1029/WR018i001p00058
https://doi.org/10.1016/S0304-3800(00)00249-0
https://doi.org/10.1007/s10666-005-9005-7
https://doi.org/10.1016/S0006-3207(03)00093-4
https://doi.org/10.1016/S0006-3207(03)00093-4
https://doi.org/10.1137/15M1020575
https://doi.org/10.1137/15M1020575


Springer Nature 2021 LATEX template

32 Preprint

//doi.org/10.1137/15M1020575. arXiv: 1508.01982. Accessed 2021-03-16

[42] Forrest, J., Ralphs, T., Vigerske, S., LouHafer, Kristjansson, B.,
Jpfasano, EdwinStraver, Lubin, M., Santos, H.G., Rlougee, Saltzman,
M.: Coin-Or/Cbc: Version 2.9.9. Zenodo (2018). https://doi.org/10.5281/
ZENODO.1317566. https://zenodo.org/record/1317566 Accessed 2021-
05-04

[43] Rodrigues, A.S., Orestes Cerdeira, J., Gaston, K.J.: Flexibility, efficiency,
and accountability: adapting reserve selection algorithms to more com-
plex conservation problems. Ecography 23(5), 565–574 (2000). https:
//doi.org/10.1111/j.1600-0587.2000.tb00175.x. Accessed 2021-10-27

[44] Cocks, K.D., Baird, I.A.: Using mathematical programming to address the
multiple reserve selection problem: An example from the Eyre Peninsula,
South Australia. Biological Conservation 49(2), 113–130 (1989). https:
//doi.org/10.1016/0006-3207(89)90083-9. Accessed 2021-05-04

[45] Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to
the Theory of NP-completeness, 27. print edn. A series of books in the
mathematical sciences. Freeman, New York [u.a] (1979)

[46] Harris, L.R., Watts, M.E., Nel, R., Schoeman, D.S., Possingham, H.P.:
Using multivariate statistics to explore trade-offs among spatial planning
scenarios. Journal of Applied Ecology 51(6), 1504–1514 (2014). https:
//doi.org/10.1111/1365-2664.12345. Accessed 2022-05-04

[47] Billionnet, A.: Optimisation Discrète, de la Modélisation à la Résolution
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