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This paper presents a semi-analytical approximation of Symbol Error Rate (SER) for the well known LoRa Internet of Things (IoT ) modulation scheme in the following two scenarios: 1) in multi-path frequency selective fading channel with Additive White Gaussian Noise (AW GN ) and 2) in the presence of a second interfering LoRa user in flat-fading AW GN channel. Performances for both coherent and non-coherent cases are derived by considering the common Discrete Fourier transform (DF T ) based detector on the received LoRa waveform. By considering these two scenarios, the detector exhibits parasitic peaks that severely degrade the performance of the LoRa receiver. We propose in that sense a theoretical expression for this result, from which a unified framework based on peak detection probabilities allows us to derive SER, which is validated by Monte Carlo simulations. Fast computation of the derived closedform SER allows to carry out deep performance analysis for these two scenarios.

I. INTRODUCTION

The Internet of Things (IoT ) is experiencing striking growth since the past few years enabling much more devices to communicate and allowing many scenarios to be a reality such as smart cities. The number of IoT devices is expected to rapidly grow, jumping from almost 10 to more than 21 billion [START_REF]Internet of things (IoT) active device connections installed base worldwide from 2015 to 2025[END_REF]. Many technologies were developed in that sense relying on licensed bands (Narrow Band IoT (N B -IoT ), Extended Coverage GSM (EC-GSM) and LTE-Machine (LTE-M)) or unlicensed bands such as SigFox, Ingenu, Weightless or Long Range (LoRa) [START_REF] Goursaud | Dedicated networks for IoT: PHY / MAC state of the art and challenges[END_REF]. We will focus on LoRa in this paper. LoRa was initially developed by the French company Cycleo in 2012 [START_REF] Seller | Low power long range transmitter[END_REF] and is now the property of Semtech company, the founder of LoRa Alliance. LoRa is nowadays a front runner of LP-WAN solutions and holds a lot of attention by the scientific research community. Due to its patented nature, initial research was mainly based on retroengineering of existing LoRa transceivers [START_REF] Knight | Decoding LoRa: Realizing a modern LPWAN with SDR[END_REF]. The first paper to provide a rigorous mathematical representation of LoRa signals and its demodulation scheme was achieved by [START_REF] Vangelista | Frequency shift chirp modulation: The LoRa modulation[END_REF]. Further research were conducted focusing on LoRa network capacity enhancements [START_REF] Elshabrawy | Enhancing LoRa capacity using nonbinary single parity check codes[END_REF], channel coding improvements [START_REF]Evaluation of the BER performance of LoRa communication using BICM decoding[END_REF], [START_REF] Marquet | Investigating theoretical performance and demodulation techniques for LoRa[END_REF] or temporal and frequency synchronization techniques [START_REF] Xhonneux | A low-complexity synchronization scheme for LoRa end nodes[END_REF], [START_REF] Bernier | Low complexity LoRa frame synchronization for ultra-low power software-defined radios[END_REF].

There was previous research work addressing Multi-Path Channel (M P C) impact on performance with an experimental point of view (see Section II-A) but to the best of our knowledge, theoretical assessment of a such effect has not been investigated yet in the literature. Even if M P C may produce small Inter Symbol Interference (ISI) depth for the detection of the current symbol, the coherent and non-coherent detectors are very sensitive to one or several significant echoes. This situation may be encountered in outdoor environments (see Section IV-A for more details). In this paper, a tight approximation of SER in M P C is proposed for coherent and non-coherent LoRa detection schemes. Performance degradation of LoRa modulation is then studied for the two-path and the exponential decay channel models.

We show that additional interference peaks appear by using the common Discrete Fourier Transform (DF T )-based detector on the received dechirping LoRa waveform over M P C. SER derivation can be seen as a problem of correct peak detection at the DF T -output against interference and noise peaks in presence of AW GN . SER is derived in two steps as follows. First, close approximations are provided to obtain closed-form expression, in terms of Cumulative Distribution Functions (CDF s), of the detection probability of the correct peak for a given noise random sample at the corresponding DF T -output. Similar developments have been done for the flat-fading AW GN channel [START_REF] Ferré | LoRa physical layer principle and performance analysis[END_REF] but we extend here results for M P C. And secondly, expectation of the closed-form expression over complex Gaussian random variable is computed numerically by using two-dimensional Cartesian products of onedimensional Gauss-Hermite quadrature formulae [START_REF] Abramowitz | Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[END_REF]. The accuracy of the derived approximations is then confirmed by comparisons to numerical results. This procedure provides a fast and tight SER estimation which allows to carry out deep performance analysis of LoRa modulation in M P C.

From the same unified framework, performance evaluation in terms of SER is derived in case of LoRa interference, where the desired LoRa signal is corrupted by interfering LoRa signal in AW GN flat-fading channel. A fine analysis of performance in relation to path delay and complex path gain of the interferer channel is also addressed. We compare our derived SER expression with previous work in [START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF] about performance of LoRa interference where the SER expression is derived by a different approach.

The novelty and contributions of the paper can be highlighted in the following: the channel path delays (or the time delay of the interferer LoRa signal) as multiple of sampling rate.

• Analyzing LoRa performance for coherent and noncoherent receivers for the one-tap, and the exponential decay, discrete channel models. • Assessing LoRa performance for the non-coherent receiver in presence of LoRa interference. Performance analysis is studied as a function of LoRa interferer path delays, it confirms results on previous research work [START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF] and adds some noticeable refinements for specific LoRa interferer delays around the half of the symbol period. The remainder of the article is organized as follows. In Section III, we review the basics of LoRa physical layer. In Section IV, we introduce the M P C model and its application to LoRa wave-forms. The semi-analytical SER expression is then derived under several close approximations in Section V. Section VI introduces the LoRa interference model, the associated theoretical SER and the study of performance impact of the relative phase difference between the signal of interest and the interferer. Finally, in Section VII, simulation results confirm theoretical derivations for both M P C and LoRa interference models.

II. RELATED WORK

There was many studies in the literature focusing on M P C and LoRa interference impact that were possible thanks to preliminary LoRa research dealing with theoretical performance of original non-coherent LoRa system. We can cite for example the authors in [START_REF]Closed-form approximation of LoRa modulation BER performance[END_REF] who derived a closed-form approximation of LoRa BER performance in AW GN and Rayleigh channels. Their work was further extended to the case of coded LoRa communications [START_REF] Afisiadis | Coded LoRa frame error rate analysis[END_REF] in which interleaving, Gray and Hamming coding are considered. They evaluate performance with residual Carrier Frequency Offset (CF O) and show that the latter has strong impact on performance and therefore proper CF O mitigation techniques must be implemented.

A. M P C

The impact of M P C channels was investigated with the following studies. The authors in [START_REF] Marquet | Towards an SDR implementation of LoRa: Reverse-engineering, demodulation strategies and assessment over rayleigh channel[END_REF] evaluated the impact of time/frequency selective channels on demodulation process and highlighted the good LoRa resiliency on these channels and especially with the latter. Furthermore, an improved LoRa detector based on cyclic cross-correlation to combat M P C was also proposed in [START_REF] Guo | Time-delay-estimation-liked detection algorithm for lora signals over multipath channels[END_REF]. Experimental approach was proposed in [START_REF] Staniec | Lora performance under variable interference and heavy-multipath conditions[END_REF] where the authors assessed the impact of both electromagnetic interference and heavy M P C in anechoic and reverberation chambers. They came with the conclusion that LoRa is robust to their experimental Rayleigh fading M P C only for SF ≥ 10 and whatever the signal bandwidth.

B. LoRa interference

The LoRa interference case was also considered with many studies evaluating theoretical performance in same SF with the interference signal delayed by an integer number of sampling periods (aligned) in [START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF]. It is shown in this study that a such interference has dramatic impact on performance, leading to a sensitivity threshold approaching ∞ if the signal-tointerference ratio (SIR) approaches SIR dB = 0. The authors also highlights good LoRa resiliency, with interference free performance recovered with SIR greater than 10 dB. Noninteger interference delay (non-aligned) has been also investigated in [START_REF] Afisiadis | LoRa symbol error rate under non-aligned interference[END_REF], [START_REF]On the error rate of the LoRa modulation with interference[END_REF] and the latter was recently extended in [START_REF] Afisiadis | On the advantage of coherent lora detection in the presence of interference[END_REF] to the coherent receiver and including hardware impairments such as CF O. Algorithms were also designed to enable the decoding of a LoRa symbol stream contaminated by a single or multiple LoRa user [START_REF] Rachkidy | Decoding superposed LoRa signals[END_REF], [START_REF] Temim | An enhanced receiver to decode superposed LoRa-like signals[END_REF].

III. LORA MODULATION OVERVIEW

A. LoRa wave-forms

In the literature, LoRa wave-forms are of the type of Chirp Spread Spectrum (CSS) signals. These signals rely on sine waves with Instantaneous Frequency (IF ) that varies linearly with time over frequency range f ∈ [-B/2, B/2] (B ∈ {125, 250, 500} kHz) and time range t ∈ [0, T ] (T the symbol period). This basic signal is called an upchirp or down-chirp when frequency respectively increases or decreases over time. A LoRa symbol consists of SF bits (SF ∈ {7, 8, . . . , 12}) leading to an M -ary modulation with M = 2 SF ∈ {128, 256, . . . , 4096}. In the discrete-time signal model, the Nyquist sampling rate (F s = 1/T s ) is usually used i.e. T s = 1/B = T /M . The signal symbol has then M samples. Each symbol a ∈ {0, 1, . . . , M -1} is mapped to an up-chirp that is temporally shifted by τ a = aT s period. We may notice that a temporal shift τ a = aT s conducts to shift by aB/M = a/(M T s ) = a/T the IF . The modulo operation is applied to ensure that IF remains in the interval [-B/2, B/2]. This behavior is the heart of CSS process. A mathematical expression of LoRa wave-form sampled at t = kT s has been derived in [START_REF] Chiani | On the LoRa modulation for IoT: Waveform properties and spectral analysis[END_REF] :

x(kT s ; a) x a [k] = e 2jπk( a M -1 2 + k 2M ) k = 0, 1, . . . , M -1 (1) 
We may see that an up-chirp is actually a LoRa wave-form with symbol index a = 0, written

x 0 [k]. Its conjugate x * 0 [k] is then a down-chirp.

B. LoRa demodulation scheme

Reference [START_REF] Vangelista | Frequency shift chirp modulation: The LoRa modulation[END_REF] proposed a simple and efficient solution to demodulate LoRa signals. In AW GN channel, the demodulation process is based on the Maximum Likelihood (M L) detection scheme. The received signal is:

r[k] = x a [k] + w[k] (2) 
with w[k] a complex AW GN with zero-mean and variance

σ 2 = E[|w[k]| 2 ]
. M L detector aims to select index a that maximises the scalar product r[k], x n [k] for n ∈ {0, 1, . . . , M -1} defined as:

r[k], x n [k] = M -1 k=0 r[k]x * n [k] = M -1 k=0 r[k]x * 0 [k] r[k] e -j2π n M k = R[n]. (3) 
The demodulation stage proceeds with two simple operations:

• multiply the received signal by the down-chirp x * 0 [k], also called dechirping,

• compute R[n]
, the DF T of r[k] and select the discrete frequency index a that maximizes R[n]. This way, the dechirp process merges all the signal energy in a unique frequency bin a and can be easily retrieved by taking the magnitude (non-coherent detection) or the real part (coherent detection) of R[n]. The symbol detection is then:

a N COH = arg max n | R[n]| 2 ≡ arg max n | R[n]| (4)
for non-coherent detection, and:

a COH = arg max n { R[n]} (5) 
for coherent detection with {x} denoting the real part of complex number x.

IV. MULTI-PATH CHANNEL ON LORA SIGNAL A. Multi-path channel model

We study in this section the effect of M P C on LoRa signals. The discrete-time channel model used is as follows:

c[k] = K-1 i=0 α i δ[k -k i ] (6) 
with K the number of paths and α i = |α i |e jφi the complex path gain arriving at tap k i . A sufficient condition to consider a channel as frequency selective is k i ≥ 1 e.g. B = 500 kHz, T s = 1/B = 2 µs. This value is a typical path delay seen in outdoor environments (few µs usually). Indeed, the COST 207 channel model, originally developed for Global System for Mobile Communications (GSM ) in [START_REF]Digital land mobile radio communications -COST 207[END_REF], propose typical channel tap settings for various situations such as difficult hilly urban environments, denoted as Bad Urban (BU ) channel. LoRa devices are susceptible to be implemented in this type of environments. Furthermore, GSM bands (GSM 900) are close to LoRa ones (868 MHz in Europe), COST 207 channel is thus relevant in this case. The 12-tap BU channel configuration exhibits many echoes with strong magnitudes and high relative delays. The 9 th tap has for example a delay of 6 µs and a relative power of 0.8. This corresponds for LoRa to have k i = 3 for B = 500 kHz. We expect then that the largest echo k max M , that is, an ISI only between the current and previous symbol over a reduced number of samples. The symbol detector presented herein is very sensitive to significant path delays although ISI depth is small. In this section, we evaluate the performance impact of M P C on LoRa waveforms.

α 0 s[k] α 1 s[k -k 1 ] k 1 0 M -1 a a -
We consider a set of transmitted symbols a l (l = 0, . . . L-1) as:

s[k ] = L-1 l=0 x a l [k mod M ] (7) 
for k = k + lM and k = 0, . . . , M -1. The received signal is then:

r[k ] = c[k ] * s[k ] m[k ] +w[k ]. (8) 
We note σ 2 = σ 2 = σ 2 /2, the variance of real and imaginary part of w[k ]. m[k ] is the received waveform after channel effect.

B. Channel effect on LoRa wave-form

Let us denote r a [k] the received signal plus noise for detecting the current symbol a into its symbol interval for k = 0, . . . , M -1. We suppose that the receiver is synchronized on the first path (i.e. k 0 = 0).

Proposition 1. Performing the down-chirp operation x * 0 [k] to r a [k] yields: ra [k] = x * 0 [k]r a [k] = α 0 e 2jπk a M + K-1 i=1 αi (a)e 2jπk a-k i M + w[k] (9)
where w[k] ∼ CN (0, σ 2 ) and:

αi (ā) = α i x ā[M -k i ] = α i e -2jπki ā M x 0 [M -k i ] (10) 
with:

a a -for k = 0, 1, . . . , k i -1 (previous symbol) a for k = k i , . . . , M -1 (current symbol). (11) 
Proof. For the sake of simplicity, we first consider the twopath channel. The received signal is then r

[k] = α 0 s[k] + α 1 s[k -k 1 ] + w[k].
By focusing in the detection interval k = 0, . . . , M -1 of the current symbol a (Figure 1), the signal on the synchronized path is equal to s[k] = x a [k] and the signal on the delayed path can be expressed as:

s[k -k 1 ] = x a -[M -k 1 + k] for k = 0, . . . , k 1 -1 x a [k -k 1 ] for k = k 1 , . . . , M -1. (12) 
From ( 1) one can verify the property x a [M -n] = x a [-n] for n = 0, . . . , M -1, then the received signal for the detection of the current symbol a could be expressed as:

r a [k] = α 0 x a [k] + α 1 x ā[k -k 1 ] + w[k] ( 13 
)
where ā is defined in [START_REF] Ferré | LoRa physical layer principle and performance analysis[END_REF]. By substituting (1) into ( 13) yields:

r a [k] = α 0 x a [k]+α 1 e j2π( ā M -1 2 + n-k 1 2M ) e -j2πk1( ā M -1 2 + k-k 1 2M ) + w[k]. (14) 
By multiplying the down-chirp to r a [k] we obtain after some basic manipulations:

ra [k] = x * 0 [k]r a [k] = α 0 e j2πk a M + α 1 e -j2πk1( ā M -1 2 - k 1 2M ) e j2πn ā-k 1 M + w[k] = α 0 e j2πk a M + α 1 x ā[-k 1 ]e j2πn ā-k 1 M + w[k] = α 0 e j2πk a M + α1 (ā)e j2πn ā-k 1 M + w[k] (15) 
with

α1 (ā) = α 1 x ā[-k 1 ] = α 1 x ā[M -k 1 ]
. By applying the same development for K > 2 paths, the general expression is straightforward and given in [START_REF] Xhonneux | A low-complexity synchronization scheme for LoRa end nodes[END_REF].

C. DF T of the received down-chirping LoRa signal

The second operation in the demodulation stage is to compute the DF T of ra [k] and select the discrete frequency index that maximizes the DF T magnitude for non-coherent detection, or DF T real part for coherent detection.

Proposition 2. The DF T Ra [n] of ra [k] assuming self-ISI (i.e. a -= a) is: Ra [n] = M α 0 δ[n -a] + M K-1 i=1 αi (a)δ[n -a + k i ] + W [n] (16) for n = 0, 1, . . . , M -1 and W [n] ∼ CN (0, M σ 2 = σ 2
w ). Proof. For a -= a (the previous symbol a -is equal to the current symbol a) and thanks to the property x a [-k] = x a [M -k], channel effect could be seen as a circular convolution and from [START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF] we obtain directly the DF T given in [START_REF] Marquet | Towards an SDR implementation of LoRa: Reverse-engineering, demodulation strategies and assessment over rayleigh channel[END_REF].

In case of self-ISI (a -= a), the DF T output ( 16) is particularly simple and exhibits peaks at index frequencies n = a -k i for i = 0, . . . , K -1. The desired symbol a is located at n = a (k 0 = 0) but additional interference peaks appear due to multiple echoes. Note that even if the self-ISI case occurs only with the probability 1/M for i.i.d. symbols, we have to consider this case to derive theoretical performance results presented in Section V. Now, let us focusing on the more general ISI case.

Proposition 3. The DF T Ra [n] of ra [k] in presence of ISI (i.e. a -= a) is: Ra [n] = M α 0 δ[n -a] + K-1 i=1 (M -k i )α i (a) + M i [a -k i ; a -] δ[n -a + k i ] + M i [n; a -] -M i [n; a] (1 -δ[n -a + k i ]) + W [n] (17) 
with:

M i [n; ā] = αi (ā) ki-1 k=0 e 2jπk/M (ā-ki-n) ( 18 
)
where n is the frequency index, ā = a or ā = a -, and αi (ā) is given in [START_REF] Bernier | Low complexity LoRa frame synchronization for ultra-low power software-defined radios[END_REF].

Proof. See appendix A.

We may note that ISI reduces interference peaks even more when path delay is significant. The peak magnitude is indeed [START_REF] Guo | Time-delay-estimation-liked detection algorithm for lora signals over multipath channels[END_REF] is lesser than M αi (a) in [START_REF] Marquet | Towards an SDR implementation of LoRa: Reverse-engineering, demodulation strategies and assessment over rayleigh channel[END_REF]. Performance is then improved for longer path delay (e.g. k 1 = 11 versus k 1 = 1). Simulations in sections VII-A1 and VII-A2 will highlight this point. In contrast with [START_REF] Marquet | Towards an SDR implementation of LoRa: Reverse-engineering, demodulation strategies and assessment over rayleigh channel[END_REF], we observe also parasitic peaks everywhere outside the index frequencies n = a -k i . However, we will further see that these peaks vanish in presence of noise. Note that for a = a -(17) can be reduced to [START_REF] Marquet | Towards an SDR implementation of LoRa: Reverse-engineering, demodulation strategies and assessment over rayleigh channel[END_REF]. Indeed, the third term in ( 17) cancels out and, in the second term,

(M -k i ) αi (a) (dominant term) for n = a -k i in
M i [a-k i ; a -] equals αi (a)k i . V. LORA SER UNDER MULTI-PATH CHANNEL
This part presents the derivation of SER noted as P e . We will extend the method derived in [START_REF] Ferré | LoRa physical layer principle and performance analysis[END_REF] for the one-path channel to the case of M P C.

A. General expressions of SER for non-coherent and coherent detection schemes

As seen in previous part, peaks magnitude at DF T output are different for the cases a = a -and a = a -. Hence different P e expressions for those two cases need to be derived. Let us denote hypothesis H a , the current symbol is a, and H a -, the previous symbol is a -. According to the law of total probability, P e is expressed as:

P e = M -1 a,a -=0 P[ a = a/H a , H a -] P[H a , H a -]. (19) 
By separating the terms in [START_REF] Afisiadis | LoRa symbol error rate under non-aligned interference[END_REF] for a = a -and a = a - and for i.i.d. symbols (i.e. P[H a , H a -] = 1 M 2 ), P e leads to:

P e = 1 M 2 M -1 a=0 P[ a = a/H a , H a -=a ] (20) 
+ 1 M 2 M -1 a,a -=0 a =a - P[ a = a/H a , H a -=a ]. (21) 
As we will see further (in section V-B) for non-coherent detection scheme, P[ a = a/H a , H a -=a ] = P does not depend on the transmitted symbol

a but P[ a = a/H a , H a -=a ] = P (2)
e (a, a -) depends on a and a -for a = a -. However, we'll consider P

(2) e as a good approximation of P does not depend on a and a -, ∀a = a -. Then, ( 20) and ( 21) can be simplified as:

P e 1 M P (1) e + M -1 M P (2) e . ( 22 
)
Otherwise, for the coherent detection scheme we will further see that P[ a = a/H a , H a -=a ] = P e (a, a -) could be approximated by P

(2) e (a) which depends only on a. We obtain for the coherent case:

P e 1 M 2 
M -1 a=0 P (1) e (a) + (M -1) P (2) e (a) .

Unfortunately, the computational complexity of P e is M times greater for the coherent case than the non-coherent case. However, the numerical evaluation of [START_REF] Temim | An enhanced receiver to decode superposed LoRa-like signals[END_REF], even for M = 2 12 = 4096, doesn't make any computing difficulty.

The evaluation of P e depends on the magnitude for noncoherent detection (or the real part for coherent detection) of the DFT output Ra [n] ∀a, with Ra [n] given in ( 16) and [START_REF] Guo | Time-delay-estimation-liked detection algorithm for lora signals over multipath channels[END_REF] for n = 0, 1, . . . , M -1.

As the SER P (c) e

(for c = 1, 2) could be directly derived from the probability of detection of the correct symbol a at the DF T output, we first compute this probability for a given noise random sample W [a] (at the correct a-peak frequency index).

B. Probability of detection of the correct symbol a for a given noise random sample at the a-peak index From (17) in the ISI case (a -= a), several approximations can be made to Ra [n] regarding n values:

• for n = a Ra [a] = M α 0 + K-1 i=1 (M i [a; a -] -M i [a; a]) I≈0 + W [a] (24) Ra [a] ≈ M α 0 + W [a], (24a) 
• for n = a -k i Ra [a-k i ] = (M -k i )α i (a)+M i [a-k i ; a -] ≈0 + W [a-k i ] (25) Ra [a-k i ] ≈ (M -k i )α i (a) + W [a-k i ], (25a) 
• for n = a and n = a

-k i Ra [n] = K-1 i=1 (M i [n; a -] -M i [n; a]) J≈0 + W [n] (26) Ra [n] ≈ W [n]. (26a) 
Merging Eqs. (24a)-(25a)-(26a) yields finally:

Ra [n] ≈ M α 0 δ[n -a] + K-1 i=1 (M -k i )α i (a)δ[n -a + k i ] + W [n]. (27) 
The approximation

P (2) e ≈ P (2) 
e (a, a -) (non-coherent case) or P e (a, a -) (coherent case) described in section V-A supposes that the quantities I, J and M i [a -k i ; a -] are negligible. These quantities depend on M i [ . ; a] and M i [ . ; a -] that are indeed non-coherent complex exponential sums. These quantities vanish in comparison to the noise W [n] because the noise standard deviation √ M σ is much larger, in particularly for the useful low-SN R range. Moreover, one can verify that M α 0 I in ( 24) and (M - [START_REF]Digital land mobile radio communications -COST 207[END_REF]. Note that for the special case n = a --k i that could occur in [START_REF] Press | Numerical Recipes in C : The Art of Scientific Computing[END_REF], M i [n, a -] doesn't correspond to a sum of non-coherent complex exponential terms and is equal to k i αi (a -). However, this term remains vanish because k i M (small ISI-depth in comparison to the symbol duration) and is small in comparison to the correct a-peak detection of amplitude M .

k i )α i (a) M i [a - k i ; a -] in
From [START_REF] Marquet | Towards an SDR implementation of LoRa: Reverse-engineering, demodulation strategies and assessment over rayleigh channel[END_REF] in the self-ISI case (a -= a), Ra [n] yields:

• for n = a Ra [a] = M α 0 + W [a], (28) 
• for n = a -k i Ra [a -k i ] = M αi (a) + W [a -k i ], (29) 
• for n = a and n = a -

k i Ra [n] = W [n]. (30) 
Notice that thanks to the previous simplifications in the ISI case, the difference between ISI and self-ISI cases appears only at n = a -k i in (25a) and (29) where the term (Mk i ) αi (a) must be considered for a -= a instead of M αi (a) for a -= a. The term αi (a) is given in [START_REF] Bernier | Low complexity LoRa frame synchronization for ultra-low power software-defined radios[END_REF]. A comparison between ( 17) and ( 27) expressions for ISI case is presented in Figure 2 without the noise term W [n] for two different symbols a and a -, and a two-path channel. As seen in the figure, the approximated expression is very close to the exact expression. This approximation depends however on a -and a for a given k i and the deviation may thus vary.

Figure 3 shows the DF T output of the dechirped signal in the case of a non-aligned channel i.e. k i a non-integer value formed by integer and fractional parts of sampling period, denoted as L i = k i and η i = k i -L i , respectively. As the receiver is synchronized on the first received path, k 0 = 0. We consider in the figure a two-path channel with α 0 = 1, α 1 = 0.7 and different echo delay values k 1 = {4, 10.25, 20.5, 30.75}, SF = 7. For figure clarity, we consider self-ISI case (a -= a = 80), each echoes are plotted with different colors and are clearly separated to each other. An oversampling factor of R = 8 is used to simulate η. We may see that the non-aligned echoes have their DF T energy bin at n = a-L 1 spread over neighbor bins. The spread increases as η grows and is maximum when η = ±0.5. δ k1 denotes in the figure the magnitude difference between the peak of interest at n = a = 80 and the echo at n = a -L 1 . The reported values are δ k1=4 ≈ 37.2, δ k1=10.25=30.75 ≈ 47.5 and δ k1=20.5 ≈ 71.3. Lower δ k1 values increase sensitivity of the detector to the noise. We expect then that the aligned channel will reduce performance as the entire echo energy is contained in a single DF T bin and will be more harmful for the detector.

We point out that LoRa uses coded symbols in practice i.e. using Gray and Hamming coding with Code Rate (CR) ranging from 4/5 to 4/8. Only CR = 4/7, 4/8 can correct one bit per codeword. Moreover, Gray coding implies that adjacent symbols differ only from one bit and thanks to the interleaving scheme used in practice [START_REF] Afisiadis | Coded LoRa frame error rate analysis[END_REF], LoRa off-by-one errors will be corrected statistically more often. That is, applied to M P C case, performance depends on the location of parasitic peaks i.e. k i values. When k i = 1 (a situation that may be frequently encountered in practice) and with sufficiently high associated magnitude, the detected peak may be located at n = a -1 frequency index in low SN R conditions, leading to an offby-one error and thus improving the error correction capacity of the decoder.

The correct symbol detection probability given W [a] can be expressed in term of SER as:

P (c) d/W = 1 -P[ a = a/H a , H a -, W [a]] (31) 
where c = 1 for self-ISI case (a -= a), and c = 2 for the general ISI case (a -= a). For the non-coherent detection scheme, a correct detection of a must satisfy the two following conditions on the DF T magnitude (or squared DF T magnitude):

• The K-1 echoes located at a-k i (i = 1, . . . , K-1) must have a lower peak magnitude than the a-peak magnitude, • Noise samples located at n = {a, a -k i } must have a lower peak magnitude than the a-peak magnitude. This leads to:

P (c) d/W = P | Ra [a -k i ]| 2 < | Ra [a]| 2 , i ∈ {1, ..., K -1} and | Ra [n]| 2 < | Ra [a]| 2 , n = {a, a -k 1 , . . . , a -k K-1 } (32) 
Independent events lead to:

P (c) d/W = K-1 i=1 P d (c) i + W [a -k i ] 2 < M α 0 + W [a] 2 M -1 n=0 n =a n =a-ki P W [n] 2 < M α 0 + W [a] 2 (33) 
where:

d (c) i = M αi (a) c = 1 (self-ISI) (M -k i ) αi (a) c = 2 (ISI). (34) 
As noise samples are zero-mean circular Gaussian random variables, | W [n]| 2 follows a centered chi-square χ 2 distribution with 2 degrees of freedom, and |d

(c) i + W [a-k i ]| 2 follows a non-centered chi-square χ 2
N C distribution with 2 degrees of freedom. The non-centrality parameter λ (c) i is:

λ (c) i = 2M |αi| 2 σ 2 c = 1 (self-ISI) 2(M -ki) 2 |αi| 2 M σ 2 c = 2 (ISI). ( 35 
)
The probability of detection given W [a] for ISI and self-ISI cases can be expressed in terms of CDF s, this leads to:

P (c) d/W = K-1 i=1 F χ 2 N C |M α 0 + W [a]| 2 M σ 2 ; λ (c) i F χ 2 |M α 0 + W [a]| 2 M σ 2 M -K . ( 36 
)
Notice that (36) and (35) do not depend on a -(thanks to the approximations (24a), (25a) and (26a)), but they do not depend on a either, then P[ a = a/H a , H a -=a ] and P[ a = a/H a , H a -=a ] do not depend on a and a -(see (31)), which explains the simplification from ( 20)-( 21) to [START_REF] Rachkidy | Decoding superposed LoRa signals[END_REF] for computing P e .

If we consider the DF T magnitude instead of the squared DF T magnitude, P (c) d/W becomes:

P (c) d/W = K-1 i=1 F Ri |M α 0 + W [a]|; v (c) i ; σ √ M F Ri |M α 0 + W [a]|; 0; σ √ M M -K (37)
with F Ri (., v, σ) the Ricean CDF with non-centrality parameter v and deviation σ. | W [n]| follows a centered Ricean distribution (or Rayleigh distribution) and |d

(c) i + W [a -k i ]| follows a non-centered Ricean distribution with non-centrality parameter v (c) i : v (c) i = M |α i | c = 1 (self-ISI) (M -k i )|α i | c = 2 (ISI). ( 38 
)
Note that the results in (36) and (37) are strictly equivalent.

Finally, if we consider the coherent detection scheme, P (c) d/W becomes:

P (c) d/W = K-1 i=1 F N {M α 0 + W [a]}; {d (c) i }; σ √ M F N {M α 0 + W [a]}; 0; σ √ M M -K (39) 
with F N (., µ, σ) the normal CDF with µ-mean and σstandard deviation parameters. One may see that {d (c) i } depends on the transmitted symbol a. We must use [START_REF] Temim | An enhanced receiver to decode superposed LoRa-like signals[END_REF] in order to compute P e . Each possible symbol a must be taken into account, but this increases the computational complexity by a factor of M in ( 23) in comparison to [START_REF] Rachkidy | Decoding superposed LoRa signals[END_REF] used for the non-coherent case.

C. Expectation evaluation via Gauss-Hermite integration

Equations ( 36), (37) and (39) are used here for only one noise realisation W [a]. To obtain P (c) e , a mathematical expectation over W [a] should be performed:

P (c) e = E[g (c) (w)] (40) 
where g (c) (w) = 1 -P (c) d/W (w) with P (c) d/W (w) given by (36) or (37) for the non-coherent case (and (39) for the coherent case) by replacing W [a] by w. Note that to simplify notation, the hat symbol over P e is omitted in (40) for c = 2 (see [START_REF] Rachkidy | Decoding superposed LoRa signals[END_REF] or ( 23)). In [START_REF] Ferré | LoRa physical layer principle and performance analysis[END_REF], the authors propose to estimate (40) by using a Monte-Carlo approach. We propose instead to use the Gauss-Hermite procedure [START_REF] Press | Numerical Recipes in C : The Art of Scientific Computing[END_REF] to efficiently compute numerically integral (40). We obtain:

P (c) e = 1 πσ 2 w C g (c) (w)e - |w| 2 σ 2 w dw = 1 π C g (c) (σ w w)e -|w| 2 dw ≈ 1 π N n,m=1 g (c) σ √ M (w n + jw m ) p n p m (41) 
where w i and p i for i = 1, . . . N are respectively the nodes (abscissa) and weights of the N -points Gauss-Hermite quadrature rules. To properly compute (41), N must be sufficiently large (e.g. N = 15).

VI. LORA USER INTERFERENCE

In this section, we derive based on previous developments a closed-form expression of LoRa SER in the case of two LoRa users colliding in AW GN channel. 

a 1 a 2 a - 1 a - 2 a + 1 a + 2 τ α 0 s[k] α 1 s (I) [k -τ ]
n a 1 a 2 -τ a - 2 -τ M ατ (a 2 )(M -τ ) ατ a - 2 τ R[n]

A. Interference impact on DF T

The model is slightly different from the M P C model and is presented in Figure 4. On the contrary of M P C, the delay of the interferer is not constrained to small values and is equally spread over the symbol duration i.e. τ ∈ {0, 1, . . . , M -1}. By analogy with M P C model, the user interference model corresponds to: K = 2, with path delays k 0 = 0 and k 1 = τ , and path gains α 0 = 1 and α 1 def = α τ = √ P I e jφ . Without loss of generality, we have considered normalized path gains over α 0 , then φ corresponds to the phase difference between second and first paths and is considered uniformly distributed over [0, 2π[. The interferer signal power is set with respect to Signal-to-Interference Ratio (SIR): SIR = 1/P I . The only difference between the two models appears in the ISI term: [a - 1 , a 1 ] (with a 1 = a the current symbol detection) for M P C model while it corresponds to [a - 2 , a 2 ] (with a 2 = a 1 or a 2 = a 1 ) for the interference model. This difference with the interference symbol (i.e. a 2 = a 1 ) will exhibit more complexity in the SER derivation for the LoRa user interference. The non-aligned interference case i.e. τ a real value in [0, M -1] will have similar effect as non-aligned M P C (see Figure 3).

With similar manipulations as seen previously the received LoRa signal after dechirp process and DF T is expressed as (42) with:

M τ [n; a] = ατ (a) τ -1 k=0 e 2jπk/M (a-τ -n) ( 43 
)
and:

ατ (a) = P I e jφ e -2jπτ a M x 0 [M -τ ]. ( 44 
)
Note that in comparison with ( 17), (42) exhibits the new peak amplitude τ ατ (a - 2 ) at n = a - 2 -τ because for τ large enough the latter quantity isn't vanishing in comparison to M at the correct a 1 -peak. For a - 2 = a 2 , (42) simplifies to:

R[n] = M δ[n -a 1 ] + M ατ (a 2 )δ[n -a 2 + τ ]. (45) 
Considering the special case τ = 0 to (45) yields:

R[n] = M δ[n -a 1 ] + M α τ δ[n -a 2 ]. (46) 
Depending on a 1 , a - 2 and a 2 values, different situations are possible as depicted in Figures 5 and6, leading to the following five cases:

• A i cases in Figure 5 (a - 2 = a 2 ): -A 1 {a - 2 = a 2 , a 2 -τ = a 1 and a - 2 -τ = a 1 } -A 2 {a - 2 = a 2 , a 2 -τ = a 1 and a - 2 -τ = a 1 } → additive interference -A 3 {a - 2 = a 2 , a 2 -τ = a 1 and a - 2 -τ = a 1 } → additive interference • B i cases in Figure 6 (a - 2 = a 2 ): -B 1 {a - 2 = a 2 and a 2 -τ = a 1 } -B 2 {a - 2 = a 2 and a 2 -τ = a 1 } → additive interference
The additive interference illustrated in Figure 5 for (a - 2 = a 2 ) and Figure 6 (a - 2 = a 2 ) may be constructive or destructive depending on φ in (44) and performance will be then improved or reduced.

By considering M τ [n ; a ] terms in (42) vanishing, the approximated SER can be derived as a similar way as for the M P C model. However additive interference cases are new and have to be considered.

B. Approximated expressions of SER under LoRa interference for non-coherent detection scheme

It is straightforward to see that the approximated SER, noted P (I) e , under LoRa interference depends on a 1 , a - 2 , a 2 symbol values and especially if additive interference is present. Similarly to [START_REF] Afisiadis | LoRa symbol error rate under non-aligned interference[END_REF], P (I) e is expressed as: with:

P (I) e = 1 M 3 M -1 a1,a - 2 ,a2=0 P[ a 1 = a 1 /H a1 , H a -
M 3 P (A) e = M (M -1)(M -2)P (A1) e + (M -1) M -1 a1=0 P (A2) e (a 1 ) + (M -1) M -1 a1=0 P (A3) e (a 1 ) (49) 
and:

M 3 P (B) e =M (M -1)P (B1) e + M -1 a1=0 P (B2) e (a 1 ). (50) 
The assumption M τ [n ; a ] ≈ 0 allows us to avoid the nested summations over a 2 and a - 2 , which reduces drastically the complexity of P (I) e . However the interference model brings more complexity in comparison with M P C model because the peak-value at a 1 is reinforced for a 1 = a 2 -τ or a 1 = a - 2 -τ and a summation over a 1 is required in A 2 , A 3 and B 2 cases as seen in ( 49) and (50). For example, for the B 2 case, the peak-value at a 1 is equal to M for a 1 = a 2 -τ while for a 1 = a 2 -τ it is equal to M ατ (a 1 + τ ) + M , which depends on a 1 .

For τ = 0, only the B i cases have to be considered but the peak-value at a 1 of the additive interference B 2 case is M (1+ α τ ), which does not depend on a 1 . Therefore P (51)

By following the same development used for M P C, the g (c) -functions in (41) used to derive SER are obtained via:

• g (Ci) (σ

√ M w) = 1 -P (Ci) d/W (σ √ M w) for C i = {A 1 , B 2 }, • g (Ci) (a 1 , σ √ M w) = 1 -P (Ci) d/W (a 1 , σ √ M w) for C i = {A 2 , A 3 , B 2 }, with P (Ci) d/W (σ √ M w) or P (Ci) d/W (a 1 , σ √ M w) equals to P (Ci) d/W
given in (52)-(52d). Note that for C i = {A 2 , A 3 , B 2 } the g (c)functions depend on a 1 for the evaluation of

P (Ci) e (a 1 ). R[n] = M δ[n -a 1 ] + M τ [n; a - 2 ] -M τ [n; a 2 ] (1 -δ[n -a 2 + τ ])(1 -δ[n -a - 2 + τ ]) + (M -τ )α τ (a 2 ) + M τ [a 2 -τ ; a - 2 ] δ[n -a 2 + τ ] + τ ατ (a - 2 ) -M τ [a - 2 -τ ; a 2 ] δ[n -a - 2 + τ ] (42) terms (i.e. 
M -1

a=0 P (Ci) e (a) = 2 SF -2 3 a=0 P (Ci) e (a) for C i = {A 2 , A 3 , B 2 }).
From the theoretical approximated SER, we can derive interesting results about τ -and φ-influence on performance.

1) Influence of τ : SER performance in terms of τ is symmetric about the axis τ = M/2 as shown in proposition 5. where only the term ατ (a 1 + τ ) in (53c) depends on τ . One can verify ατ (a 2 ) = √ P I e jφ e -2jπτ a2/M x 0 [M -τ ] and αM-τ (a 2 ) = √ P I e jφ e 2jπτ a2/M x 0 [M -τ ] with a 2 = a 1 + τ . The only difference is the clockwise versus anticlockwise rotation in the complex exponential, but for a 2 in the set {0, 1, . . . , M -1}, the direction of rotation doesn't change the set of values of ατ (a 2 ) or αM-τ (a 2 ). By shifting the set by τ (i.e. {τ, τ + 1, . . . , τ + M -1}) it gives the same set of values (it just produces a circular shift). As the evaluation of P The results for M -τ are then equivalent to those obtained with τ .

2) Influence of φ: Contrary to performance of the noncoherent detection for the M P C model, performance for the interference model depends on φ because the additive interference terms in (53a), (53b) and (53c) depend on φ via ατ (a) given in (44). However, its influence for LoRa modulation with SF in {7, 8, . . .} has a very low impact on performance. By examining the complex exponential term of ατ (a 1 + τ ) with respect to a 1 , the possible angles ψ τ (m) of ατ (a 1 + τ ) are:

ψ τ (m) = 2π m M 1 + θ τ + φ (55) 
for m = 0, . . . , M 1 -1 where θ τ is the angle of x 0 [M -τ ] and M 1 = M/2 n for τ expressed as τ = k2 n with k odd (see proposition 4). By replacing φ by φ+2π/M 1 in (55), we obtain the same equivalent set of ατ (a 1 + τ ) for a 1 = 0, . . . , M -1, which involves SER performance is 2π M1 -periodic in term of φ. For τ an odd number, M 1 = M = 2 SF the domain of study of φ becomes very small and its influence tends to be negligible for the typical LoRa SF ≥ 7 values.

A fine analysis based on the variation of the minimum distance (d min ) of (53a)-(53c) with respect to φ allows us to obtain the two extreme φ values: {φ min , φ max } where φ min leads to the worst performance (i.e. min φ d min ), and φ max to the best performance (i.e. max φ d min ). For the sake of brevity and clarity, we give only the results on the φ min and φ max values. For τ even: φ min = 0 and φ max = π/M 1 , and for τ odd: φ min = π/M and φ max = 0. Simulation part (Section VII-B) will confirm that φ has a very low influence on SER except at τ = M/2 where a significant difference between φ = π/M 1 = π/2 and φ = 0 can be observed.

3) Application of the study about φ on the M P C model: We have shown in subsection V-B that theoretical performance for the non-coherent detection is independent of the phase φ i of the complex path gain α i because SER performance depends only on the modulus |α i |. However for the coherent detection scheme, it depends on {α τ (a)} in (34) where the phase φ i is present. By applying a similar analysis as VI-B2 about the φ influence for the interference model, we obtain that the domain of study for the variation of φ i is limited at [0, π/M 1 ]. For the M P C, we supposed τ M (contrary to the interference model) then M 1 is large enough for even τ and M 1 = M for odd τ . The domain of study [0, π/M 1 ] tends to 0 for the typical LoRa SF ≥ 7 values. We conclude that φ i has a very low impact on coherent performance for the M P C model, which is confirmed by simulations.

VII. SIMULATION RESULTS

We present in this section several simulation results to validate theoretical SER performance set forth herein. The signalto-noise ratio (SN R) presented in the SER plots is defined as 1/σ 2 . Simulation results are done with both coherent and non-coherent detection schemes. Two examples of M P C are considered, and LoRa interference is investigated.

Simulations are performed by using the discrete-time M P C or the aligned interference model, and by applying the DF T on the received dechirping signal, which is corresponding to the exact DF T expressions derived in [START_REF] Guo | Time-delay-estimation-liked detection algorithm for lora signals over multipath channels[END_REF] and (42) for both scenarios, whereas for the theoretical assessment the M i [., .] terms in [START_REF] Guo | Time-delay-estimation-liked detection algorithm for lora signals over multipath channels[END_REF] and (42) are neglected.

A. Performance evaluation under MPC 1) Numerical validation: We first consider the two-path (K = 2) channel C 1 (z) = 1 + α 1 z -k1 . The g (c) -function in (41) becomes:

g (c) (σ √ M w) = 1 -F χ 2 N C 2| √ M + σw| 2 σ 2 ; λ (c) 1 F χ 2 2| √ M + σw| 2 σ 2 M -2 (56) 
with λ (c) 1

given in (35). We have: λ

(1) 1 = 2M |α 1 | 2 /σ 2 and λ (2) 1 = 2(M -k 1 ) 2 |α 1 | 2 /(M σ 2 )
. The numerical evaluation of SER is obtained by using the Gauss-Hermite procedure (41) with (56) for c = 1 and c = 2, and then by using [START_REF] Rachkidy | Decoding superposed LoRa signals[END_REF].

Figure 7 compares simulation and theoretical SER results for both non-coherent and coherent schemes. We consider here SF = 7, two different delays and path gains, k 1 ∈ {1, 10} and α 1 ∈ {0.7, 0.9}, respectively. In the figure, markers and line styles indicate respectively delay and path gain values. Green curves indicate simulations. From the figure, we may see that simulation results fit very well with theoretical SER expression for both coherent and non-coherent cases. The very slight bias is due to simplifications done in theoretical SER computation process. This confirms good adequacy between theoretical and simulation results. It is worth noting in all rigor, performance depends on the phase φ i of the path gain α i as shown in [START_REF] Guo | Time-delay-estimation-liked detection algorithm for lora signals over multipath channels[END_REF] where φ i appears also in the simplified terms M i [.; .]. However, by simplifying the M i [.; .] terms to derived the theoretical expressions, the non-coherent detection performance depend only of |α i |, and for the coherent case, we have shown in VI-B3 that the influence of φ i is negligible. We have considered the two extreme cases φ = 0 and φ = π/M 1 (see VI-B2) for the angle of α 1 in simulations, no difference was observed in the Symbol Error Rate (SER) (for the sake of clarity only φ = 0 is presented).

2) Performance degradation for the two-path channel: In this paragraph we quantify the performance degradation due to the presence of one echo at different delays and amplitudes in comparison with the ideal one-path channel.

Figure 8 shows theoretical SER results for SF = 7 and channel C 1 (z) with α 1 ∈ {0, 0.2, 0.4, 0.6, 0.8, 0.9} and k 1 ∈ {1, 3, 5, 7, 9, 11}. α 1 = 0 corresponds to the one-path channel.

We note that performance loss is significant for α 1 ≥ 0.4. This reveals that the more the echo is far from direct path (i.e. k 1 bigger), the better performance are, confirming prediction from [START_REF] Guo | Time-delay-estimation-liked detection algorithm for lora signals over multipath channels[END_REF]. When α 1 ≤ 0.4, k 1 has a negligible impact on SER. We highlight that for α 1 = {0.8, 0.9} and k 1 = 11, performance converges towards those for k 1 = 9. These values are confirmed via SER simulations (not shown in the figure for clarity). At high SN R and k 1 large enough (e.g. k 1 = 11), an error when a -= a exhibits the interference peak value M α1 (a) at frequency index a -k 1 (value required for P

e ) whereas for a -= a the interference peak value at ak 1 is smaller and equals to (M -k 1 ) α1 (a) (value required Fig. 8. α 1 and k 1 channel parameters influence on theoretical SER performance with SF = 7 over the two-path channel for α 1 = {0, 0.2, 0.4, 0.6, 0.8, 0.9} and k 1 = {1, 3, 5, 7, 9, 11}.

for P

(2) e ). Even if the event a -= a is rarer, P

(1) e is much higher than P

e , and becomes a dominant term in [START_REF] Rachkidy | Decoding superposed LoRa signals[END_REF] as shown the changing behavior in Figure 8. We may see that the bandwidth parameter B has also impact on SER performance. For example, let us consider a two-path channel with an echo fixed at 8µs. This represents a tap delay k 1 = {4, 2, 1} for B = {500, 250, 125} kHz, respectively. According to Figure 8, we have seen that for a fixed echo path gain, performance is better if its delay increases. Therefore, we expect to have slightly better performance for higher bandwidths.

Figure 9 shows theoretical SER for different SF with k 1 = 1 at different path gains α 1 . Performance increases with higher SF . Indeed, for α 1 = 0 (ideal one-path channel), performance gain is about 3.5 dB when increasing SF by 1. We observe the same gain (around 3.5 dB) for each amplitude α 1 = 0 when increasing SF by 1. α 1 has obviously a huge impact leading to a performance loss about 12 dB (measured at SER = 10 -8 ) from ρ = 0 to ρ = 0.8, whatever SF is. Table I gives the performance losses in dB (at SER = 10 -8 ) for a given SF between two arbitrary values of α 1 . We globally observe the same performance loss whatever SF is. We conclude that SF is a crucial parameter to make LoRa resilient to multipath environments, that is coherent with conclusions drawn in [START_REF] Staniec | Lora performance under variable interference and heavy-multipath conditions[END_REF]. 3) Performance evaluation in the exponential decay channel: We consider now the exponential decay channel C 2 (z) = K-1 i=0 ρ i z -i . The maximum path number K is determined by satisfying the condition |ρ| K ≤ 0.2. The g (c) -function in (41) used for SER evaluation becomes:

g (c) (σ √ M w) = 1 - K-1 i=1 F χ 2 N C 2| √ M + σw| 2 σ 2 ; λ (c) i F χ 2 2| √ M + σw| 2 σ 2 M -K (57) with λ (1) i = 2M |α i | 2 /σ 2 = 2M |ρ| 2i /σ 2 and λ (2) i = 2(M - i) 2 |ρ| 2i /(σ 2 M ) for i = 1, . . . , K -1.
Performance over channel C 2 (z) are very close to the channel C 1 (z) one's presented in Figure 9, which seems to say that only the first most significant path degrades SER performance. For ρ ≤ 0.6 differences between C 1 (z) and C 2 (z) are negligible whatever SF . However, for ρ = {0.7, 0.8}, Figure 10 focuses on the SER range where we could observe a difference between the two channels. We observe a slight additional degradation with C 2 (z) whatever SF (only SF = {7, 10} are considered in the figure).

B. Performance evaluation under LoRa interference

We evaluate LoRa performance of the non-coherent detection scheme in presence of LoRa interference (with same SF ) in function of the interferer delay τ for SIR dB = 3, SF = {8, 10, 12} and different SN R dB values.

We consider multiple even τ values. The τ -range is given by τ = {0, τ step , 2τ step , 3τ step , . . . , (2 5 -1)τ step = M -τ step } with the τ -step value at τ step = 2 SF -5 . Notice that 16τ step = 2 SF -1 = M/2.

The channel phase φ of the interferer user is chosen at φ = φ min = 0 and φ = φ max = π/M 1 , that respectively corresponds to the unfavorable and the favorable performance, for even τ (see paragraph VI-B2). Note that M 1 = M/2 n with τ in the following form τ = k2 n (odd k). Theoretical SER is compared to simulated SER in Figure 11 for φ = φ max and φ = φ min . We observe a significant difference for theoretical SER (Th. φ max versus Th. φ min ) or simulated SER (Sim. φ max vs. Sim. φ min ) only at τ = M/2. These results confirm that φ has no influence on SER except for the special case τ = M/2 as it was discussed in paragraph VI-B2. It is worth noting that progressively increasing SF values reduces the bias between our theoretical and simulated results for τ around M/2 (Th. vs. Sim. for φ min or Th. vs. Sim. for φ max ).

Otherwise, from τ = τ step (or from its symmetric value, τ = M -τ step ) to τ = M/2, we observe in Figure 11 a big variation in term of SER. The SER variation is bigger as SF increases.

The authors in [START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF] have already derived an approximated LoRa interference expression in aligned context (integer τ ). They did not compute SER performance for a specific τ but rather an average performance over τ ∈ {0, 1, . . . , M/2} with symmetric performance assumed (see proposition 5). This implies the need to modify [13, eq. ( 28)] for a given τ . The interference only error probability [13, eq. ( 28)] becomes then P (I)

e (I) ≈ 1 M M -1 a1=0 Q( 1-U0(a1,τ ) σ √ 2
) for τ ∈ {0, 1, . . . , M/2}. Q(.) denotes the Q-function and U 0 given by [13, eq. (21)]. Their final SER expression is P From Figure 11, theoretical performance of [START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF] at fixed τ agrees with our SER except for τ around M/2. The reason probably comes from the fine analysis of the additive interference terms in (53a)-(53c) where performance loss could rise at some particular values of τ like τ = M/2. Their theoretical developments do not take into account such a behavior. However, the computational complexity of SER derived in [START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF] is very low in comparison to our results. ) and simulation (Sim.) performance comparison of LoRa interference versus even τ values for SIR dB = 3. The extreme phase values φ max = π/M 1 and φ min = 0 are considered for our theoretical (Th.) and simulated (Sim.) results. Theoretical SER of [START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF] is also reported for fixed τ values. For comparison with LoRa modulation over AW GN , SER is 0.9781 ×10 -5 , 0.4788 ×10 -5 and 0.1792 ×10 -5 for SF = 8, 10 and 12, respectively. Fig. 12. Theoretical BER comparison of LoRa interference for worst and best τ values (τ = 1 and τ = M/2 -1, respectively). SF = {7, 8, 9} and SIR dB = 6. Theoretical average Theoretical BER of [START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF] is also reported.

Nevertheless the computing time to evaluate our expressions remains reasonable.

Figure 12 highlights the extreme bounds of Bit Error Rate (BER) BER ≈ SER/2 performance reachable depending on τ for SF ∈ {7, 8, 9}. The average BER over τ in [START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF]Figure 3] is also reported in the figure. It's worth noting that τ has a significant impact on performance when compared to the average performance over τ . As seen in Figure 11 best performance is obtained at τ = M/2 -1. The less τ (τ < M/2) the worse performance. This can be seen as lower and upper performance bounds of results presented in [START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF]. At low SN R we observe a little bias for [START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF] because the average
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 2 Fig. 2. Illustration of demodulated LoRa symbol (non-coherent detection) for SF = 7, a = 80, a -= 42 and two-path channel with k 1 = 6, α 0 = 1 and α 1 = 0.7.

Fig. 3 .

 3 Fig. 3. Illustration of demodulated LoRa symbol (non-coherent detection) with two-path non-aligned channel for SF = 7, a -= a = 80, α 0 = 1, α 1 = 0.7 and k 1 = {4, 10.25, 20.5, 30.75}.

Fig. 4 .

 4 Fig.[START_REF] Knight | Decoding LoRa: Realizing a modern LPWAN with SDR[END_REF]. LoRa user interference illustration. ISI with symbols a - 2 and a 2 from the interfer signal s(I) [k] appears in the detection interval of the desired current symbol a 1 .

Fig. 5 .

 5 Fig. 5. LoRa DF T for a - 2 = a 2 . Colored arrows indicate additive interference A 2 and A 3 cases.

Fig. 6 .

 6 Fig. 6. LoRa DF T for a - 2 = a 2 . Arrow indicates the additive interference B 2 case.
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 5 The approximated SER expression P (I) e in (48) is invariant by changing τ by M -τ . Proof. P (B1) e doesn't depend on τ (see (52c)). It is straightforward to see from (52) that P (A1) e does not change if considering τ or M -τ delays. P

  performs a sum over all symbols a 1 in (50), the result of for a given delay path τ or M -τ leads to the same result. It remains to examine the A 2 and A 3 cases. From (52a) and (52b), by changing τ by M -τ leads to permute P (A2) d/W to P (A3) d/W except for the clockwise versus anticlockwise rotation of ατ (a 1 +τ ) in (53a) and (53b). Hence, by changing τ by M -τ in the evaluation of P , and vice versa.

Fig. 7 .

 7 Fig. 7. Theoretical (Th.) and simulation (Sim.) SER performance comparison over the two-path channel for non-coherent and coherent schemes. SF = 7, α 1 = {0.7, 0.9} and k 1 = {1, 10}.

SF

  

Fig. 9 .

 9 Fig.9. α 1 and SF parameters influence on theoretical SER performance over the two-path channel for SF = {7, 8, 9, 10} with k 1 = 1 and α 1 = {0, 0.4, 0.8}. Legend: a different marker for each path gain α 1 , a different color for each SF , and thick lines for the one-path channel (α 1 = 0).

Fig. 10 .

 10 Fig. 10. Theoretical SER comparison between the two-path channel (C1) an the exponentially decreasing channel (C2) for SF = {7, 10} and ρ = {0.7, 0.8}.

  the AW GN only error probability derived in[14, eq. (21)].

Fig. 11 .

 11 Fig.11. Theoretical (Th.) and simulation (Sim.) performance comparison of LoRa interference versus even τ values for SIR dB = 3. The extreme phase values φ max = π/M 1 and φ min = 0 are considered for our theoretical (Th.) and simulated (Sim.) results. Theoretical SER of[START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF] is also reported for fixed τ values. For comparison with LoRa modulation over AW GN , SER is 0.9781 ×10 -5 , 0.4788 ×10 -5 and 0.1792 ×10 -5 for SF = 8, 10 and 12, respectively.

TABLE I PERFORMANCE

 I LOSS IN DB ∆ i (MEASURED VALUES) AT SER EQUALS TO 10 -8 BETWEEN α 1 = x → y FOR A GIVEN SF . TO FIND THE CUMULATIVE LOSS BETWEEN 2 VALUES, LOSSES HAVE TO BE ADDED.

Note that for ατ (a 1 + τ ), the set of symbols is shifted by τ but it leads to the same set of values. It just produces a circular shift.
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The detection probabilities P (Ci) d/W used in the g (c) -functions for non coherent detection scheme are summarized below:

M -3 (52)

with:

and:

Note that for the special case τ = 0, d

Computational complexity of P (I) e

for τ = 0 comes from the summations over all the possible symbols a 1 in (49) and (50). However for even τ values, these summations can be significantly reduced as shown in proposition 4. Proposition 4. Complexity of performance evaluation in (48) can be reduced by a factor of 2 n in case of delay τ in the following form: τ = k2 n with k an odd number and n an integer greater than 0 (n ∈ {1, . . . , SF -1}).

Proof. To reduce complexity we can consider only the distinct values with respect to LoRa symbol a 1 to perform the summations P (a 1 ) with M 1 = M/2 n = 2 SF -n . The complexity is then reduced by a factor of 2 n . For example, for τ = 3 × 2 5 = 96 and SF = 7, the summations reduce to 2 SF /2 5 = 4

BER is slightly higher than the worst performance at τ = 1. Simulation (not plotted for clarity) confirms the convergence of the lines at low SN R for τ = 1 and τ = M/2 -1.

VIII. CONCLUSION

In this paper, a deep analysis of LoRa performance in M P C is proposed. An approximate closed-form of theoretical SER for both coherent and non coherent detection schemes is derived and validated by simulation results. This analysis highlights several significant LoRa behaviors under M P C. LoRa seems to be sensitive only to the first path of the exponential decay channel with reduced downside on performance for the other lower path gains. This enables simple LoRa equalization schemes considering only a reduced number of channel paths (or the strongest path gain) to estimate. For a path gain with |α| ≥ 0.4, the performance degradation could be very significant in comparison to the AW GN performance (e.g. performance loss about 12 dB for |α| = 0.8 whatever SF ). Otherwise, at fixed path gain, the less is the channel delay spread, the worse the performance. This effect of delay spread vanishes for |α| ≤ 0.4.

As stated in the manuscript, performance evaluation is performed in the aligned context. Our SER results can be seen as pessimistic results in the sens that if time arrival of the echo is not multiple of the sampling rate, the echo energy is spread over neighbor DF T bins that implies a lower parasitic peak energy in the most significant DF T bin. As we observe performance is dominated by the strongest DF T bin (with the exponential decay channel), an equivalent performance evaluation could be deduced by considering only the most significant real peak amplitude in the DF T bin. If several parasitic peaks with equal (or near-equal) amplitudes appear in the DF T bins (e.g. time of arrival at half of the sample period), these values have to be considered in our analytical SER expression to evaluate performance.

The article showed that theoretical developments for M P C case can be applied to derive the aligned LoRa interference case, showing interesting results: the performance gap between SER for τ around the half of symbol interval and for small τ value could be significant, and this difference is bigger as SF increases. Performance degradation is extreme when the interference signal and the signal of interest arrive at the same time. This extends in a complementary manner [START_REF] Elshabrawy | Analysis of BER and coverage performance of LoRa modulation under same spreading factor interference[END_REF] findings by adding SER deviation as a function of τ to the average performance.

We also show that the influence of the channel phase φ of the LoRa interferer vanishes on performance for the typical SF ≥ 7 values. Only for the particular τ value at M/2 could exhibit SER variation depending of φ.

The authors from [START_REF]On the error rate of the LoRa modulation with interference[END_REF] took into account the non-aligned case for interference scenario and derived approximated SER with performance averaged on τ . It may be interesting to extend our results by comparing [START_REF]On the error rate of the LoRa modulation with interference[END_REF] at fixed τ values and also consider M P C study.

APPENDIX A OUTPUT DF T IN PRESENCE OF ISI

From (9), the DF T of ra [k] is equal to:

with:

for n = 0, 1, . . . , M -1. The first term in ( 58) is equal to M δ[a -n] because of the following identity:

The second term S i [n; a] in (58) for a = a -or a = a (depending of the time index k in (59)) can be decomposed as:

Depending on the values of n, S i [n; a] leads to the two following results:

• for n = a -k i and thanks to (60), we obtain:

Equations ( 58)-(64) show the result summarized in [START_REF] Guo | Time-delay-estimation-liked detection algorithm for lora signals over multipath channels[END_REF].