L'ammoniac, ce vecteur d'hydrogène pour décarboner la mobilité

Ha

Christine MOUNAIM-ROUSSELLE

Laboratoire PRISME

Fédération de Recherche pour l'Innovation et la Transition énergétique

Role of Ammonia in the Energy System

Morlanes et al. "A technological roadman to the ammonia energy economy: Current state and missing technologies." Chemical Engineering Journal 408 (2021) 127310

Yesterday...

EQUIPMENT WinGD engines to run on methanol and ammonia by 2025 COLLABORATION Wärtsilä, SHI partner up on ammonia-fuelled engines COLLABORATION Jurong Port joins ammonia-fuelled tanker initiative VESSELS Japanese trio to develop large ammoniapowered ammonia carrier

about 1 month ago

13 days ago

2 months ago

4 days ago

Why Ammonia for transport ?

Ammonia holds 9X THE ENERGY of Lithium-Ion Batteries

Ammonia has 1.8X THE ENERGY **DENSITY** of Hydrogen

Ammonia is LESS FLAMMABLE, EASIER TO TRANSPORT, and more COST EFFECTIVE.

stored at -33C

Ammonia is STORED AT-33C compared to -253C required for Hydrogen

Ammonia can become the CO2-free fuel of the future

f 🔽 în 🔂 🗛 2

Immonia has the potential of playing a central role in a more sustainable future. It can be used as a CO2 free fuel ead of gasoline, diesel and fuel oil. Moreover, the highly energy-consuming production of ammonia for fertilizer other purposes can be based on green power instead of natural gas. That will save large amounts of CO2 xcess power from wind turbines and solar cell

Ammonia storage

- high pressure or high refrigeration to store it in a liquid phase
 - 1) storage vessels = 300 tons
 - nearly 17 bars of pressure to maintain liquid phase and meet minimum safety requirements for storage and transportation.
 - 2) refrigerated vessels = high storage capacity (as high as 66.2 million liters)

- temperature requirement for low pressure storage : -33°C at 1 atm.

Cesar Z, UK-India Ammonia meeting, 2020

Storage cost and transport

Comparison of Hydrogen and Ammonia As an Energy Vector, in 2019 USD^{163}

		hydrogen ($kg \cdot H_2^{-1}$)	ammonia ($kg \cdot H_2^{-1}$)				
production	n pipeline	3.7	4.7				
transport		2.3	0.24				
storage	182 day	18.5	0.67				
	15 day	2.4	0.08				

Worldwide network

Ammonia loading facilities
 Ammonia unloading port facilities

Production

Classical way : Haber-Bosch Process

```
Synthèse : N_2(g) + 3 H_2(g) \leftrightarrows 2 NH_3(g)
Exothermique \Delta H^\circ = -46 \text{ kJ/mol}
Mise au point du premier réacteur : <u>1913</u>
Réaction Cinétique : <u>impossible à Tambiante</u>
```


catalyseur nécessaire : à base de fer (Fe) et nickel (Ni) haute T pour bonne réproductivité (>670 K) + haute P (~100-300 Bars)

Procédé en réacteur-tube

Problème majoritaire :
soit à partir du CH₄
Soit à partir du H₂ (lui-même produit à partir du CH₄ Hydrogène jaure/bleu et non VERT

New Process Electrochemical reactor at High T

Cathode: $3H_2O + N_2 + 6e \rightarrow 3O^{2-} + 2 NH_3$ Anode : $3O^{2-} \rightarrow 3/2 O_2 + 6e$

Cathode N_2 + 6H⁺ +6e ->NH₃ Anode 3 H₂0 -> 6H⁺ + 3/2 O₂ + 6e

 $N_2 g + 3 H_2 O g -> 2 NH_3 g + 3/2 O_2$

« SOEC »

« PCEC »

 H_2 H_2 H_2 H_1^+ $H_1^ H_1^ H_1^-$

> Cathode : $N_2 + 6H^+ + 6e^- > 2NH_3$ Anode : $H_2 -> 2H^+ + 2e$

$N_2 g + 3 H_2 g -> 2 NH_3 g$

« PH » 13

Différentes techniques de production de NH₃

Répondre à la future demande !

Ammonia production today

IHS Markit

10 Cleantech

Trends in 2021

Technologies to reduce emissions and confront climate change

 Electricity source
 Plant size, kt/yr

 Solar and wind
 Solar

 Solar
 Solar

 Wind
 Solar

 Solar, wind, and grid
 0

 power
 Grid power

 Hydro
 < 4</td>

Announced global electrolysis capacity for power-to-ammonia projects (2021)

Electrolysis by end-product (2021)

A total of 27 ongoing or announced Power-to-Ammonia projects mostly concentrated in Asia (70% Australia), most dated between 2020 and 2030 = RECENT INTEREST for Power-to-Ammonia

Energy demand for maritime sector

• Decarbonize for 2050

Needed ammonia plants to meet IMO target (plant capacity of 7000 MTPD

LSHFO = light sulfur heavy

Energy carrier

How to extract this energy content ?

3 solutions

- To decompose ammonia by means of new optimized reactors in order to provide hydrogen
- $\hfill\square$ To use ammonia directly
 - lacksquare in fuel cells
 - To employ the chemical in combustion systems such as turbines or internal combustion engines.

How to extract this energy content ?

3 solutions

 To decompose ammonia by means of new optimized reactors in order to provide hydrogen
 To use ammonia directly in fuel collection

- To use ammonia directly in fuel cells
- To employ the chemical in combustion systems such as turbines or internal combustion engines.

ULTRA-PURE HYDROGEN PRODUCTION VIA AMMONIA DECOMPOSITION IN A CATALYTIC MEMBRANE REACTOR ,

Cechetto, Di Felice, Gutierrez-Martinez, Arratibel-Plazaola, Gallucci

Fraunhofer

Ammonia is split into nitrogen and hydrogen in the ammonia cracker. The latter is then burned in the fuel cell to generate electricity. The catalytic converter ensures that no harmful nitrogen oxides are produced. The only end products are water and nitrogen.

How to extract this energy content?

3 solutions

□ To decompose ammonia by means of new optimized reactors in order to provide hydrogen

To use ammonia directly in fuel cells

To employ the chemical in combustion systems such as turbines or internal combustion engines.

Electrolyte Cathode Anode

- Direct ammonia solid oxide fuel cell : HT !
- Other fuel cells LT
- Still in progress

How to extract this energy content ?

3 solutions

To decompose ammonia by means of new optimized reactors in order to provide hydrogen
 To use ammonia directly in fuel cells
 To employ the chemical in combustion systems such as turbines or internal combustion engines.

researchers from the UK announced that ammonia is a clean and secure hydrogen-containing energy source, proposing the idea to use it directly in engines. As it was underlined in another recent analysis based on the opportunity for NH3 to be one of best environmentally benign energy carriers for China, other advantages of direct ammonia injection were highlighted, raising that 'ammonia is an ideal fuel since it is not a greenhouse gas and its complete combustion forms only N2 and H2O'

The use of NH3 as fuel for vehicles = an old story

Une ancienne gravure du moteur à ammoniac de Delaporte de 1870 'chaudière à ammoniac'

Vehicules in the past

From second War

NH3 Fuel Bus, Belgium

To recent experiences

Kier/Hyundai, 2014

Università di Pisa Italy, 2013

Activate norvegian project, Silesian University project 2022 ? 2023 ?

C-Free Run project, HydrogenEngine Center (Iowa), 2018

Fig. 4 – Norsk Hydro power company first converted truck to run on ammonia [79].

Marangoni Toyota GT-86 Eco-Explorer, 2013

But ...only Toyota considered NH₃ without gasoline or diesel blend

Relevance of NH_3

	H ₂	NH ₃	Methanol	gasoline	Diesel fuel
Boiling Point (°C) at Patm	-253	-33	65	27-225	
Density (20°C, 1 bar) (kg/m³)	0,08	0,71 (G)	790	740	
Storage	Gas, Liquid	gas ou Liquid	liquid	liquid	liquid
Liquid pressure at 20°C	700	8.6	1	1	3
Density at storage conditions(kg/m³)	39.7	610	790	740	800
Energy density at storage conditions (MJ/I)	4.76	11.47	15.72	32	34,9

More>H₂, similar « classical » fuel

3 * > LPG ! > methanol

Fuel Consumption for transport applications

- NH3 =11.5 MJ/liter !
- 1 single storage tank of 40,000m³ of NH_3 = annual electricity demand of 30,000 households !

Alternative fuels will require more fuel volume (approximate values)

Fuel tank volume

Other storage solutions...

- Current carbon steel ammonia storage vessels = low-cost
+ satisfactory corrosion resistant

New materials for ammonia storage and distribution

 novel metal halide amines (solid salts) (limiting

 NH3 release at atmospheric conditions (consequence of the vapour pressure of ammonia under those conditions).

- Hexa-ammine-magnesium chloride
- Ammonia boranes, materials well known to store ammonia
- Another method for ammonia storage : gelation using silica gel (Metal Ionic Liquid Silica Gel composites)
- Urea and other aqueous nitrogen-based fuels = recovered from animal waste streams

identification of an effective carrier with similarly attractive energy density and overall conversion efficiency while providing a safer and more convenient energy storage media.

Global ammonia combustion characteristics

	Hydrogen	Methane	Methanol	Gasoline	Diesel Fuel	Ammonia	consequences
Low Heating Value (MJ/kg)	120	49	19.9	44	45	43,2	Similar
Air/Fuel ratio at stoichiometry (kg/kg)	34.2	17.65	6.46	14.6	14.6	6.06	High fuel consumption
Flammability limit in air (vol.%)	4.5-75	5-15	6.7-36	1.3-7.6	1-6	15-30	> Low risk
Laminar flame speed (cm/s)	210	38	40	~40	52	1	Difficult propagation
Auto-ignition Temperature(°C)	537	595	465	275	225	651	Difficult ignition
Octane Number (-)	>120	120	109	88-98	20-30	>120	Low knock occurency ?
Adiabatic flame temperature (°C)	2519	2326	2228	2392		2107	Colder flame
Quenching distance (mm)	0.64	2		3	7	7	> Lower heat wall loss
Latent heat of vaporization(kJ/kg)	461	510	1168	180-350	1370	400	High

Challenges for Ammonia fuel in ICE

CHALLENGES	Technical Impact	Fundamental needs
High latent heat of vaporization + different saturated vapor curve	Injection sytem	Flash boilling ? Supercritical ? Atomization process
Difficult Auto-Ignition	Ignition range, cold starts Compression ratio, boosted conditions ? Ignition system : reactive fuel pilot injection ? Igniter ?	Auto-ignition delay (T,P, lambda, reactive fuel addition ?) Accurate full kinetics mechanism Reduced kinetics mechanism for CFD use
Narrow flammability range	Combustion stability Operating conditions range (lambda)	flame/stretch, extinction, Neat NH3 + other fuels
Low reactivity/ low flame propagation speed	Efficiency ? Thermodynamics conditions	Flame speed database (T, P, Phi, pilot fuel) Kinetic mechanism (neat ammonia+ more reactive fuel ?) Flame-turbulence interaction, stretch, wall heat transfer
Fuel nitrogen	Exhaut pollutant : NO, NO2? N2O ? Unburnt NH3, Exhaust post-treatment	Reduced Kinetic mechanism for CFD ?

NH₃ AS FUEL FOR ICE

Best Possibilities to use ammonia only in ICE

- Difficulties to auto-ignite NH3
 - Spark igniter or ignition by pilot fuel

Main results in engine tests with H₂

Combusti	on and Perforn	nances	s in SI eng	gines						
Minimum H ₂ for combustion			Efficiency		Output energy					
stability										
Between 5-10% in vol		Higher for ER>=1		Less than gasoline at low			W			
						and partial load				
Amount n	eeded decreases	with	Higher the	han gasoline		Increase with	CF	R (or	
load increa	ase (full load. 09	<u>()</u>				boosted pressure	•			
slight effe	ct of engine spee	ed	Decrease	e with H ₂ increase				Ŀ	Sut	only from 2000 to 4000
Pollutant	Emissions befo	re any	aftertrea	tment device				r	'nď	n in small engine
	ER decrease	ER	increase	H ₂ increase		Load			·	0
	(lean)	(rich	.)							
NOx	++			+		slight increase	bu	t r	10	
(ppm)	maximum >					universal trend				
	gasoline)
Unburnt		++				no universal trer	nd			
NH ₃				But H ₂ at exhaust						

Mounaïm-Rousselle C., Brequigny P. (2020) Ammonia as Fuel for Low-Carbon Spark-Ignition Engines of Tomorrow's Passenger Cars. *Front. Mech. Eng.* 6:70. doi: 10.3389/fmech.2020.00070

Ammonia as fuel for ICE engines

- Port-vapor fuel injection :
 - Displacement of the air supplied to the combustion chamber
 - Reduction of volumetric efficiency of the engine.
- Direct-vapour fuel injection
 - Reduction of in-cylinder temperature (ammonia's high latent of heat)
- liquid ammonia injection
 - better volumetric efficiency (no air displacement r and intake mixture cooling).
- One possible way to enhance mixing and thereby facilitate combustion of ammonia :
 - to increase turbulence in the combustion chamber.
- Ammonia more suitable for lower engine speeds due to its low flame speed
- Limited by narrow flammability limits and low flame speed
 - Incomplete combustion ?
 - Real Misfire : ignition process ? .

Main Phenomena description

POLLUTANT EMISSIONS : TENDENCIES

Vehicles applications What best solutions ?

Fig. 1. Schematic of the proposed integrated system comprising ICE, TEG and AEC unit.

hydrogen M.F.Ezza^{(3,3,4}, 1. Dincer³ *Rody of physoing and Appled Sines Dinning of Oracis Jostino of Technology, 2000 Henro Stree Nech, Oshawa, Osurio LUF 764, Canada *Anamateria of Decembrany Explorations, Nation of Decembrany, Eggs

what best vehicle architectures ?

Assessment of three vehicle architectures using NH₃ energy storage

STEL

