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ABSTRACT
Ontology enrichment is a key task in the area of the Semantic Web.
It allows directly to enrich the links between entities of the semantic
Web and thus adding information. Our research area is part of this
objective with the search for axioms using an evolutionary process.
We propose an adaptation resulting from the coupling between
evolutionary algorithms and the theory of possibilities in order to
allow the research of axioms of subsumption composed of complex
classes.
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1 INTRODUCTION
Over time, the semanticWeb has seen major improvements, notably
around the development of LinkedOpenData (LOD) which can be
seen as a database of related entities. The data is expressed through
the Resource Description Framework (RDF) format, which is a
Word Wide Web Consortium (W3C) standard. The ontologies are
used to describe the representation of our knowledge graph and the
Web Ontology Language (OWL) format is a language for building
these representations and has become aW3C standard. In our work,
we work with the OWL 2 format which is also standardised.

Ontology Learning has an important place in the development
of the LOD as it allows the enrichment of ontologies through a set
of research domains (see Section 2). Continuous learning is partic-
ularly important when using dynamic data sources where a large
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amount of data is subject to real-time changes. Therefore, continu-
ous learning and inference of new knowledge, through consistency
evaluation, seems to be a major issue in ontology enrichment. De-
spite the massive development of knowledge and LOD with the
purpose of information extraction and formatting systems, there is
a certain lack of information in ontologies and the quality of infor-
mation present in the semantic Web is not guaranteed. Indeed, if we
take one of the reference bases of the LOD, namely DBPedia, which
is a knowledge base constructed based on information extracted
fromWikipedia, it presents some shortcomings in terms of informa-
tion, especially in the axiom sets of the ontology. Our research area
focuses on Axiom Learning [5], which is a bottom-up approach,
using learning algorithms and relying on instances from several
existing knowledge and information resources to discover axioms.
Axiom learning algorithms can help reduce the overall cost of ax-
iom extraction and ontology construction in general. To this aim,
we use an evolutionary approach, namely Grammatical Evolu-
tion [3]. Using a predefined grammar in BNF format (see Section 2),
we can generate candidate axioms, formed according to the syntax
defined in the BNF file, at random. Of course, this simple process
is not sufficient to obtain an axiom that is meaningful. For this
purpose, we use an evolutionary process based on this grammar to
allow the generation of random candidate axioms, which together
form a population, and the evaluation of this population using a
fitness function, which we aim to maximise. This process, which
iterates according to the given parameters, allows us to obtain from
initially random candidate axioms, new candidate axioms that are
more and more consistent, i.e., which present a non-zero fitness,
and these individuals will be taken as model by the algorithm to
generate a new population of axioms which inherit traits from the
best individuals. In order to be able to evaluate candidate axioms
satisfactorily, we base our heuristic on possibility theory [6] to
calculate the possibility and necessity for a given axiom. Indeed,
this theory allows us to overcome the lack of information in the
datasets and the unguaranteed quality which, with a probabilistic
heuristic, has a negative impact on the results.

In this paper, we will focus on the extraction of complex class
subsumption axioms. In particular, we will be interested in complex
classes constructed with relational operators of existential quantifi-
cation or value restriction, like ∃𝑟 .𝐶 and ∀𝑟 .𝐶 where C is an atomic
class and r is a property. Before discussing the tools used and the
experimental protocol, we will briefly review the different concepts
of the semantic Web, and discuss the evolutionary algorithm used
for mining these axioms. Finally, we present the results followed
by an analysis and discussion.
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2 PRELIMINARIES
2.1 Web of Data
While the semantic Web allows the sharing and distribution of
data in the form of knowledge across the Web, one of its objectives
is also to allow intelligent agents to infer new knowledge from
the knowledge already acquired from the Web. The RDF standard
defined earlier allows for the linking of data to each other, especially
in distribution but also in form, while allowing for accessibility. RDF
statements are structured as triples of the form ⟨Subject Predicate
Object⟩, where each part of the triple consists of an IRI, and the
object can also consist of a literal. The framework is based on the
XML format, a tagging language that allows, among other things, a
great flexibility concerning the encoding of data. Each abstract or
physical resource is accessible through its respective International
Resource Identifier (IRI) in order to comply with data accessibility
constraints. The query language for manipulating RDF data across
the net (through a given endpoint) is the SPARQL language, which
is a W3C recommendation.

As discussed in [2], the term ontology has several definitions
from both a philosophical and a computational perspective.

An ontology is a formal and explicit specification of a
shared conceptualization

is one of the most relevant definitions discussed, where the con-
ceptualization are an abstract representation of the knowledge
of universe under consideration, also called the universe of dis-
course, in which concepts and entities are represented, as well as
the meaning of their relations in this same universe.

In the context of our research, we consider an Ontology (O) as
a quadruple

O = ⟨C,R,I,A⟩,
where C is a set of concepts, R is a set of relations, I is a set of
instances, i.e. instances, in which two or more concepts are related
to each other, A is a set of axioms.

In order to respond to the enrichment of knowledge, we need to
be able to translate information already present in terms of meaning
and to be able to evaluate the quality of this information before
deducing new information. These sets of objectives are part of
Ontology Learning.

This area includes different distinct sub-areas [7] for continuous
enrichment of ontology processes such as learning ontologies from
text, which is part of theNatural Language Processing area. Learning
schema axioms, such as definitions of classes, from ontologies and
instances data is a research area of the Concept Learning, or the use
of crowdsourcing which is a purely automatic approach. The area
on which we focus our efforts is the extraction of information from
RDF graphs and therefore from already existing data but which
may present both quantity and quality shortcomings.

2.2 OWL 2 Axioms
OWL 2 provides for 32 types of axioms [1], divided in 6 categories:

• Class expression axioms (SubClassOf, DisjointClasses, . . . )
• Object property expression axioms (SubObjectPropertyOf,
DisjointObjectProperties, . . . )

• Data property expression axioms (SubDataPropertyOf,
DisjointDataProperties, . . . )

• Datatype definition axioms (DatatypeDefinition)
• Keys axioms (HasKey)
• Assertion axioms (ClassAssertion, ObjectPropertyAsser-
tion)

We have chosen to work with OWL 2 axioms in order to satisfy
two objectives:

• Extracting new knowledge from an existing knowledge base
expressed in RDF.

• Injecting such extracted knowledge into an ontology in order
to be able to use it to infer its logical consequences.

The format is appropriate for these two distinct purposes as it is
very expressive and is suitable for injection into an ontology.

2.3 Possibility Theory
In order to be able to evaluate the axioms taking into account the
lack of information, and more precisely the difficulty to find coun-
terexamples, essential to our calculation. We apply the Possibility
theory. [6, 10]

Possibility theory is a mathematical theory of epistemic uncer-
tainty which uses the events, variables, . . . denoted 𝜔 of a universe
of discourse Ω (𝜔 ∈ Ω) where each 𝜔 has a degree of possibility
such that 𝜋 : Ω → [0, 1] where 𝜋 (𝜔) = 0 means that 𝜔 is not
possible (excluded) and 𝜋 (𝜔) = 1 that 𝜔 is completely possible.
The theory includes a measure of possibility denoted by Π and a
measure of necessity denoted by 𝑁 such that:

Π(𝐴) = max
𝜔 ∈𝐴

𝜋 (𝜔),

𝑁 (𝐴) = 1 − Π(𝐴) = min
𝜔 ∈𝐴

{1 − 𝜋 (𝜔)},

where 𝐴 ∈ Ω or 𝐴 = {𝜔 : 𝜔 |= 𝜙}.
Some properties for 𝐴 ⊆ Ω:
• Π(∅) = 𝑁 (∅) = 0
• Π(Ω) = 𝑁 (𝜔) = 1
• Π(𝐴) = 1 − 𝑁 (𝐴) (duality)
• Π(𝐴) = 1 if 𝑁 (𝐴) > 0
• 𝑁 (𝐴) = 1 if Π(𝐴) < 1
• Π(𝐴) = Π(𝐴) = 1 (complete ignorance on A)

3 FOUNDATIONS
In this section, we will present the work that has been done in the
context of our research on axiom discovery in knowledge graphs.

3.1 Possibilistic OWL Axioms Scoring
This section is a review of [10], which has served as a basis for
the work we will detail in the following section. The subsumption
axioms, belonging to the category of class expression axioms, have
the form SubClassOf(𝐶𝐷); in their most basic form, involving atomic
classes, 𝐶 and 𝐷 are simple classes represented by their respective
IRI. This means that 𝐶 ⊆ 𝐷 and therefore all resources in 𝐶 and 𝐷
verify the property 𝐶𝐼 ⊆ 𝐷𝐼 .

In order to be able to apply our calculations, the definition of the
sets included in the scope of a axiom 𝜙 , which we will note content,
will serve us as a necessary restricted context in order to evaluate
𝜙 , thus:

𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝜙) = {𝜓 : 𝜔 |= 𝜓 },
2
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where every formula𝜓 ∈ content(𝜙) may be tested with a SPARQL
ASK query. We can set 𝜐𝜙 as the support of axiom where:

𝜐𝜙 = |𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝜙) |.

In order to assess the possibility and necessity of an axiom, let
us consider 𝜐+

𝜙
the confirmations observed among the elements of

𝜐𝜙 and 𝜐−
𝜙
the conterexamples observed. We define the possibility

Π(𝜙) and necessity 𝑁 (𝜙) of an axiom as follows:

Π(𝜙) = 1 −

√√√
1 −

(
𝜐𝜙 − 𝜐−

𝜙

𝜐𝜙

)2

,

𝑁 (𝜙) =

√√√√
1 −

(
𝜐𝜙 − 𝜐+

𝜙

𝜐𝜙

)2

,

if Π(𝜙) = 1, 0 otherwise.
Once these indicators are obtained, we define anAcceptance/Re-

jection Index (ARI) as:

𝐴𝑅𝐼 (𝜙) = 𝑁 (𝜙) − 𝑁 (¬𝜙) = 𝑁 (𝜙) + Π(𝜙) − 1 ∈ [−1, 1] .

For this purpose, if the ARI is less than 0, it means that we reject
the axiom, alternatively we can validate the axiom. When the ARI
is equal to (or close to) 0, we are in an ignorance scenario for the
axiom being tested.

Thus, the SPARQL queries constructed in order to retrieve con-
firmations (1) and counterexamples (2) are as follows:

(1) SELECT (count(DISTINCT ?x) AS ?numConfirmations)
WHERE { Q(C, ?x) Q(D, ?x) }

(2) SELECT (count(DISTINCT ?x) AS ?numExceptions)
WHERE { Q(C, ?x) Q(¬𝐷, ?x) }

Where Q is a mapping from OWL 2 class expressions to SPARQL
graph patterns, the first part of the component is an OWL 2 ex-
pression and the last one a variable [8]. For instance, for (1) we can
write it as:

SELECT (count(DISTINCT ?x) as ?numConfirmations) WHERE {
?x a C .
?x a D

}

and (2) as:

SELECT (count(DISTINCT ?x) as ?numExceptions) WHERE {
?x a C .
?x a ?y .
FILTER NOT EXISTS {

?z a ?y .
?z a D

}
}

3.2 Grammatical Evolution
Before talking about the general functioning of Grammatical Evo-
lution, it is important to specify the prerequisites to do so. Indeed,
the algorithm bases its axiom generation on a training dataset
(or a minimized dataset) extracted from the original dataset from
which we wish to discover axioms, this aims at reducing the field
of possibilities as for the axiom generation but also at saving time
on the evaluation of the candidate axioms, which represents a very
expensive operation in terms of computation time.

Figure 1: A schematic illustration of the proposed approach.

Grammatical Evolution is based on a classical evolutionary
process comprising the cycles of generation of a population, fitness
assessment for each individual in the population, selection of the
best individuals from the population, mutation and crossover (the
triggering of which depends on a random variable) of the least well
assessed individuals. The generation of a population is based on a
grammar defined beforehand with the help of a BNF file allowing
to represent the structure of the axioms that one wishes to generate
while respecting the constraints of generality and credibility. The
BNF grammar is divided into two distinct parts [4]: a static part,
which contains the rules concerning the modelling of our axioms
(see Section 4) and a dynamic part which is filled in during the
execution of our software. An example, taken from [1], of a rule
commonly found in this file is the following:
(r.1) ClassAxiom := SubClassOf | EquivalentClasses |
DisjointClasses | DisjointUnion
(r.2) SubClassOf := 'SubClassOf' '(' subClassExpression '
' superClassExpression ')'
(r.3) subClassExpression := ClassExpression
(r.4) superClassExpression := ClassExpression
(r.5) ClassExpression := Class

The dynamic part contains the rules extracted from our training
dataset and thus containing resources useful to the previous rules
established, so we use SPARQL queries to retrieve productions from
the training dataset, which are also called primitives. In our work,
we use production rules to obtain Class (3) andObjectPropertyOf
(4) whose queries are the following:

3
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(3) SELECT ?class WHERE { ?instance rdf:type ?class.}

(4) SELECT ?property WHERE { ?subject ?property ?object.
FILTER(isIRI(?object)) }

Thus, we retrieve the resources returned by the queries and write
to our BNF file, the resources returned as:
(r.6) Class := dbo:Agent

| dbo:Book
| dbo:Document
...

(r.7) ObjectPropertyOf := dbp:leaderName
| dbp:extendedFrom
| dbp:birthDate
...

The individuals of a population are formed from the previously
established rules, thus giving a syntactically correct axiom in OWL
format, but this axiom is not exploitable as such by the algorithm,
which only manipulates numerical entities. These individuals are
represented through a numerical integer sequence that represents
a single axiom according to the production rules. We invite the
reader to refer to [5] concerning the basic concept of grammar-
based genetic programming.

3.3 Axiom Evaluation
In order to assess the fitness of our axioms and thus give them
their value as individuals in the population. We apply the formulas
previously studied with the possibility theory such as:

𝑓 (𝜙) = 𝜐𝜙 × Π(𝜙) + 𝑁 (𝜙)
2

.

This formula allows us to value axioms for which there is a non-zero
possibility and a zero necessity. Therefore, the new populations
will be based on individuals with non-zero fitness, which avoids, as
the algorithm is generated, the generation of axioms for which 𝜐𝜙
is zero and the possibility is greater than 0.

4 CONTRIBUTIONS
4.1 BNF Grammar Construction
In order to proceed with the experiments concerning complex class
axiom extraction, we need to establish the static rules translated in
the BNF file in order to obtain a subsumption axiom containing at
least one complex class. This means an axiom of the form:

SubClassOf ( A B )

where either of 𝐴 and 𝐵 can be of the form:
ObjectSomeValuesFrom ( ObjectPropertyOf Class )
ObjectAllValuesFrom ( ObjectPropertyOf Class )
ObjectIntersection ( Class Class )
Class

where Class stands for an atomic class. For this purpose, the static
rules of the grammar are crafted as follows:
(r.1) Axiom := ClassAxiom
(r.2) ClassAxiom := SubClassOf
(r.3) SubClassOf := 'SubClassOf' '(' classExpression '

' classExpression ')'
(r.4) classExpression := ObjectSomeValuesFrom |

ObjectAllValuesFrom | ObjectIntersectionOf | Class
(r.5) ObjectIntersectionOf := 'ObjectIntersectionOf' '('

Class ' ' Class ')'
(r.6) ObjectSomeValuesFrom := 'ObjectSomeValuesFrom' '('

ObjectPropertyOf ' ' Class ')'
(r.7) ObjectAllValuesFrom := 'ObjectAllValuesFrom' '('

ObjectPropertyOf ' ' Class ')'

The dynamic rules recovered for the experiments are those obtained
with queries (3) and (4).

4.2 Merging and packaging of software
Within the framework of the directed work in the realization of
a software allowing the mining of axiom [10] and the evaluation
of axioms using the theory of the possibilities, this version was
developed in order to evaluate axioms of the type SubClassOf. The
second version of this software was the object of the work available
in this source: [12], this one takes again the bases of this project by
adding the grammatical evolution and the mining of disjointness
axioms involving atomic classes [3] and complex classes [4].

The aim was to share these two pieces of software in order to
be able to apply the grammatical evolution on any type of axiom
and in particular the axioms of subsumption. The technical context
presents a strong dependence on the Linux operating system with
a set of libraries that can only be used on this system or on another
system with the help of manipulation and transverse solutions
that are costly in terms of resources and time. Furthermore, the
installation process required to run the software is quite costly in
terms of time and resources as it requires the installation of a local
database to contain the training dataset useful for the experiments.
We use Virtuoso 7.2.5 in order to be able to store and manipulate
our training dataset.

We propose to embed all our tools as well as the Virtuoso data-
base management system in a global architecture using Docker
technology. The sharing of the software in a capsule executable on
any type of server will greatly help the development and use of the
latter. Moreover, the installation and deployment of these tools are
greatly simplified, saving us time and resources.

The source code of the project is available here [9].

5 EXPERIMENTS AND RESULTS
5.1 Experimental Protocol
In order to extract valid axioms respecting the format of the pre-
viously proposed grammar, we launched the software using gram-
matical evolution with the parameters indicated in Table 1.

Parameters such as population size, total effort k, ... are inspired
by the parameters chosen in the experiments conducted in this [3–5]
whose results obtained with these parameters were very adequate;
therefore, we assume that these are the parameters that allow us to
obtain optimal results for our experiments. The crossover technique
used in the experiments is sub-tree crossover : a technique where
two individuals are represented as linked graphs, a sub-graph of
one individual will be merged with the sub-graph of the other
with a given probability rate. Concerning mutation, the standard
method is used: single-point mutation where the selected part of the

4
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Figure 2: project architecture and interactions

Table 1: Parameters of Grammatical Evolution

Parameter Values

popSize 100 ; 200 ; 500
Total effort: k 3000 ; 6000 ; 15000
initLenChrom 6

pCross 80%
pMut 1%

time-cap 30 seconds

individual is replaced by a new randomly generated with a given
mutation rate [12].

Additionally, we use here a time limit (called time-cap) for the
computation of counterexamples of Subsumption axioms, which
represents a real problem in the evaluation. Indeed, the computation
time using SPARQL queries, with our "open world" based heuristic,
is very long and is directly related to the number of counterexamples
that the query finds for each individual. One of the strategies is to
use a time limit in order to reject axioms for which the computation
of counterexamples would exceed the set time. We invite the reader
to read the works discussing this method [11]. Given the number
of individuals chosen in our experiments, we set a time limit of 30
seconds which seems to represent a good compromise between a
fair evaluation of the axioms and obtaining results in an acceptable
time.

The evaluation function for our axioms is given in Section 3.3,
which favors individuals for which we observe a non-zero number
of classes concerned by the axiom and a non-zero possibility or
necessity.

Concerning the exploited data, we use an image of the DBPe-
dia 2015-04 database on a Virtuoso 7.2.5 server accessible via
a SPARQL endpoint. We use the training dataset to perform the
axiom extraction and the generations are from this same dataset,
it represents 1% of the entire DBPedia 2015-04 database with a
structure that is representative of the global dataset in order not to
bias the results.

The experiments were performed on a server equipped with an
Intel(R) Xeon(R) CPU E5-2637 v2 processor at 3.50GHz clock speed,
with 172 GB of RAM, 1 TB of disk space running under the Ubuntu
18.04.2 LTS 64-bit operating system.

5.2 Experiments
We ran our algorithm 10 times with populations equal to 100, 200,
and 500, respectively, with the idea of comparing the results and
observing which parameters are optimal in order to obtain credible
axioms.

The parameters chosen, particularly in terms of populations and
total effort, were reduced compared to the studies performed by [3–
5]. Indeed, the observed execution times are very important. We
observe an average time of execution for a population of 100 of
about 1 hour, 1 hour and a half on average for an execution with a
population of 200 and 6 hours and a half on average for a population
with 500 individuals.

The tool allows us to evaluate the axioms on the training dataset
for each run, in particular to save time on the evaluation of poor
quality axioms. In addition, we can specify, during one or more
generations, the evaluation of the axioms on the complete dataset
as a complement, in order to confirm or not the accuracy of the
axioms. The experiments provided us with a collection of axioms

5
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evaluated on the training dataset and on the full DBPedia 2015-04
dataset after 30 generations of our algorithm, thus providing us
with two distinct sets of measures that we can observe, notably in
the table 2.

Table 2: Number of complex axioms for which we observe a
non-zero possibility after 10 executions

Parameter Number of axioms
with training dataset with full dataset

100 476 358
200 525 525
500 1911 1888

We notice that a large part of the axioms found and evaluated
from our training dataset, keep a non-zero possibility in our full
dataset, which confirms the suitability of this approach.

Let us take a deeper look at a case of axiom found with our
algorithm. For example, the following axiom:
SubClassOf (

ObjectSomeValuesFrom (
<http://dbpedia.org/property/leagueTopscorer>
<http://dbpedia.org/ontology/Agent>

)
ObjectSomeValuesFrom (

<http://dbpedia.org/ontology/league>
<http://dbpedia.org/ontology/Agent>

)
)

has a possibility of 0.649 with the training dataset, so we find a
fairly low rate of counterexamples, which leads us to believe that it
would be quite likely to be true. To this end, we also evaluate this
individual with the full DBPedia dataset, which contains 9,170,623
classes and is thus better provided with information to give us a
more representative evaluation. Given the time limit and the size
of the database, our queries reach the imposed time limit because
the server does not have the time to process them, it would take a
considerable amount of time to be able to evaluate each axiom in a
long way but this does not suit our approach. For this reason, we
have evaluated this example without time limitation. We found 62
confirmations for this axiom against 1784 counter-examples
on the 6008 individuals being concerned by this axiom, we thus
obtain a possibility of 0.289 and a total evaluation time of just
over one hour. These results suggest that we should not consider
this axiom.

We also found two axioms that caught our attention due to the
fact that they had a non-zero necessity (and therefore a possibility
equal to 1):
(1)
SubClassOf (

ObjectSomeValuesFrom (
<http://dbpedia.org/property/narrated>
<http://dbpedia.org/ontology/Agent>

)
<http://dbpedia.org/ontology/Work>

)

(2)
SubClassOf (

ObjectSomeValuesFrom (
<http://dbpedia.org/property/parentPeak>
<http://dbpedia.org/ontology/Place>

)
<http://dbpedia.org/ontology/Park>

)

The different axioms have been tested, in the same way, without
time limitation on the complete database. We have in the case (1),
1052 confirmations against only 5 counterexamples on the
1283 individuals concerned, giving a very strong possibility: 0.912
completed in 47 minutes, we can say that this axiom is quite
possible. In case (2), we found 25 confirmations against 1322
counterexamples on the 2352 individuals concerned. Thus, this
axiom is, in terms of possibility, very weak: 0.101 completed in 53
minutes.

We obtain quite good performances regarding the global evalua-
tion with our evolutionary algorithm, where we see that the curves
are quite high overall over 30 generations with notable variations
and some rare runs where the fitness is quite low, hence the interest
to run the algorithm several times in order to obtain a set of suitable
results. It should be noted that runtime errors are quite rare and are
mainly due to the Virtuoso server which, from time to time, tends
to crash.

Figure 3: Evolution of average fitness over 10 executions
with the same parameters (those that have been successfully
completed) for a population of 100 axioms.

6 CONCLUSION
We have seen through our development and the implementation of
our method, punctuated by the results obtained, that our method

6
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Figure 4: Evolution of average fitness over 10 executions
with the same parameters (those that have been successfully
completed) for a population of 200 axioms.

Figure 5: Evolution of average fitness over 10 executions
with the same parameters (those that have been successfully
completed) for a population of 500 axioms.

allows us to obtain subsumption axioms composed of complex
classes that are quite relevant by avoiding some of the difficulties
related to the discovery of these axioms, especially in the evaluation.
We can hypothesize that higher parameters and a higher evaluation

time limit could allow us to obtain better results. To this end, we
will carry out optimization work in the different processes of our
approach: one of our first lines of thought is to parallelize the
evaluation of the different axioms. Indeed, the evaluation of axioms
is done in a procedural way, but there is no dependence between
each axiom, which allows us to parallelize the evaluation of several
axioms at the same time. This track can allow us to save a lot of
execution time. We plan to extend our search for axioms composed
of complex classes to other types of axioms among those provided
by OWL 2.
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