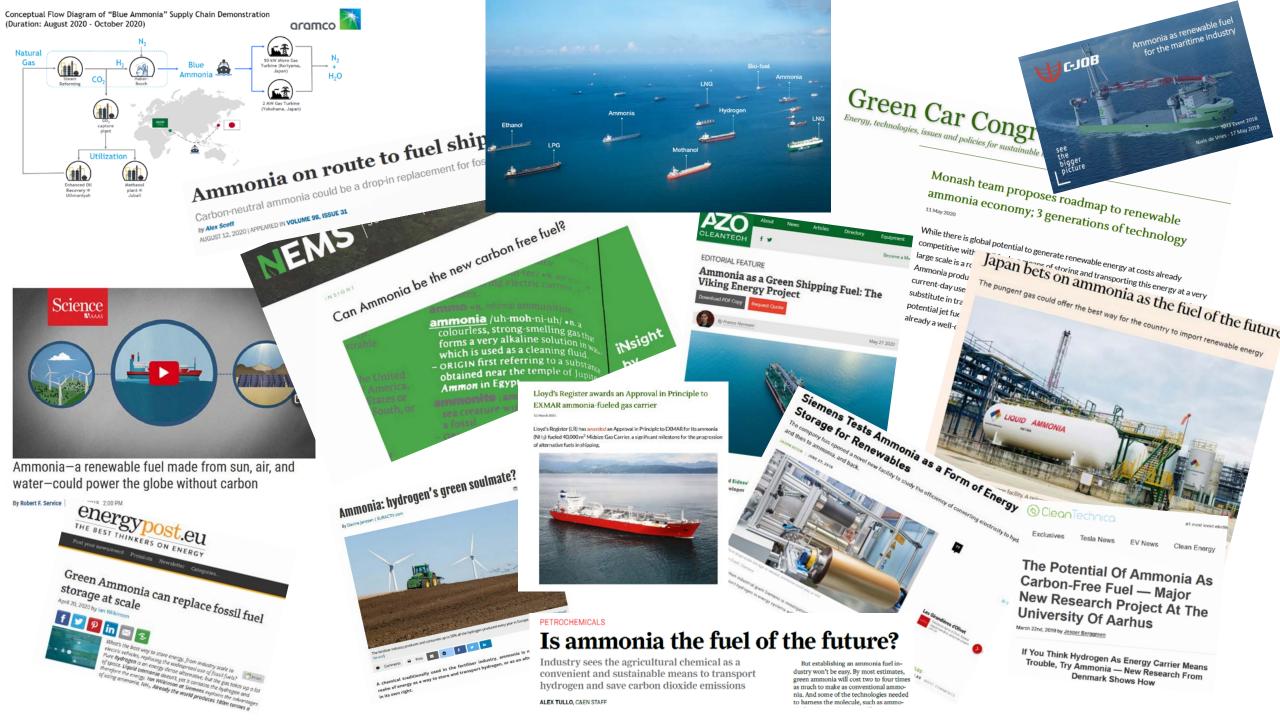


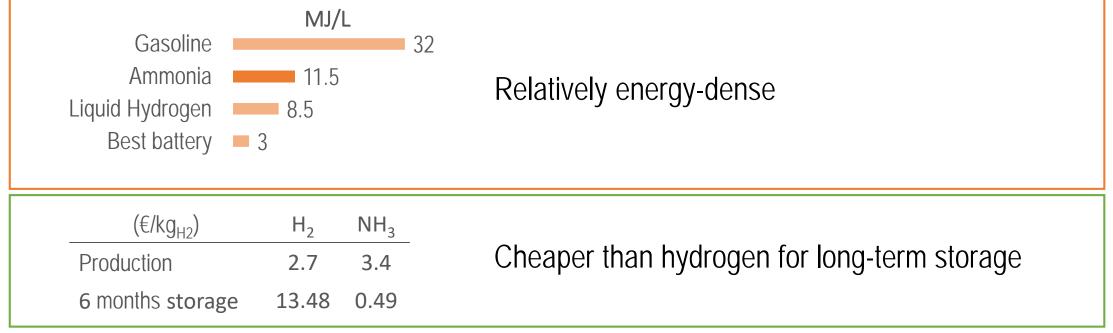
15thInternationalConference ^{on}Engines[&]Vehicles

September 12th-16th, 2021 | Capri · Naples · Italy


Ammonia as zero-carbon fuel for Internal Combustion Engine: "where are we today?"

Prof Christine Mounaïm-Rousselle

Thanks to some co-workers **P. Bréquigny**, A. Mercier, C. Lhuillier, B.Raitiere, R. Pelé **R. Rabello di Castro**



WHY AMMONIA (NH₃)?

It presents beneficial energy carrier features

Globally traded <u>carbon-free</u> chemical (~180 Mt/year)

Ammonia the other Hydrogen

Valera-Medina et al., A review on ammonia as a potential fuel: from synthesis to economics, Open Acess, Energy and Fuels, 2021

Relevance of NH_3 as fuel for ICE

Relevance of NH_3 as fuel for ICE

Fuel	Ammonia	Hydrogen	Methane	Gasoline	Diesel
Molar mass (g/mol)	17	2	16	114	167
Heat Capacity Ratio	1.32	1.41	1.32	1.4	1.4
Flammability limit (% vol.)	15.8%-28%	4% - 76%	4.4%-17%	1.4% - 7.6%	1% - 6%
Octane Number	>130	>100	130	87-93	0
Auo-ignition temperature (°C)	651	530	537	440	225
stoich. Air/fuel ratio (mass)	6	34.3	17.1	15	14.6
Lower heating value (MJ/Kg fuel)	18.8	120	50.1	42.5	45
Energy content at stoich. (MJ/kg air)	3.13	3.5	2.92	2.83	3.08
% CO2 emitted by stoich. Combustion	0	0	9.5	12.5	12.6*
Laminar flame speed at Patm, 100°C (m/s)	0.12	35	0.38	0.42	
Quenching distance (mm)	7	0.64	2	3	

Relevance of NH_3 as fuel for ICE

- No CO₂, CO nor PM emissions
- Good energy density
- Potential for high compression ratios (CR)
- Combustion promoter ?
 - to boost performance and ensure stability

BUT

Fuel-bound nitrogen: NOx and NH₃

- Mitigation strategy required for pollutants
 - corrosive (copper, alloy, plastic, rubber, teflon...)
 - toxic (300 ppm< air)

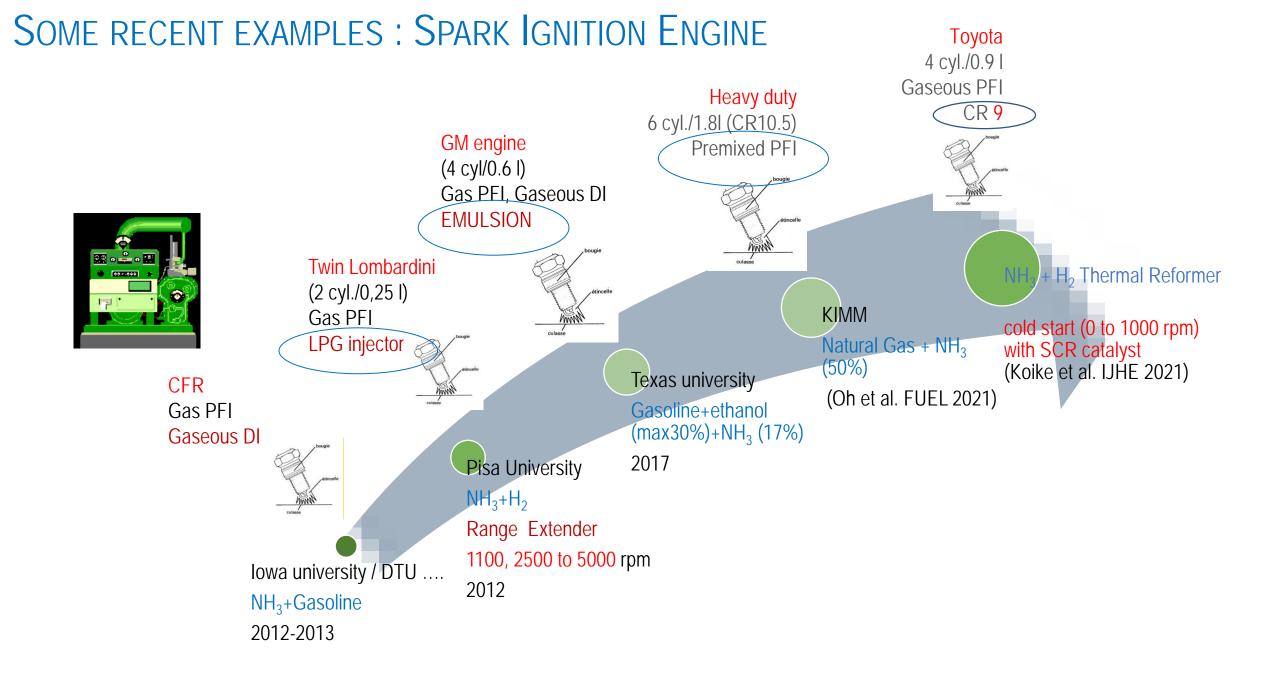
HISTORY : VEHICLES

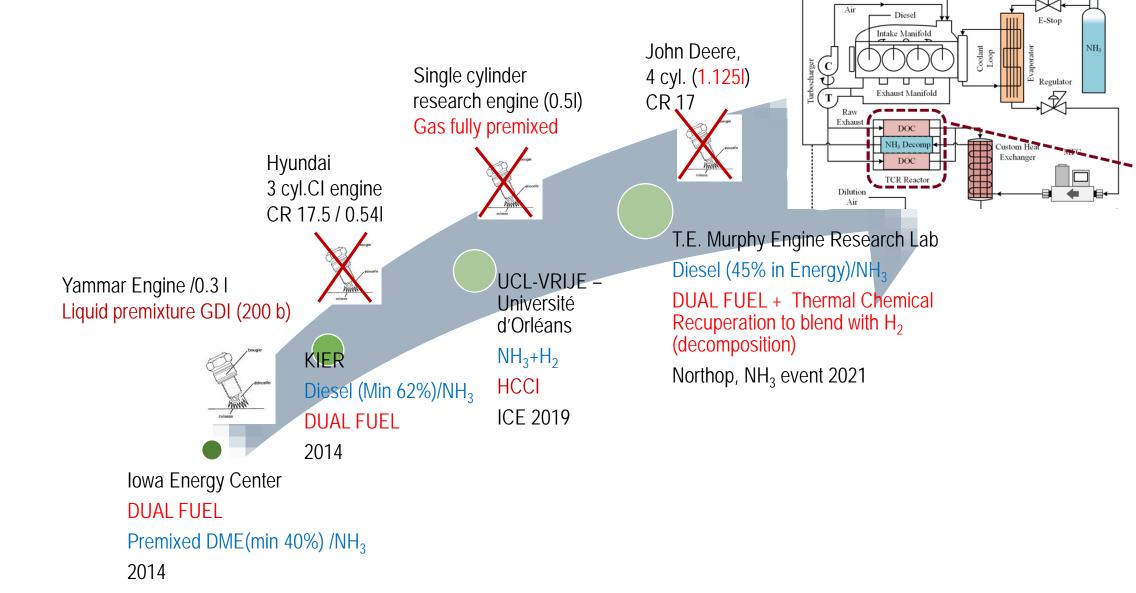
2013 Marangoni Toyota GT-86 Eco-Explorer,

2020 Hydrofuel Project (Ontario Univ.)

2012-2015 : KIER, Korea Dual Fuel gasoline or Diesel until 80% NH₃

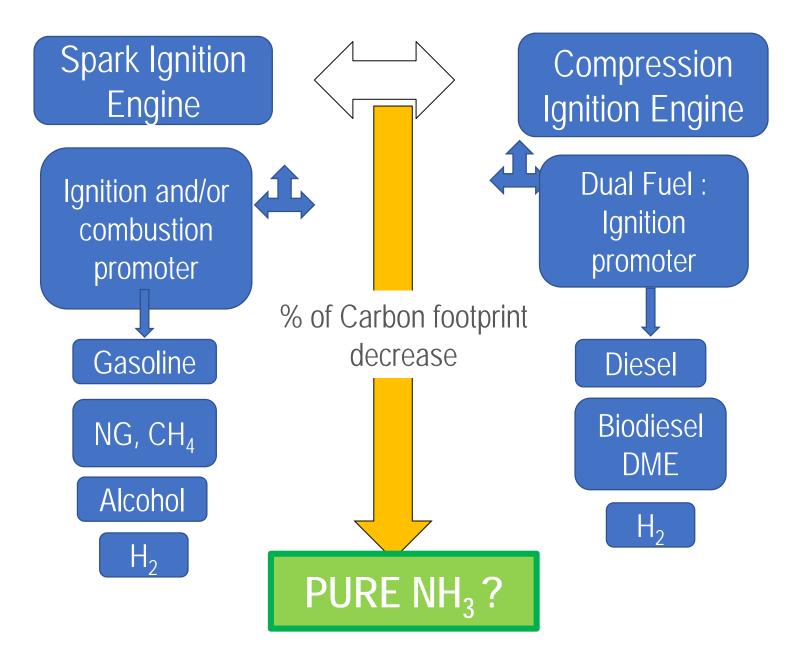
2013 Università di Pisa H_2 reformer


2018-2021 C-Free Run project, Hydrogen Engine Center (Iowa),


1933 : Nork Hydro truck ran with ammonia 2007-2012 : Michigan University 50%NH₃/Gasoline 3 800 km

1940s Belgium $NH_3/Coal gas$ 10 000 miles 60

60s : theoretical studies, CFR studies (USA)



Some Research examples : Compression Ignition Engli

Fumigant

NH_3 AS FUEL FOR POWERTRAIN

Ammonia alone ?

- (12) United States Patent Sasaki et al.
- (54) INTERNAL COMBUSTION ENGINE WITH AMMONIA FUEL
- (75) Inventors: Shizuo Sasaki, San Antonio, TX (US); Jayant Sarlashkar, San Antonio, TX (US)
- (73) Assignee: Southwest Research Institute, San Antonio, TX (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 599 days.
- (21) Appl. No.: 12/464,636
- (22) Filed: May 12, 2009
- (65) **Prior Publication Data** US 2010/0288249 A1 Nov. 18, 2010
- (51) Int. Cl. *F02B 43/00* (2006.01) *F02B 13/00* (2006.01)

(10) Patent No.:	US 8,166,926 B2
(45) Date of Patent:	May 1, 2012

- (58) Field of Classification Search 123/1 A, 123/2, 3, 575
 See application file for complete search history.
- (56) References Cited

U.S. PATENT DOCUMENTS

6,073,862 A * 6/2000 Touchette et al. 239/408 6,936,363 B2 8/2005 Kordesch et al.

* cited by examiner

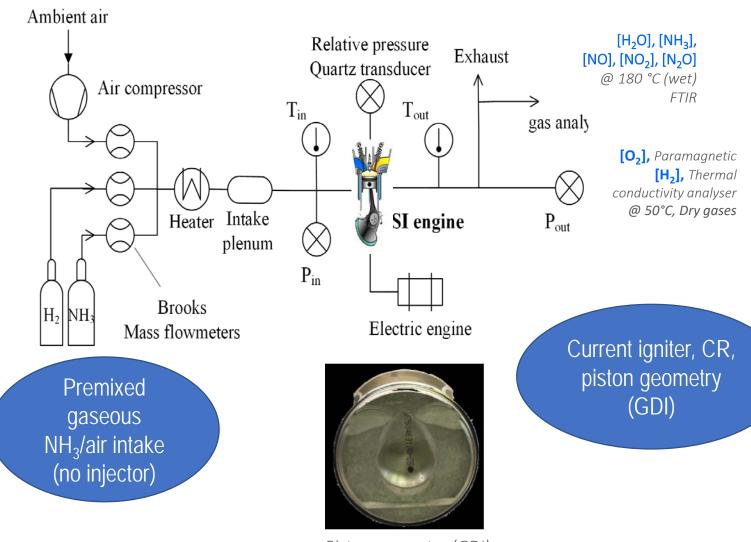
Primary Examiner — Noah Kamen (74) Attorney, Agent, or Firm — Grossman, Tucker et al

(57) ABSTRACT

The invention provides methods of providing fuel to an internal combustion engine, fuel systems for an internal combustion engine and a fuel injector for an internal combustion engine Armienia may be neared and pressurized to a selected condition and may used as fuel which is supplemented with hydrogen to assist with ignition, flame propagation, and/o combustion speed.

Main results from previous SI engine studies fuelled with ammonia with help of $\rm H_2$

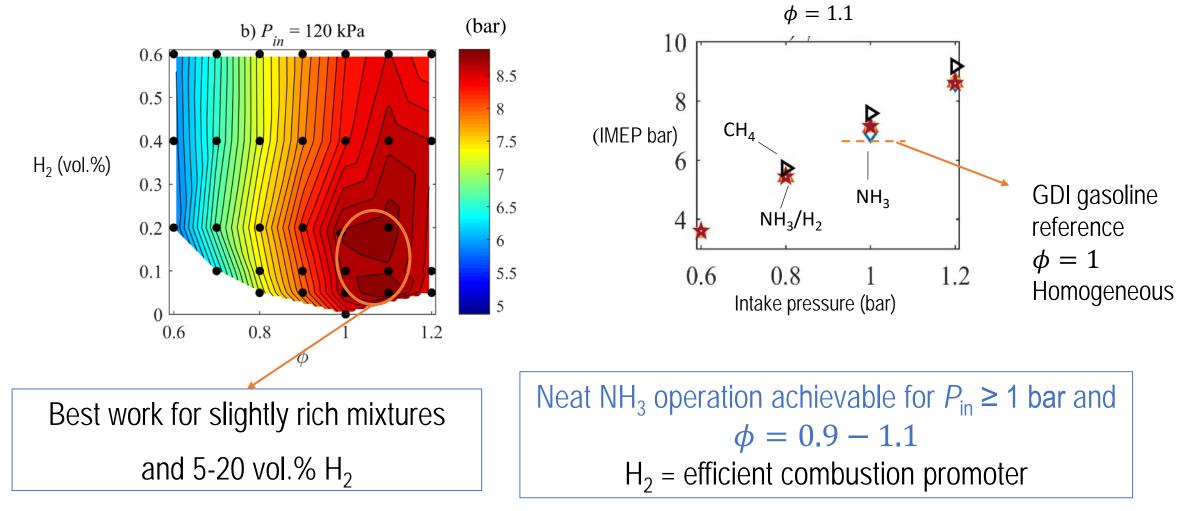
Combust	tion and Perf	orma	nces i	n SI engines		
Minimum combust	H_2 H ₂ ion stability	for	Efficie	ency	Output energy	
Between	5-10% in vol		Highe	r for ER>=1	Less than gasoline at low and partial load	
Amount n with load (full load:		ases	Highe	r than gasoline	Increase with CR or boosted pressure	
slight ef speed	fect of er	igine	increa	se		Only one study (Frigo et al., small eng
Pollutant			e any a	ftertreatment d		
	ER decrease (lean)	ER incr (rich	ease 1)	H ₂ increase	Load	
NOx (ppm)	++ maximum > gasoline		•	+	slight increase but no universal trend	
Unburnt NH₃		++	(H ₂ at exhaust	no universal trend	


Mounaïm-Rousselle C., Brequigny P. (2020) Ammonia as Fuel for Low-Carbon Spark-Ignition Engines of Tomorrow's Passenger Cars. *Front. Mech. Eng.* 6:70. doi: 10.3389/fmech.2020.00070

Some Recent Highlights of Combustion PROCESS IN SINGLE-CYLINDER 'CURRENT' ENGINES

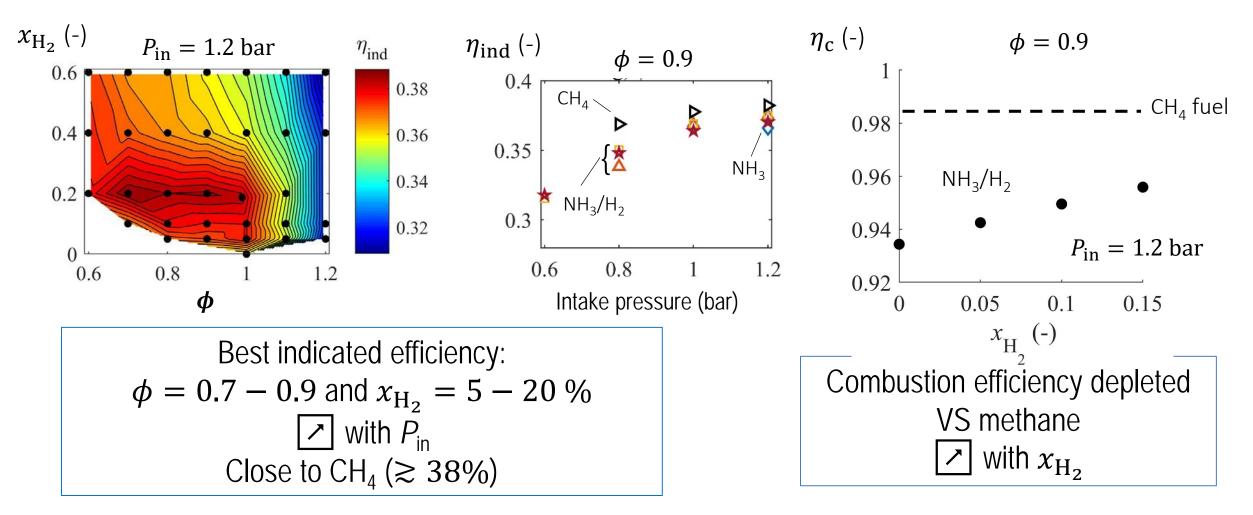
$A\mathsf{MMONIA}\;\mathsf{IN}\; 'GDI'\;\mathsf{ENGINE}$

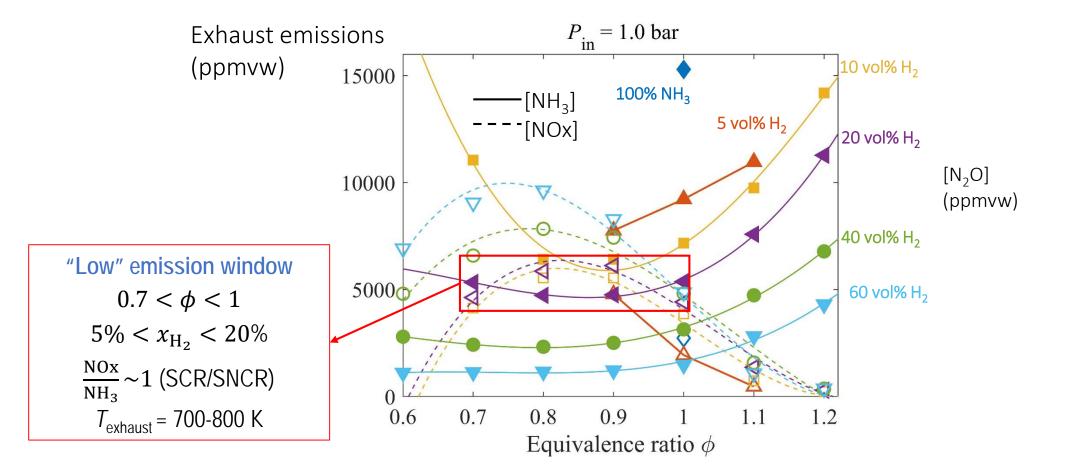
Engine Characteristics					
Engine Type	Current PSA EP6DT				
Bore	77 mm				
Stroke	85 mm				
Connecting Rod Length	138.5 mm				
Displacement Volume V _{cyl}	395.81 cm ³				
Compression Ratio	10.5				



Piston geometry (GDI)

$\mathsf{Performance} \text{ of the } SI \text{ engine: work output}$


Net Indicated Mean Effective Pressure


${\sf Performance of the } SI {\sf engine: efficiencies}$

Indicated efficiency

Combustion efficiency

EMISSIONS OF SI ENGINE FUELED WITH NH_3/H_2

Pollutants require after-treatment (not unlike conventional fuel operation)

WHAT MINIMUN LOAD ? WITH PURE AMMONIA

□ Engine speed effect - stable conditions ($\sigma_{IMEP} \leq 5\%$)

		650 rp	m		1000 rp	m		1500 rp	om		2000 rp	om
						%	H2					
Pin (bar)	0%	5%	10%	0%	5%	10%	0%	5%	10%	0%	5%	10%
<=0.65			Х			Х			Х			Х
0.8-0.85		Х	Х	Х	Х	Х		Х	Х			Х
1		Х	Х	Х	Х	Х	Х	Х	Х		Х	Х
<=0.65			Х		Х	Х			Х			Х
0.8-0.85		Х	Х	X	Х	Х		Х	Х		Х	Х
1	7 (x)	Х	Х	(\mathbf{x})	Х	Х	Х	Х	Х		Х	Х
<=0.65			Х	\bigcirc	X	Х	1		Х			Х
0.8–0.85	X	X	Х	Х	X	Х		Х	Х		Х	X
1	- X	X	Х	Х	x	Х	/ x	Х	Х		Х	Х
	<=0.65 0.8-0.85 1 <=0.65 0.8-0.85 1 <=0.65	<=0.65	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pin (bar) 0% 5% 10% $<=0.65$ X X $0.8-0.85$ X X 1 X X $<=0.65$ X X	Pin (bar) 0% 5% 10% 0% $<=0.65$ X X X $0.8-0.85$ X X X 1 X X X $<=0.65$ X X X	Pin (bar) 0% 5% 10% 0% 5% $<=0.65$ X X X X X $0.8-0.85$ X X X X X 1 X X X X X $<=0.65$ X X X X $<=0.65$ X X X X 1 X X X X $<=0.65$ X X X X $<=0.85$ X X X X X	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Normalize Normalize

*optimized ignition timing (around 40-35 CAD BTDC)

- impossible to ignite at low and high rpm without H₂
- difficult at low load or at high rpm
- possible 'sometimes' to ignite with NH₃ only at naturally aspirated conditions

areNH₃a https://arenha.eu/

Mounaïm-Rousselle et al., Energies, 2021

EXTENSION OF 'LOW' OPERATING LIMIT

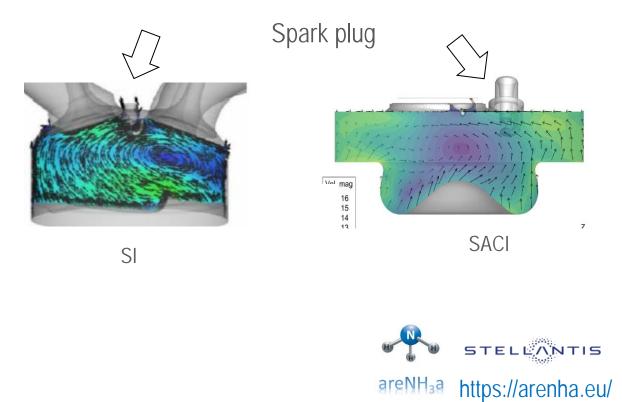
□ Unique Solution : Increase the CR !

- > Gray et al. 1966 : 'extremely CR : above 35:1 for 'Auto-Ignition
- Garabedian and Johnson, 1965 : conversion of CI engines to spark ignition mode is the 'prominent short-term solution' due to the higher compression ratio than in SI engine.
- Pearsall and Garabedian, 1967 : a 16:1 was found as the optimum to run with neat ammonia.
 - unique previous study about Ammonia-only Spark-Assisted Compression Ignition (SACI) engine.
 - Conclusion :
 - 'large bore, more concentrated combustion chamber, more centrally placed spark plug are preferable to optimize the efficiency and therefore decrease the specific fuel consumption'.

Combustion of Anhydrous Ammonia in Diesel Engines

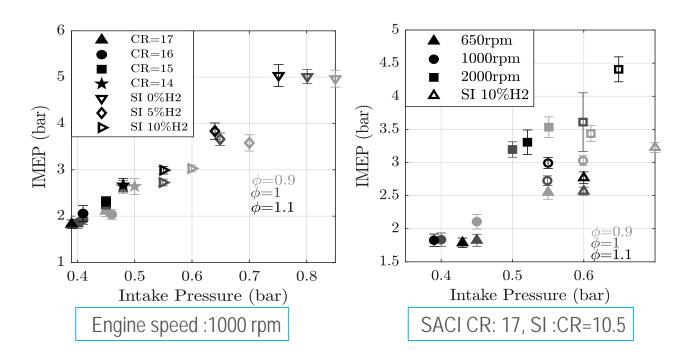
> Thomas J. Pearsall Continental Aviation and Engineering Corp.

Charles G. Garabedian U. S. Army-Tank Automotive Command


670947

EXTENSION OF 'LOW' OPERATING LIMIT

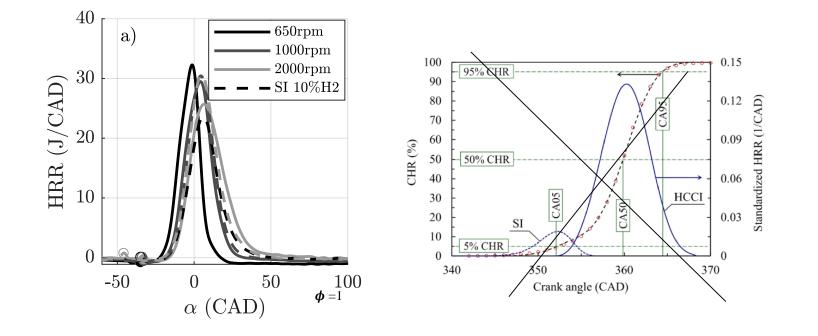
- □ Solution : Increase the CR
 - ➢ 'Diesel' Engine with a Spark Plug

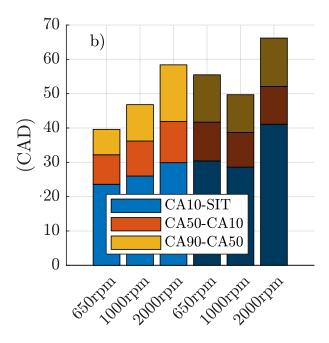

Engine Type	Current PSA EP6DT	SACI PSA DV6
Displacement Volume V _{cyl}	400 cm ³	400 cm ³
Compression Ratio	10.5	14 to 17
Valves	4	2
Tumble ratio	2.4	
Swirl ratio		2

*No optimization of ignition system or location

EXTENSION OF 'LOW' OPERATING LIMIT

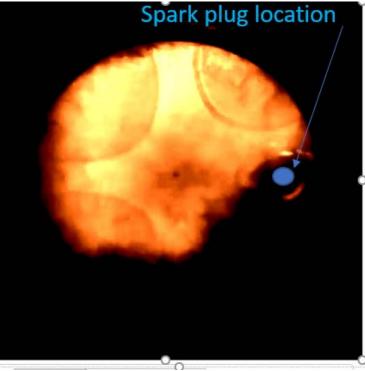
- □ Increase of CR :
 - SACI versus SI engine

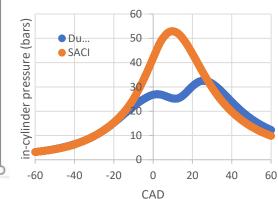



- Good improvement of NH₃ combustion with CR increase despite of flow field
- No H₂ needs

- Extension of low load limits
 - 1.7 b IMEP (as Koike et al. with Reformer)
 - CR 17, 650 rpm,
 - Iower limit with slightly rich

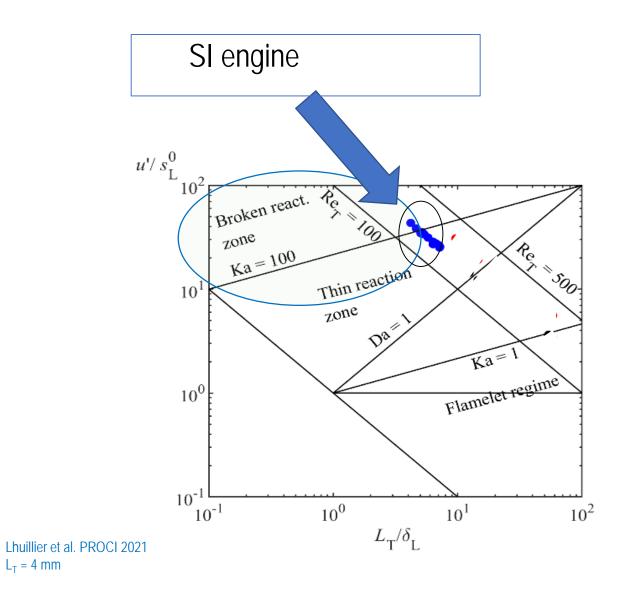
$FLAME \ DEVELOPMENT: SACI \ versus \ SI$

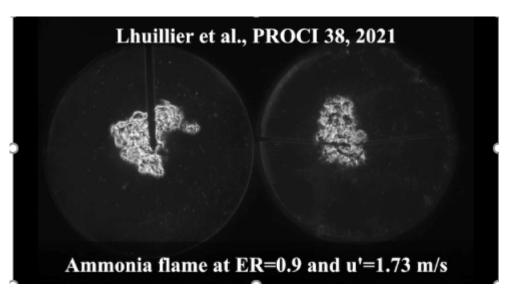



- SACI combustion mode :
 - Without H₂
 - Not 2 identified phases of HRR
- Faster first phase than SI engine
 - Pressure effect ?
 - FULLY PREMIXED PROPAGATION 'without turbulence' ?

FIRST VISUALISATION OF AMMONIA FLAME PROPAGATION IN ICE

Engine Type	Current PSA EP6DT	SACI PSA DV6	Optical DW10
Displacement Volume V _{cyl}	400 cm ³	400 cm ³	500 cm ³
Compression Ratio	10.5	14 to 17	15.7
Valves	4	2	4
Tumble ratio	2.4		
Swirl ratio		2	1.1


FULLY PREMIXED PROPAGATION



- Engine speed : 1000 rpm,
- Intake pressure =0.9 bar
- Tintake =35°C, Spark timing : -40 CAD
 - 3 images/CAD, during 67 CAD

ER NH₃ = 0.9 IMEP = 6.7 b

 $L_T = 4 \text{ mm}$

- SACI combustion mode :
 - CR increase
 - P and T increase
 - Turbulent scale size ? Flamelet regime?

0.25

0.24

0.23

0.22

0.19

0.18

0.17

0.16 L 0.9

0.95

1

 $(s / m)_{C}^{0} (m/s)$

0.125

0.12

0.115 L 0.9

0.95

1

1.05

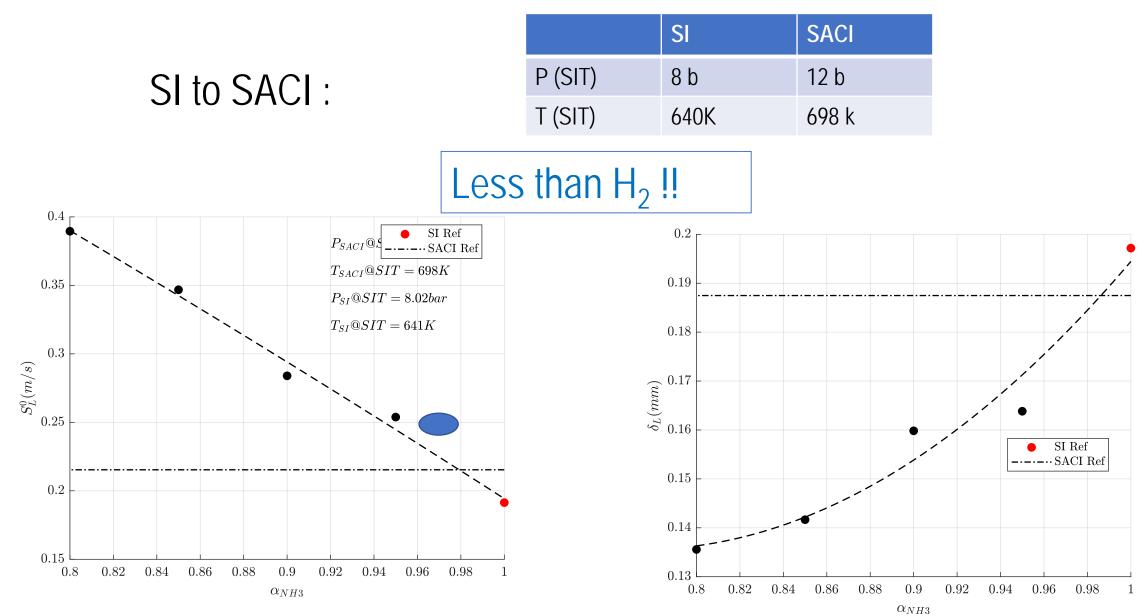
 $\phi(-)$

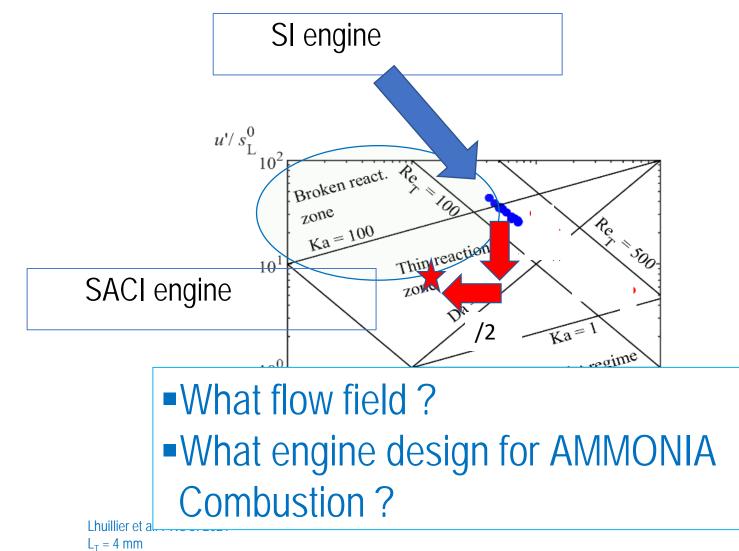
1.1

1.15

Correlation from Lhuillier, C., Brequigny, P., Lamoureux, N., Contino, F., Mounaïm-Rousselle, C., Fuel 263, p.116653, 2020

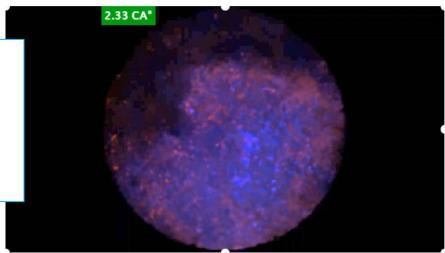
1.05

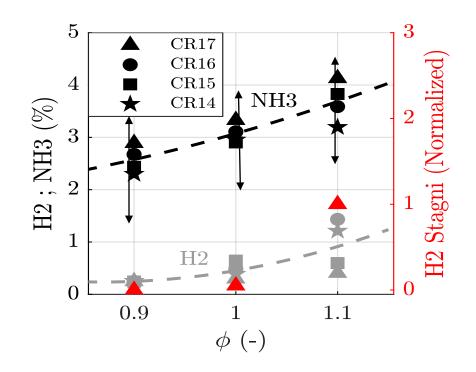

 $\phi(-)$

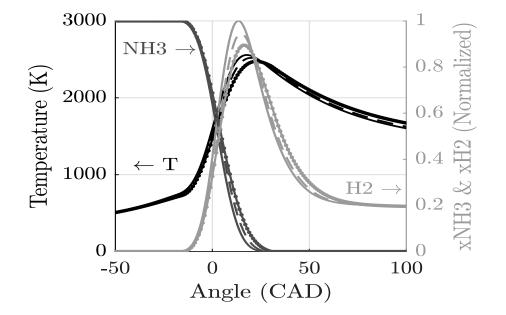

SI SACI

1.15

lacksquare


1.1




	SI	SACI	
P (SIT)	8 b	12 b	
T (SIT)	640K	698 K	
U'(SIT)*	2.5 m/s	1.5 m/s	Convorgo
L _T (mm)*	1.5 mm	0.8 mm	Converge C

CFD

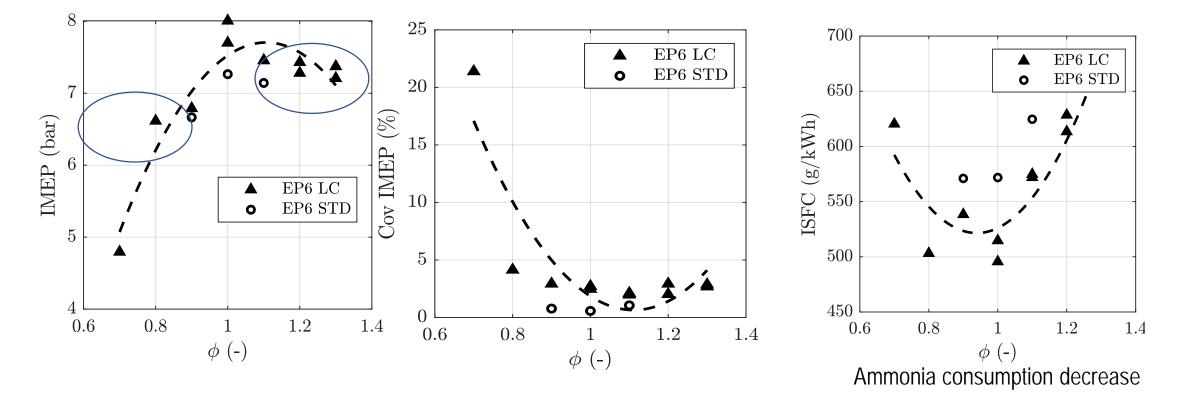
POLLUTANT EMISSIONS : UNBURNT

Stagni et al. 2020, reaction chemistry and engineering DOI: <u>10.1039/c9re00429g</u>

OD SI engine modelling CHEMKIN ANSYS

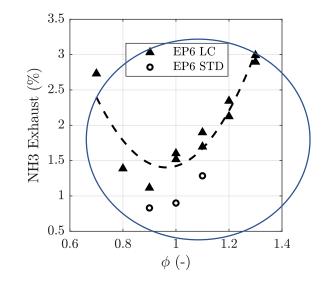
$$\boldsymbol{\alpha}_{NH3} + (1 - \boldsymbol{\alpha}) \left(\frac{3}{2} H_2 + \frac{1}{2} N_2 \right)$$

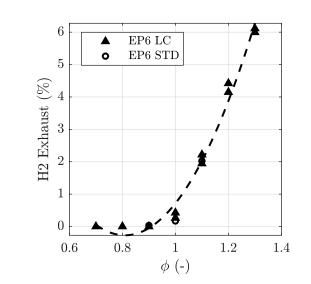
SACI combustion mode :
 HT/HP = in situ NH₃ decomposition in H₂

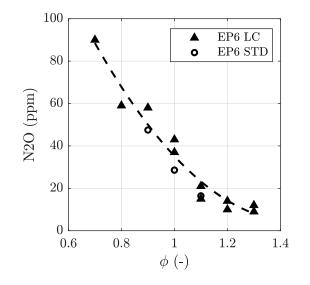

Actual work : NH₃-fueled single-cylinder SI engine

Different engines designs : Spark Ignition engine (SI) Spark Assisted Compression Ignition (SACI) Large Stroke Spark-Ignition engine (SILC)= research engine

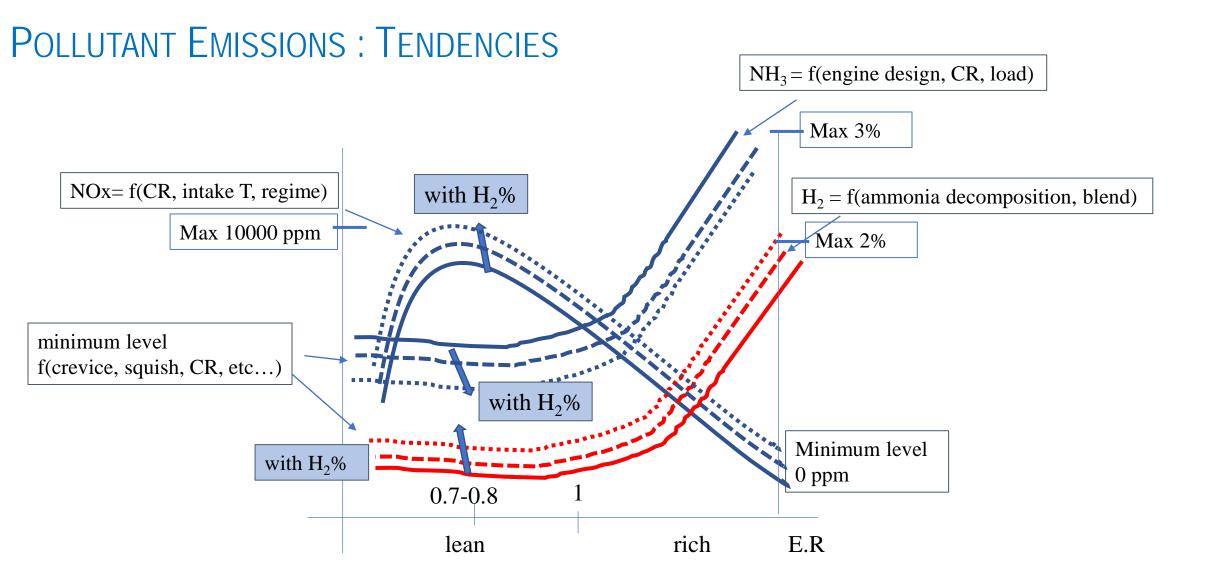
	SACI (DV6)	SI (EP6) [ref]	SI LC
Displaced volume	390 cm ³	400 cm ³	535 cm ³
Stroke	88.3 mm	85.8 mm	115 mm
Bore	75 mm	77 mm	77 mm
Connecting rod length	136.8 mm	138.5 mm	177 mm
Compression ratio	From 14 to 17	10.5	11.75 to 15 (?)
Number of valves	2	4	4
Swirl ratio (50 CAD BDTC)	2.36	0	0
Tumble ratio (50 CAD BTDC)	0	2	Not 0 !




Extension of operating conditions with NH₃ only

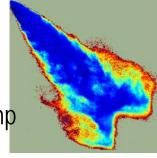

1000 rpm, 80°C *, Pin = 1 atm * 50 °C pour EP6

Exhaust Emissions



6000 5000EP6 LC ▲ EP6 STD` ο (udd) x000 2000 10 2000 1000 0 0.60.81 1.21.4 ϕ (-)

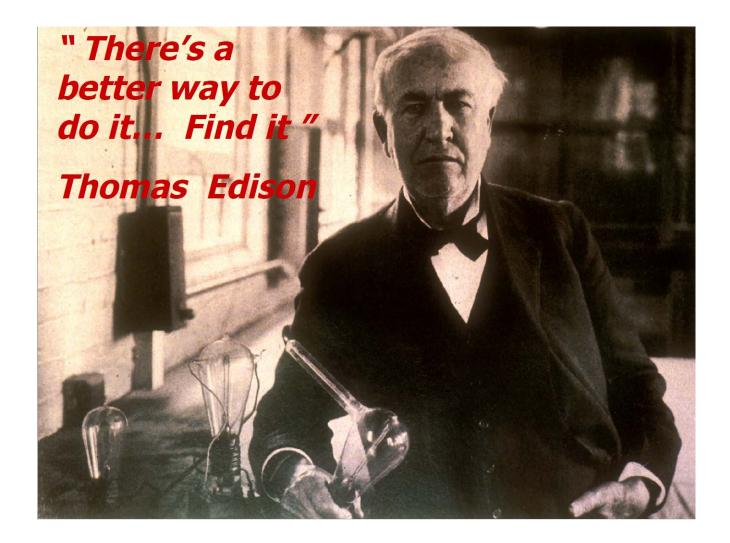
- Higher crevice trap?
- Lower combustion efficiency?


• Similar NOx

JUST FROM LAST WEEK

NH₃ direct injection

Pin = 120 b Bosch GDI No injection pump

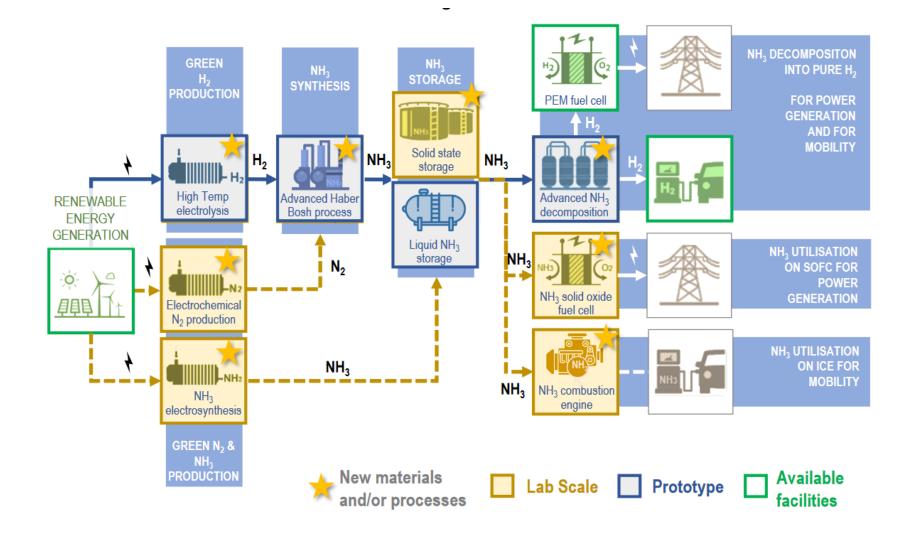


CONCLUSION : AMMONIA ONLY IN ICE

Challenges	Impacts			
		NH ₃ gaseous	direct injectionindirect injection	high CR or boosted
Hard to ignite	 cold start ? ignition strategy /device/location H₂ addition : consequence on Knock ? 	• liquid	 both ? 	SI engine
Narrow flammability	stability/operability problemsload VS engine speed		 direct injection 	
Slow flame propagation	 stability/operability problems combustion chamber design depleted thermal efficiency 	H ₂ NH3 reformer : • on board ? • in-cylinder ?	 indirect injection mixing with NH₃ homogeneous ? 	Spark Assisted 'CI' engines
Fuel-bound nitrogen	 Pollutant emissions Trade off ? Post treatment ? Sensor ? 		• stratified ?	

CONCLUSION : AMMONIA ONLY IN ICE

Good luck and HAVE FUN



REFERENCES

- Lhuillier, C., Bréquigny, P., Contino, F., Rousselle, C., "Combustion Characteristics of Ammonia in a Modern Spark-Ignition Engine," SAE Technical Paper 2019-24-0237, 2019,
- Lhuillier, C., Bréquigny, P., Contino, F., Rousselle, C., "Performance and Emissions of an Ammonia-Fueled SI Engine with Hydrogen Enrichment," SAE Technical Paper 2019-24-0137, 2019
- Mounaïm-Rousselle C., Brequigny P. (2020) Ammonia as Fuel for Low-Carbon Spark-Ignition Engines of Tomorrow's Passenger Cars. Front. Mech. Eng. 6:70.
- Lhuillier, C., Brequigny, P., Contino, F., Mounaïm-Rousselle, C., Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions, Fuel 269,117448, 2020
- Lhuillier, C., Brequigny, P., Lamoureux, N., Contino, F., Mounaïm-Rousselle, C., Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures, Fuel 263, p.116653, 2020
- Shrestha K. P., Lhuillier C., Barbosa, A., Brequigny P., Contino F., Mounaïm-Rousselle C., Seidel L., Mauss F., An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature, Symp. (Int.) Combust, 2020, PROCI
- Lhuillier C., Brequigny P., Contino F., Mounaïm-Rousselle C., An experimental and modeling study of ammonia with enriched oxygen content and ammonia/hydrogen laminar flame speed at elevated pressure and temperature, Symp. (Int.) Combust, 2020, Proceedings of the Combustion Institute, Volume 38, Issue 4, 2021, Pages 5859-5868, https://doi.org/10.1016/j.proci.2020.08.058.
- Mounaïm-Rousselle C, Brequigny P, Houillé S, et al. (2020) Potential of Ammonia as future Zero-Carbon fuel for future mobility: Working operating limits for Spark-Ignition engines. In: SIA POWERTAIN & ENERGY 2020, <u>https://hal.archives-ouvertes.fr/hal-03188481</u>
- Mounaïm-Rousselle C, Mercier A, Brequigny P, Dumand C, Bouriot J, Houillé S. Performance of ammonia fuel in a spark assisted compression Ignition engine. International Journal of Engine Research. August 2021. doi:10.1177/14680874211038726
- K.H.R. Rouwenhorst, O. Elishav, B. Mosevitzky Lis, G.S. Grader, C. Mounaïm-Rousselle, A. Roldan, A. Valera-Medina, Techno-Economic Challenges of Green Ammonia as an Energy Vector, Book chapter : Chapter 13 Future Trends, Editor(s): Agustin Valera-Medina, Rene Banares-Alcantara, Academic Press, 2021, Pages 303-319
- A. Valera-Medina, F. Amer-Hatem, A. K. Azad, I. C. Dedoussi, M. de Joannon, R. X. Fernandes, P. Glarborg, H. Hashemi, X. He, S. Mashruk, J. McGowan, C. Mounaim-Rouselle, A. Ortiz-Prado, A. Ortiz-Valera, I. Rossetti, B. Shu, M. Yehia, H. Xiao, and M. Costa, A review on ammonia as a potential fuel: from synthesis to economics, *Energy & Fuels*, DOI: 10.1021/acs.energyfuels.0c03685
- Pele R., Hespel C., Brequigny P., Belettre J., Mounaïm-Rousselle C. First study on ammonia spray characteristics with current injector of GDI engines, *Fuels* 2021, 2(3), 253-271; https://doi.org/10.3390/fuels2030015
- Mounaïm-Rousselle C, Mercier A, Brequigny P, Dumand C, Bouriot J, Houillé S. Performance of ammonia fuel in a spark assisted compression Ignition engine. *International Journal of Engine Research*. August 2021. doi: 10.1177/14680874211038726

ARENHA

Advanced materials and Reactors for ENergy storage tHrough Ammonia

