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Abstract

Marine protected areas are at the heart of current global policies against the erosion of
ocean biodiversity. To meet the pressing challenge of covering 30% of the surface of the sea
under jurisdiction with a network of marine protected areas by 2030, reserve site selection
models are increasingly mobilised. These models address the optimisation problem that
seeks to cover biodiversity features with a minimum impact on human activities. Flexibil-
ity is a solver ability to provide relevant alternative solutions on the basis of which stake-
holders negotiations can be carried out. The widely used Marxan deploys a metaheuris-
tic algorithm which produce alternatives mostly based on repeating random processes.
While several works already demonstrated how exact methods outperform metaheuristic
approaches both in computation time and optimality, flexibility is still raised as a key fea-
ture in favour of metaheuristics. We propose in this work several algorithms to explore the
optimal solution space with exact optimisation methods using simple recursive procedures
based on explicit criteria. This work shows that the flexibility offered by metaheuristics
can be outstripped by an accountable (explicit, transparent and replicable) flexibility of
exact solutions. Allowing to understand precisely why and how the result was arrived at,
the framework presented here should contribute to a more equitable negotiation process
among stakeholders engaged in marine policy.
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1 Introduction

1.1 Decision Support Tools for Marine Spatial Planning

Acknowledging the destruction of habitats and the erosion of biodiversity at sea, marine spatial
planning (MSP) is a governance framework that proposes to regulate the uses of the marine
environment through a spatial zoning. MSP seeks to meet both ecological and socio-economic
objectives, eventually targeting a sustainable development (Ehler and Douvere 2009). Within
this framework, marine protected areas (MPAs) are increasingly becoming a key player. The
global benefits they were shown to bring to biodiversity, e.g. (Stolton and Dudley 2010), have
made them the tool of choice for conservation policies. The International Union for Conserva-
tion of Nature (IUCN) established a 30% protection target of each marine ecoregions by 2030,
reaffirming United Nations (UN) commitment of Aichi Target 11. Similarly and more recently,
the European Green Deal aims to protect 30% of the European seas. Thus, an important
step of MSP approaches consists in identifying suitable areas to be dedicated to conservation,
i.e., nature reserves. Consequently, conservation science and especially reserve design knows a
strong appeal among decision-makers and institutions. Systematic reserve site selection proce-
dures and associated decision support tools (DSTs) are thus a strategic issue.

The reserve site selection optimisation problem, in its minimum set formulation, aims at finding
the collection of sites covering given levels of conservation features at a minimum socio-economic
cost. For more mathematical details, see Section 2.1. Note that MPAs are a particular case of
reserve sites. Yet, this work is also generalisable to reserve design on land. In this work, we
used MPAs and reserve sites interchangeably. MPAs are seen as an essential tool to mitigate
biodiversity erosion. In particular, it is assumed that species have more chance to persist in
a strict protected area rather than in the unprotected ocean due to human activity impacts
(Claudet et al. 2008). In a modelling perspective, we assumed that an MPA resulted in the
strict closure of a marine area. Site protection led to a loss of potential profits (e.g. economic
activity, space) quantified through an arbitrary cost from a human perspective. The general
idea was thus to find an MPA covering every species1 in a sufficient amount to ensure the long
term subsistence of specie populations at minimum cost. In the case study, we did not have
direct access to the spatial distribution of every conservation feature of interest. Consequently,
we often estimated a surrogate for the conservation feature. We then assumed the protection
of the surrogate was sufficient for the conservation feature protection. Historically, the reserve
site selection problem was addressed through ranking and then iterative ranking algorithms of
a previously computed conservation value (Tans 1974; Kirkpatrick 1983). Then, identified as a
conservation resource allocation problem, an optimisation framework was proposed (Cocks and
Baird 1989) and triggered fundamental developments (Possingham et al. 1993; Margules and
Pressey 2000) for systematic reserve site selection. For a more detailed literature review, see
(Sarkar 2004). Technically speaking, the reserve site selection problem is a discrete optimisation
problem. This problem can be expressed as an integer linear program where real instances can
be solved in reasonable time.

The literature of the reserve site selection optimisation problem often opposed metaheuris-
tic and exact solving approaches. Metaheuristics are optimisation algorithms constituted of
generic heuristics search, i.e., a set of empirical rules which quickly leads towards a sufficiently
good solution. On the other hand, exact optimisation methods find an optimal solution if the
problem respects certain mathematical properties (e.g., linear, convex formulations) and can be

1For simplicity purposes, we use the term species to stand for conservation features, i.e., any element judged
worth protecting for the ecosystem sake.
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time-consuming for large NP-hard problems (Garey and Johnson 1979). Metaheuristics propose
quickly suboptimal solutions of any optimisation problem while exact algorithms provide, even
if time-consuming, an optimal solution for a class of optimisation problems. Metaheuristics
owe their speed to the fact that the stopping criterion do not wait for an optimality proof of
the solution, unlike exact methods.

Despite Church et al. (1996) claims in favour of exact methods, Pressey et al. (1996) still
raised concerns about their capacity to solve large realistic problems in this early debate of
the conservation literature. Practically speaking, methodological advances and conservation
practices were notably influenced by Marxan DST developments (Ball et al. 2009). In particular,
Marxan chose to implement a simulated annealing (SA) metaheuristic algorithm to tackle
the reserve site selection problem. This choice was justified in (Ardron et al. 2010) where
metaheuristics’ strengths are stated: computational speed, efficiency on large and complex
problems and flexibility of choice among provided suboptimal solutions. However, the first two
arguments were discarded in (Rodrigues and Gaston 2002) thanks to a comparison of several
reserve site selection study cases. More recently, this solving paradigm seemed to change in
favour of exact algorithms within the conservation biology literature (Beyer et al. 2016; Hanson
et al. 2019; Schuster et al. 2020). By nature, the objective values of solutions are better with
exact methods; what changed is the reasonable computational time taken by exact solvers
nowadays. Regarding formulation restriction, metaheuristics can definitely tackle non-linear
formulation and more generally do not impose any restriction unlike exact methods. Yet, the
reserve site selection problem includes only quadratic terms, which can be linearised when the
decision variables are binary (Billionnet 2007). Finally, it left only the flexibility claim as a
major advantage of metaheuristics over exact optimisation approaches.

1.2 Flexibility requirement in the choice of MPAs

In conservation biology, the flexibility covered two realities: in a few cases, it referred to the
optimisation model and its ability to be easily tuned (Rodrigues et al. 2000; Cocks and Baird
1989). This aspect was not discussed in our work. In the majority of cases, the flexibility re-
ferred to the ability of an algorithm to provide relevant alternative solutions. The latter was the
subject of this work and was the main notion called when flexibility is mentioned in the conser-
vation literature. For instance, in a survey realised among Marxan users (Ardron et al. 2010),
"flexibility of generating multiple solutions was by far the most commonly noted strength of
Marxan" for 2/3 of the respondents. Flexibility was often depicted as the key strength of meta-
heuristics over exact approaches, as it satisfied the need for multiple alternative solutions, even
if suboptimal (Pressey et al. 1993; Possingham et al. 2000; Possingham et al. 2006; Sarkar 2012).

Given the importance attached to this property, it was crucial to characterise precisely the
flexibility provided by the SA algorithm and thus understand how suboptimal solutions were
built. First, SA is a recursive procedure which starts from an initial random reserve and
stops when a maximum number of iterations is reached. At each iteration, SA randomly
considers a neighbour of the current reserve. Again, a random process decides whether to
replace the current reserve by the neighbour. One particularity of SA is that it can choose
reserve candidates with a worse objective value, thus preventing the procedure from being
stuck at the first local optimum met. Also, a temperature parameter of SA allows to widely
explore the solution space at the beginning of the iterations, while a thinner search is performed
at the end. Finally, in order to produce a pool of solutions, SA is run as many times as
requested. More details can be found in Appendix B-2.1 in (Serra-Sogas et al. 2020). As a
consequence, SA builds the set of suboptimal solutions mostly in a random fashion without
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using any user-specified criterion; nor providing any control or knowledge over the gap between
the suboptimal solutions provided and the optimal solution. Here, we addressed the question
of how to generate alternative suboptimal reserve solutions with exact solvers, using explicit
tunable criteria instead of random processes. The objective was to improve the accountability
and control over the flexibility provided in the reserve solutions. Few existing works had the
same concern. Arthur et al. (1997) developed an algorithm to compute the exhaustive set of
optimal solutions in the maximum coverage formulation with presence/absence data. In the
same spirit, Önal (2004) described a branch and bound algorithm to show how suboptimal
solutions, called the second-best solutions, can be derived with exact methods.

1.3 Contributions

In this work, we modified the optimisation problem in order to explore the solution space
with exact solvers, seeking for relevant alternative solutions and thus provide decision makers
a flexibility with a portfolio of reserve solutions. Unlike metaheuristics, this exploration was
guided by explicit criteria included in the optimisation model. We modified the reserve site
selection problem by overconstraining it or even by changing the objective function. Therefore,
the flexibility was not produced by repeating random processes but rather according to explicit
specifications. Practically, our work presents several methods to derive flexibility through a
pool of alternative solutions. The code was written in Julia language, and is available in open
access2. The developed methods were numerically illustrated on the real example of Fernando
de Noronha Brazilian archipelago in the tropical Atlantic. In Section 2.2, we first discussed
the flexibility itself as the ability to produce good and different solutions. It naturally led to
define a diversity measure between reserves, a distance and a pseudo-distance, to help us build
explicit selection criteria. Then, the modifications brought to the initial optimisation model in
Section 2.1 are described in Section 2.3. We showed how to produce an alternative solution with
an optimality gap constraint in Section 2.3.1, with a diversity constraint in Section 2.3.2, and
by maximising a minimum pseudo-distance objective in Section 2.3.3. Finally, in Section 2.4,
we developed three different algorithms that generated a pool of alternative solutions based on
the aforementioned criteria. They provided (1) the exhaustive set of optimal solutions, (2) the
pool of n best suboptimal solutions within a user-defined optimality gap in increasing order,
(3) the pool of suboptimal solutions at a given pseudo-distance between each other and (4) the
pool of alternatives maximising the minimum of the set of pseudo-distances with past iterates
considering a fixed extra cost budget. The results we described in Section 3 are discussed in
Section 4 where we also questioned the notion of flexibility and its relevance for reserve site
selection.

2https://github.com/AdrienBrunel/flexibility.git
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2 Methods

2.1 The reserve site selection problem

In general, the spatial distributions of sampling are scattered and sparse. Consequently, we
usually discretise the study area thanks to a grid to properly capture data. In our case, as a
result of the discretisation process, the study area was divided into a set of J planning units
within which a set of I conservation features were distributed. The amount of conservation
feature i in the planning unit j was denoted aij. Each planning unit had a cost cj. In the reserve
site selection problem, one generally seeks to find the collection of planning units covering
sufficient levels of considered features at minimum cost. The covering of conservation feature
i is sufficient if it exceeds the user-defined level that we noted ti. The decision is about to
include the planning unit in the reserve. Thus, xj = 1 if a planning unit j was selected in the
reserve and xj = 0 otherwise. Moreover, a compactness parameter β allows computing a more
or less aggregated reserve, as it directly penalises the reserve perimeter within the objective
function. The perimeter was computed as the total length of the boundaries between reserved
and non-reserved planning units. To model this, the length of the shared boundary between
planning unit j1 and j2 is denoted as bj1j2 . Mathematically speaking, the general problem of
reserve site selection is expressed as the following minimum set optimisation problem P0 :

P0 :


min
x

∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2)

s.t.
∑
j∈J

aijxj ≥ ti ∀i ∈ I

xj ∈ {0, 1} ∀j ∈ J

This combinatorial optimisation problem is a minimum set cover problem known to be NP-hard
(Garey and Johnson 1979). Also, it is a non-convex problem due to the binary nature of the
decision variables. Yet, it can be expressed as an integer linear program (see Appendix 5.1
for the linearised model) and known solvers (like Gurobi or CbC) can solve it for realistic
instances in a reasonable time. In the following, we will denote x? and z? respectively the
optimal solution and the associated objective value of the original minimum set cover problem
P0. Let γ(z) = z−z?

z?
be the algebraic relative variation of score z with respect to z?.

2.2 Flexibility in the selection of reserve sites

Producing good and different solutions Marxan user manual stipulated that systematic
conservation planning DSTs did not provide the answer, but rather produced multiple good and
different alternative solutions. This way, it allowed decision makers to do a choice integrating
exogenous factors or even open negotiations. To fill in this need, Marxan generated multiple
solutions in a mostly random fashion using a SA algorithm. The amount of randomness (starting
point, neighbour construction, candidate acceptance) actually made it very unlikely to have the
same solution between two SA runs and thus produced different suboptimal solutions. Marxan
implicitly built a pool of different good solutions without controlling how different and good
they are. However, the difference between solutions could be explicitly measured, for example
thanks to a distance function. Also, the solution quality could be quantified with the gap to
the global optimal value. We thus chose to produce a pool of alternative solutions thanks to
explicit criteria and directly modify the model. In particular, we produced alternatives by
overconstraining the problem or modifying the objective function.

Diversity measure As we sought to quantitatively capture the difference between two re-
serve solutions, we focused beforehand on how to build a diversity measure between them. We
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wanted to find a function characterising the difference between two solutions. The first natural
idea was to use the distance defined by the absolute-value norm:

D(x, y) =
∑
j∈J

|xj − yj|

When x, y ∈ {0, 1}N , the distance D(x, y) is simply the total number of differences between x
and y. It is a rigorous mathematical distance as function D verifies the symmetry, separation
and triangular inequality properties. In order to avoid the absolute value in the distance
definition, we preferred the following linear expression, strictly equivalent3 when x, y ∈ {0, 1}N :

D(x, y) =
∑
j∈J

xj(1− yj) + yj(1− xj)

However, we could easily build an alternative solution with a non-zero distance from the optimal
solution x? by choosing any solution that strictly includes x?. Such solution would logically
meet the covering requirements, as it includes the optimal solution. Then, this solution would
be at a distance from x? equal to the number of planning units outside x?. Yet, we wanted to
avoid this type of solutions as we thought they are not relevant alternatives but simply worse
alternatives. Consequently, we introduced the pseudo-distance d(x, y) defined as the number
of planning units selected in x and not in y:

d(x, y) =
∑
j∈J

xj(1− yj)

The term pseudo-distance is used as it can be understood as a distance, although it does not ver-
ify the rigorous mathematical definition of a distance. Observe that D(x, y) = d(x, y)+d(y, x).
In conclusion, the pseudo-distance d excluded alternative solutions we considered irrelevant,
while the distance D would have tolerated these solutions. To illustrate our words, Figure 1
displays three chosen didactic examples where the distance D and pseudo-distance d are com-
puted. The left and right panels show two specific examples: the green reserve is strictly
included in the red reserve, while it has an empty intersection with the yellow reserve. The
example shown in the middle panel is a more generic case, as the blue reserve has planning
units both shared and not shared with the green reserve. In particular, we visually understood
why the red solution was simply a worse alternative to the green solution and that we wanted
to avoid this case. Then, the distance between red and green reserves was D(x̂, x) = 2 while
the pseudo-distance was d(x̂, x) = 0. Consequently, according to the pseudo-distance d, the
green and red reserve were the same. We wanted to use this feature to our advantage, as we
did not want the red reserve to belong to the pool of alternative solutions. The pseudo-distance
d could thus help to discriminate this type of reserve, while distance D could not. Finally, as
illustrated with the blue and yellow reserve examples, the pseudo-distance still allowed us to
characterise differences between two reserves as much as distance D.

2.3 Modifying the model to produce an alternative solution

2.3.1 Optimality gap constraint

In this section, we present a set of constraints which compels a reserve score to fall within a
predefined interval. Let γ1 ∈ R+ and γ2 ∈ R+, γ1 ≤ γ2, be the boundaries of the relative
optimality gap interval. The constraints cl(γ1) and cu(γ2) are imposing the objective to fall
within a relaxed score interval [(1 + γ1)z

?, (1 + γ2)z
?] relatively to the optimal score z?.

3Compare truth tables of these two expressions to be convinced.
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Figure 1 – Numerical examples of pseudo-distance d and distance D. The nominal reserve x̂, depicted
in green, includes 6 planning units. Other reserves, hatched in red, blue and yellow, include 8 planning units.
d(x̂, x) = 0, d(x, x̂) = 2, D(x̂, x) = 2.
d(x̂, x) = 2, d(x, x̂) = 4, D(x̂, x) = 6.
d(x̂, x) = 6, d(x, x̂) = 8, D(x̂, x) = 14.

cl(γ1) :
∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≥ (1 + γ1)z
?

cu(γ2) :
∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≤ (1 + γ2)z
?

Note that if γ1 = γ2 = 0, we explore only the optimal solutions set while for γ1 > 0, we explore
strict suboptimal solutions with a maximum gap equal to γ2 (see illustration in Figure 2).

score z
z? z1 z2

Figure 2 – Illustration of constraint cl(γ1) and cu(γ2). The objective value z ≥ z? of optimisation
problem P is constrained to fall within the a priori specified interval [z1, z2] = [(1 + γ1)z

?, (1 + γ2)z
?] in red.

2.3.2 Diversity constraint

In this section, we present a set of constraints which compels the reserve to differ from another
given solution by at least δ planning units. The constraint cD(x̂, δ) makes the solution x to
have at least δ different planning units with respect to x̂ (cf. Figure 3). Importantly, for δ = 1,
we are simply forbidding x and x̂ to be strictly equal.

cD(x̂, δ) : D(x̂, x) =
∑
j∈J

x̂j(1− xj) + xj(1− x̂j) ≥ δ

Similarly, we have the same constraint with pseudo-distance d instead of distance D. Indeed,
the constraint cd(x̂, δ) compels the reserve solution x to have at least δ planning units selected
in x̂ that are not included in x :

cd(x̂, δ) : d(x̂, x) =
∑
j∈J

x̂j(1− xj) ≥ δ

As discussed previously and illustrated in Figure 3, the pseudo-distance d allows forbidding the
strict inclusion of the solution x̂ within the considered alternatives thanks to cd(x̂, δ).
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x̂ x D(x̂, x) d(x̂, x)
1
0
0
1




0
0
1
1


+1
+0
+1
+0

+1
+0
+0
+0

≥ δ ≥ δ

Figure 3 – Illustration of constraint cD(x̂, δ) and cd(x̂, δ). Example of distance D and pseudo-distance
d construction between solutions x̂ and x.

2.3.3 Maximum pseudo-distance objective

We also proposed to directly modify the objective function value and thus write a new integer
linear program in order to produce an alternative solution. Indeed, another idea could be to
seek for the most pseudo-distant solution at a predefined maximum deterioration level of the
objective value. Stated otherwise, we maximised the pseudo-distance from the optimal solution
x? under a fixed extra cost budget γ2z?. This gave access to the solution most different from the
optimum without exceeding a given extra impact on socio-economic activities. The resulting
integer linear program is given by:

PD :



max
x

d(x, x?)

s.t.
∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≤ (1 + γ2)z
? ∀j1 ∈ J,∀j2 ∈ J∑

j∈J
aijxj ≥ ti ∀i ∈ I

xj ∈ {0, 1} ∀j ∈ J

2.4 Producing a pool of alternative solutions

2.4.1 Imposing an optimality gap

We detailed in Algorithm 1 a simple recursive procedure which explored suboptimal alternative
solutions with an a priori defined relative optimality gap interval [γ1, γ2]. If γ1 = γ2 = 0, we
provided the exhaustive set of optimal solutions. First, as we wanted to explore suboptimal
alternatives, we forced the objective value to fall within the user-defined relaxation threshold.
Practically, we imposed the optimisation problem to respect cl(γ1) and cu(γ2) at the beginning.
Then, to derive a pool of alternative solutions, we excluded at iteration k the solution xk−1 de-
rived at the previous iteration. For this, at each iteration k, we added the constraint cD(xk−1, 1)
which forbade the exact similarity with the solution xk−1 found at the previous iteration.

As we recursively excluded solutions from best to worst, the procedure would stop whether the
objective function value exceeded the upper bound γ2 or the maximum number of iteration n
was reached. Importantly, if we set γ2 high enough, the stopping criterion met would be the
maximum number of iteration, which was what we generally wanted. For instance, if γ1 = 0
and γ2 were high enough, Algorithm 1 returned the n solutions with the smallest score. If n
was chosen high enough, Algorithm 1 returned the exhaustive set of solutions with a relative
optimality gap within [γ1, γ2]. Unlike metaheuristics where the optimality gap is unknown,
we a priori established it thanks to this algorithm, thus offering users more control over the
flexibility provided.
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Algorithm 1: Recursive search of n best alternative solutions with a relative optimal-
ity gap in [γ1, γ2] relatively to score z? of solution x? of problem P0.
input : P0, x?, z?, n, γ1, γ2
output: x1, . . ., xk

1 P ← P0; k ← 0; x0 ← x? ; .initialisation
2 add cl(γ1) and cu(γ2) to P ; .impose optimality gap
3 while P is feasible & k < n do .stop when infeasible or enough solutions
4 k ← k + 1;
5 add cD(xk−1, 1) to P ; .exclude previous solution
6 solve P : get an optimal solution xk or detect that P is infeasible;

2.4.2 Imposing a pseudo-distance

Algorithm 2 is similar to Algorithm 1 except that we removed the constraints on the objec-
tive value cl(γ1) and cu(γ2). Besides, the constraint cd(xk−1, δ) replaced cD(x

k−1, 1). Indeed,
in Algorithm 2, we compelled at each iteration the solution xk to have at least δ unselected
planning units that were selected in every previous iterated solutions. In other words, we ex-
plicitly looked for a solution at least pseudo-distant of δ planning units from every past iterates.

Algorithm 2: Recursive search of n alternative solutions of problem P0 with at least
δ new planning units between successive iterated solutions.
input : P0, x?, n, δ
output: x1, . . ., xk

1 k ← 0; P ← P0; x0 ← x? ; .initialisation
2 while P is feasible & k < n do .stop when infeasible or enough solutions
3 k ← k + 1;
4 add cd(xk−1, δ) to P ; .impose pseudo-distance with past iterate
5 solve P : get an optimal solution xk or detect that P is infeasible;

2.4.3 Maximising the minimum pseudo-distance between iterates

The most natural idea would have been to recursively produce the n most pseudo-distant al-
ternative solutions from the optimal solution x? at a fixed relative extra cost γ2 by successively
excluding from the search space the solution found the iteration before. Indeed, to do so, we
could have simply adapted Algorithm 1 by initialising the problem to PD instead of P0 and
removing the optimality gap constraints (line 2). However, this method would have not en-
sured difference between alternatives and might produce a pool of similar alternative solutions,
although at a maximum distance to the optimal solution x?. We thus preferred to recursively
search for the solution maximising the minimum pseudo-distance from the past iterates. More
precisely, let xl be the solution found at iteration l ∈ [[0, k − 1]]. Let x be a candidate solution
at iteration k and δ(x) = min {d(xl, x), l ∈ [[0, k − 1]]}. We proposed to search for a solution
xk that maximises δ(x) among the solutions that do not exceed the degraded cost (1 + γ2)z

∗.
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Practically, the integer linear program P k
D solved at iteration k is the following :

P k
D :



max
x,δ

δ

s.t.
∑
j∈J

cjxj + β
∑
j1∈J

∑
j2∈J

bj1j2xj1(1− xj2) ≤ (1 + γ2)z
? ∀j1 ∈ J,∀j2 ∈ J∑

j∈J
aijxj ≥ ti ∀i ∈ I∑

j∈J
xlj(1− xj) ≥ δ ∀l ∈ [[0, k − 1]]

xj ∈ {0, 1} ∀j ∈ J
δ ∈ R+

The objective value δ would be the maximum of the minimum of the set of pseudo-distances
with every past iterates. Variable δ is constrained to be smaller than every pseudo-distances,
so is the minimum. As we want to maximise δ, it will logically take the value of one of the
pseudo-distances, i.e. the smallest. Therefore, we maximise the minimum pseudo-distance with
every past iterate. One should be careful as δ is a decision variable and no longer a parameter
as in previous algorithms. In order to better understand what Algorithm 3 is doing, we gave
more numerical details in Section 3.4. The procedure is presented below :

Algorithm 3: Recursive search of n alternative solutions maximising the minimum
pseudo-distance from every past iterates at a relative extra cost γ2.
input : PD, x?, z?, n, γ2
output: x1, · · · , xk

1 P ← PD; k ← 0; x0 ← x? ; .initialisation
2 change the objective of P to δ ;
3 while P is feasible & k < n do .stop when infeasible or enough solutions
4 k ← k + 1;
5 add cd(xk−1, δ) to P ; .δ is a decision variable here
6 solve P : get an optimal solution xk or detect that P is infeasible;
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3 Results
In order to solve the reserve site selection problem, several generic integer programming solvers
are available. In this work, we used Gurobi solver called through a dedicated code developed
in Julia language (Bezanson et al. 2012; Bezanson et al. 2015) using the JuMP optimisation
library (Dunning et al. 2017). Gurobi is a commercial solver available under a free academic
license at https://www.gurobi.com/. We could have also solved the problem with the free and
open-source integer programming solver Cbc (Forrest et al. 2018). The Julia language allowed
us to directly express and customise the optimisation problem according to our need. Our code
is open, free and available at https://github.com/AdrienBrunel/flexibility.git.

3.1 Case study data

Fernando de Noronha is a small oceanic archipelago in the western tropical Atlantic, made up
of 21 islands, islets and rocks with a total surface area of 26 km2, and constituting a genuine
Brazilian natural and cultural heritage. Fernando de Noronha is a conservation showcase in
Brazil, but it also faces many interests (oil industry, tourism intensification, fisheries) which
results in an open laboratory for MSP. We used this region as a case study for the algorithms
described in the previous section. The corresponding input data was processed in a study by
Brunel et al. (2021). We only summarize the main characteristics of the dataset below.

Brunel et al. (2021) discretised the geographical area according to a rectangular grid made of
N=36×21=756 planning units with longitude and latitude respectively in [32.65°W, 32.30°W]
and [3.95°S, 3.75°S] ranges. Planning units taking place in Fernando de Noronha land and
harbour were a priori excluded from potential reserve site candidates. The scenario feeding
the nominal optimisation problem P0 through this work then considered three conservation
features: fish biomass, continental shelf and shelf break habitats. Each feature was given a
targeted protection level of 50%. The cost layer was made of the fishing pressure intensity. The
compactness parameter considered was β = 1. We show in Figure 4 the details of the input
data involved in the case study.

To get the cost and conservation features, Brunel et al. (2021) first estimated the values of
fish biomass as the sum of fish echoes in nautical area back-scattering strength, i.e., sA, over
the water column. Interpolating between sample data allowed producing a continuous fish
distribution within the sampling area. Outside this area, values were set to 0, although the
actual fish distribution over there was unknown. Ocean depths were obtained from GEBCO
online platform4 and used as a surrogate of two suitable fish habitats, expressed as binary
conservation features: the continental shelf and shelf break habitats, defined by specific ocean
depth intervals. Finally, a segmentation model was applied to fisher GPS trajectories to derive
one behavioural state for every measured location: fishing or travelling. This was used to build
a quantitative proxy representing the intensity of the fishery activity.

4GEneral Bathymetric Chart of the Ocean, https://download.gebco.net/
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Figure 4 – Processed input data layers feeding the conservation problem. (A) Fishery-based cost
layer is shown with a continuous orange colour gradient. (B) Fish Biomass conservation feature surrogate is
depicted with a discrete purple colour gradient. (C) Continental shelf and (D) Shelf break habitat conservation
feature surrogates are respectively illustrated in light and deep blue. Transparent grey pixels are the planning
units a priori excluded from the solution.

3.2 Alternative solutions imposing an optimality gap

Exhaustive set of optimal solutions (γ1 = γ2 = 0) We applied Algorithm 1 with γ1 =
γ2 = 0 to derive the exhaustive set of optimal solutions. In this numerical application, it turned
out we have 16 optimal solutions with an objective value z? = 197.71. Panel A of Figure 5
illustrates a map showing the selection frequency among optimal solutions, i.e., the percentage
of time a planning unit was selected among the 16 optimal solutions. We observed a small
variability as 84/93 planning units were selected at a 100% frequency. The nine planning units
that changed were likely to be interchangeable (same cost and amount of each conservation
features).

Alternative solutions in increasing order of optimality gap (γ1 = 0, γ2 > 0) We
computed the n = 500 following suboptimal solutions searched by increasing score order, thus
from best to worst objective value, as it was a minimisation problem. The recursive procedure
of Algorithm 1 was either stopped by γ2 criterion or when the maximum amount of alternative
solutions n was reached. To get n alternative solutions with this algorithm, we thus set γ2 to a
large value. The objective value of the last and worst solution returned by the algorithm was
198.98, which corresponded to γ = 0.64% relatively to the optimal score. So any value of γ2
larger than 0.64 would have led to the same result. As above, Panel B of Figure 5 illustrates the
selection frequency of these 500 alternative solutions5. Again, a small variability was observed,
because many planning units had the same characteristics and can be interchangeable. The
global visual impression was thus similar to the optimal solution exhaustive set.

5among which we had 16 optimal solutions
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Alternative solutions within a targeted optimality gap (γ1 > 0, γ2 > 0) We set
γ1 > 0 voluntarily to get suboptimal solutions where the relative optimality gap was at least
γ1. We chose γ2 high enough to have n = 100 alternative solutions. Panel C and D in Figure 5
respectively show results for γ1 = 0.05 and γ1 = 0.15. Visually, we observed a greater variability,
but when comparing to Figure 4, many planning units were selected while they did not increase
the amount of conservation feature nor decrease the reserve perimeter. Consequently, these were
planning units only useful to deteriorate the objective value and thus satisfy the optimality gap
constraint. Although the variability appeared greater in Panel C and D compared to other
panels, the core of the reserve was still globally similar to the optimal solutions.

Figure 5 – Selection frequency among alternative solutions obtained with Algorithm 1. Selected
planning units of alternative reserve solutions are represented with a green transparency gradient according to
selection frequency expressed in percentage (black number inside planning unit).

3.3 Alternative solutions imposing a pseudo-distance

In this section, we applied Algorithm 2 to our case study. Therefore, we directly constrained
successive alternative solutions to be pseudo-distant of at least δ planning units with every past
iterates. Figure 6 shows four alternative examples of reserve solution found by the recursive
procedure for δ = 20. The optimal solution x? is represented with planning units delimited by
a thick black border. We first observed that at least 20 planning units selected in the optimal
solution x? were not found in the current solution. Those correspond to the white planning units
with a thick black border. Indeed, Algorithm 2 found new planning units, because it forbade
to have too many common pixels with the optimal solution. At first sight, the visual difference
with the optimal solution appeared clearer than alternatives obtained with Algorithm 1. The
alternative solutions proposed in Figure 6 seemed to visit different regions of the archipelago,
although limited by the fact that positive conservation feature values are concentrated around
the main island. In particular, in Panel B the southern region was privileged whereas north
and east of Fernando de Noronha were preferred in Panel C. Panel A shows a solution similar
to the optimal one, although two planning units were selected at the extreme west of the study
area. Panel D displayed a solution cut into several pieces all around the main island.
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Figure 6 – Example of alternative solutions obtained with Algorithm 2 for δ = 20. The alternative
reserve solution is represented in green, while the optimal solution x? is depicted with planning units delimited
by a thick black border.

3.4 Alternative solutions maximising the minimum pseudo-distance
between iterates

In this numerical application, we applied Algorithm 3 to find the n = 4 alternative solutions
maximising the minimum pseudo-distance from past iterates. To do so, the integer linear
program P k

D was solved recursively. An example of derived reserve solutions is illustrated in
Figure 7 for a relative extra cost budget γ2 = 10%. Interestingly, a clear visual difference
between the four alternative reserves appeared in Figure 7. The reserve in Panel A proposed
a solution cut into 4 pieces, favouring the east of the archipelago. Reserve in Panel B showed
a clear preference for the south of the island. Panel C was perhaps the most resembling to
the optimal solution, although two planning units were found at the extreme west of the main
island. Reserve in Panel D presented a reserve with two pieces, one in the north and one in the
south.

Find below more numerical details on what is realised in Algorithm 3:

• Reserve in Panel A is pseudo-distant of 27 planning units to the optimal solution x?.
The first iteration simply solves PD which maximise the pseudo-distance to the optimal
solution.

• The reserve in Panel B is pseudo-distant of 22 and 22 planning units respectively to the
optimal solution and the reserve in Panel A. So the maximum minimum pseudo-distance
between past iterates is 22.

• The reserve in Panel C is pseudo-distant of 22, 22 and 24 planning units respectively to
the optimal solution, the reserve in Panel A and Panel B. So the maximum minimum
pseudo-distance between past iterates is 22.
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Figure 7 – Example of alternative solutions maximising the minimum pseudo-distance to past
iterates at a fixed extra cost. We show four successive alternatives with an extra cost budget γ2 = 10%. The
alternative reserve solution is represented in green, whereas the optimal solution x? is depicted with planning
units delimited by a thick black border.

• The reserve in Panel D is pseudo-distant of 20, 20, 20 and 20 planning units respectively
to the optimal solution, the reserve in Panel A, Panel B and Panel C. So the maximum
minimum pseudo-distance between past iterates is 20.

3.5 Score versus Distance

We compared the mean relative scores and pseudo-distances of alternative solutions obtained
with Algorithm 1, 2 and 3 for various values of parameters involved. More precisely, we per-
formed a sensitivity analysis on γ1 for Algorithm 1, δ for Algorithm 2 and γ2 for Algorithm 3.
We observed a global increasing trend for all curves as the mean relative score was deteriorated
with the pseudo-distance to the optimal solution. As expected, the highest curve was obtained
with Algorithm 3 because it explicitly sought to maximise the minimum pseudo-distance to
past iterates. Similarly, as pseudo-distance was not considered at all in Algorithm 1 but only
the optimality gap, it was logical to observe the curve was the lowest and was not strictly in-
creasing. Finally, the curve obtained with Algorithm 2 was in between the two others because
it explicitly accounted for the pseudo-distance but did not seek to maximise it. We plotted
mean relative scores and mean pseudo-distances computed on the number of alternatives, so
these quantities are dependent on the number of iterations n.
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Figure 8 – Relative score γ versus pseudo-distance d(x?, ·). Algorithm 1 for γ1 ∈ [[1%, 15%]] and n = 100,
Algorithm 2 for δ ∈ [[1, 22]] and n = 20, Algorithm 3 for γ2 ∈ [[1%, 15%]] and n = 4. Relative scores and pseudo-
distances are averaged on every alternative solution obtained with the considered algorithm.

16



4 Discussion
In this work, we demonstrated how we can find relevant alternative solutions using exact solvers
in the reserve site selection optimisation problem. We proposed three procedures to build pools
of alternative reserve solutions according to specific criteria. We also numerically illustrated
the proposed methods on the real application example of Fernando de Noronha.

Our first algorithm allowed us to list the exhaustive set of optimal solutions, in the same spirit
as in (Arthur et al. 1997). Also, our algorithm gave the n best solutions in increasing order,
from best to worse, which is close to what was done in (Önal 2004). Our algorithm went further,
because it was able to enumerate alternative solutions at a user-defined optimality gap starting
from the lower bound. We benefited from the fact that exact solvers are able to quantify the
optimality gap, while metaheuristics cannot. The exploration of the solution space based on the
value of the optimality gap was thus possible. However, this flexibility built by explicitly fixing
the optimality gap close to the optimal score showed a weak variability in the reserve solutions.
Further from the optimal score, the variability among alternative solutions appeared irrelevant,
because the procedure artificially increased the objective value by including empty planning
units. These planning units are pointless because they are empty relatively to the conservation
features and do not contribute to decrease the reserve perimeter. Anyway, it poorly answered
the conservation literature need for good and different alternatives. That is why, we introduced
a diversity measure to build a criterion explicitly based on how different solutions are, i.e. a
mathematical distance. As we wished to avoid alternative reserves where the optimal solution
is encompassed, we discarded the natural absolute-value norm and preferred a pseudo-distance.
We directly included in our second and third algorithm the notion of pseudo-distance in the
optimisation problem to produce more diversity within the pool of alternative solutions. These
algorithms effectively generated alternative solutions which were visually different and seemed
to answer the need of flexibility. In addition, the flexibility was completely controlled thanks to
two parameters that allowed the user to compromise between distance from an optimal solution
and the optimality gap. The sensitivity analysis illustrated this compromise and thus quantifies
the relevance of an alternative solution.

In our numerical application, input data feeding the optimisation problem were globally con-
centrated around the main island, so the diversity between alternatives was not easily caught
with the naked eye. The methodology we proposed has the strength to be easily customised
by any user to define other parameterisations. In particular, it could be interesting to build a
diversity measure accounting for a geographical metric. For example, we could compute a di-
versity measure based on the true geographical distance between planning units of both reserves.

In conclusion, although metaheuristics have been historically preferred to address the reserve
site selection optimisation problem, several works (Beyer et al. 2016; Schuster et al. 2020)
demonstrated to what extent exact methods outperform metaheuristics in reserve score and
showed they can tackle realistic instances in reasonable time. The last argument standing in
favour of metaheuristics was the apparent absence of flexibility when exact approaches are ap-
plied, as it provides a unique solution. However, our work suggested several methods showing
how it is possible to build a relevant flexibility through exact methods. Indeed, unlike what is
commonly stated in the conservation literature (Possingham et al. 2000; Ardron et al. 2010), our
work showed that exact solvers used for the reserve site selection problem can also be used to
produce a pool of alternative solutions. This ability is not inherent to metaheuristics. Besides,
the inclusion of explicit criteria (optimality, diversity, etc.) directly within the optimisation
model allowed to build a more controlled and transparent, i.e. an accountable flexibility. By
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doing so, we know the additional selection criterion at the root of the alternative solutions pool.
We think this methodology opens wide perspectives for better modifications of the model, thus
building a flexibility on other criteria and perhaps more relevant alternative solutions. The
proposed algorithms however can be time-consuming on larger instances if many alternative
solutions are required. The time consumption can be mitigated thanks to a decrease in the
number of iterations. In addition, we think the number of alternatives provided should not be
greater than a few units to avoid unnecessary noise in the decision-making process. For in-
stance, if plenty of similar alternative solutions are provided, a post-processing effort is needed
to sort and select a few relevant ones. Unlike Marxan, our procedures, and especially our last
algorithm, needed only a few iterations to directly produce a small set of alternative solutions
both good and different from each other.

The concept of flexibility itself has not been extensively discussed in the conservation literature.
The flexibility was always described as a key principle and a requirement. This concept is mainly
motivated by the possibility to select the final solution among a range of solutions following
untold objectives such as management, geometry, socio-political priorities, etc (Pressey et al.
1993; Possingham et al. 2000; Ardron et al. 2010). Yet, these external factors should be clearly
stated at the very beginning of the decision-making process. Once explicitly stated, we could
attempt to incorporate such factors within the optimisation model and better support the
decision. These discussions held beforehand could help to build a more adapted optimisation
model revolving around the socio-ecological question, finding better input data, simulating more
relevant scenarios, etc. Discussing the criteria involved in the definitive choice of a reserve would
improve the accountability of the solution (Rodrigues et al. 2000). Indeed, if transparency is
improved, we could potentially mitigate the ocean grabbing that can be involved when DSTs
are to be used in MSP (Queffelec et al. 2021).
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5 Appendix

5.1 Linearised model

Parameters and variables were defined in Section 2.1. Sets of planning units a priori excluded
or included in the reserve are respectively noted LO and LI. We can linearise the quadratic
term of the objective function when decision variables are binary (Billionnet 2007). Considering
this linearisation but also locked-in and locked-out planning units, we ended up with the full
mathematical optimisation problem P f

0 of reserve site selection :

P f
0 :



min
x,z

∑
j∈J

cjxj + β(
∑
j1∈J

∑
j2∈J

bj1j2zj1j2 +
∑
j∈J

xjb
∗
j,N+1)

s.t.
∑
j∈J

aijxj ≥ ti ∀i ∈ I

zj1j2 ≤ xj1 ∀j1 ∈ J,∀j2 ∈ J
zj1j2 ≤ xj2 ∀j1 ∈ J,∀j2 ∈ J
zj1j2 ≥ xj1 + xj2 − 1 ∀j1 ∈ J,∀j2 ∈ J
xj = 0 ∀j ∈ LO
xj = 1 ∀j ∈ LI
xj ∈ {0, 1} ∀j ∈ J
zj1j2 ∈ {0, 1} ∀j1 ∈ J,∀j2 ∈ J

We also accounted for the correction of the compactness parameter β undesirable edge effect
(Brunel et al. 2021), leading to the introduction of b∗ where :

∀j ∈ J = {1, · · · , N},

b∗j,N+1 =


1, if pixel j shares a single side with the outer boundary
2, if pixel j shares 2 sides with the outer boundary (i.e. located at a corner)
0, otherwise
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