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Abstract: Deformation mechanisms, long-term kinematics and evolution of fold and 28 

thrust belts submitted to erosion are studied through 2D analog experiments involving 29 

large convergence. First order parameters tested include: i) décollements and/or 30 

plastic layers interbedded at different location within analog materials; ii) 31 

synconvergence surface erosion. 32 

Weak layers, depending on their location in the model, favor deformation partitioning 33 

characterized by the simultaneous development of: i) underplating domains in the 34 

inner part of the wedge (basal accretion); ii) frontal accretion where the wedge grows 35 

forward. Interaction between tectonics and surface processes influence this behavior. 36 

Development of antiformal thrust stacks controlled by underplating show small- and 37 

large-scale cyclicity. 38 

Thin plastic layers induce folding processes, which are studied at wedge scale.  39 

Recumbent and overturned folds, with large inverted limbs, develop in shear induced 40 

asymmetric deformation regime via progressive unrolling of synclinal hinges. Surface 41 

erosion and underplating at depth induce further rotation (passive tilting) and 42 

horizontalization of fold limbs. 43 

Models results give insights to discuss the mechanisms responsible for the large-scale 44 

structures (i.e., antiformal nappe stacks, klippen and kilometer scale recumbent fold-45 

nappes) encountered in several mountain belts such as the Montagne Noire (French 46 

Massif Central), the Galicia Variscan belt (Spain) or the Northern Apennines (Italy). 47 

 48 

 49 

 50 

 51 



Orogenic wedges are characterized by complex geological structures growing and 52 

evolving over long time periods (e.g. Fossen 2010). Their building is mainly 53 

controlled by the general mechanics of subduction and by the interactions between 54 

tectonics and surface processes that modify wedge dynamics through material transfer 55 

(e.g. Malavieille 2010). Because subduction orogens suffer large convergence, the 56 

long-term deformation is intense and generates specific structures which mechanisms 57 

of genesis are still not completely understood. Among them, the way large-scale 58 

recumbent fold-nappes observed in several mountain belt forelands grow and evolve 59 

remains enigmatic (Fig. 1). The most beautiful examples in Europe are situated in the 60 

Montagne Noire (Southern French Massif Central), Galicia Mountain Belt, (Spain) or 61 

the Northern Appennines (Italy). For example, during the Variscan Orogen, large-62 

scale fold-nappes with huge inverted limbs (sometime of more than ten kilometers of 63 

amplitude) have been created without (or with very low) metamorphism (e.g. Matte 64 

1968; Arthaud 1970). Other large scale structures are common in mountain belts, such 65 

as antiformal stacks of thrust units and subsequent frontal klippen which can be 66 

sometimes related to deformation partitioning and subsequent basal accretion of 67 

duplex structures (e.g. Elliott & Johnson 1980; Price 1981; Platt et al. 1985; Hatcher 68 

1989; Gutscher et al. 1996; Burkhard & Sommaruga 1998; Mosar 1999; Kukowski et 69 

al. 2002; Avouac 2003; Malavieille 2010; Konstantinovskaia & Malavieille 2011; 70 

Long et al. 2011; Webb et al. 2011). Basal accretion activity is generally not constant 71 

during the long-term convergent history of orogenic wedges, alternating 72 

underthrusting of new tectonic slices with the internal deformation of the already 73 

accreted ones, or even with the migration of the underplating locus to a new place. 74 

Such a cyclical underplating behavior could promote, at a whole wedge scale, an 75 

alternate change from supercritical to subcritical taper condition, in turn favoring 76 



alternations between horizontal and vertical shortening observed in many orogens 77 

(e.g. Bell & Johnson, 1989; Bell & Sapkota 2012; Aerden et al. 2013). What 78 

mechanisms control large scale folding, basal accretion and its cyclicity remain an 79 

open question. 80 

 81 

Analog modeling is an efficient tool to unravel the main mechanisms controlling the 82 

dynamics of orogenic wedges. Various experimental studies have investigated the 83 

influence of geometrical, kinematical and rheological parameters on the evolution of 84 

thrust wedges (see a review in Graveleau et al. 2012). One of the most important 85 

parameter highlighted is the layering of the accreting crustal materials that induces 86 

mechanical heterogeneity and deformation partitioning. Such a heterogeneous 87 

rheology of accreted rock sequences is the result of various factors: stratigraphy of the 88 

incoming crustal layer (e.g. Davis & Engelder 1985; Mulugeta 1988; Liu & Dixon 89 

1990; Liu et al. 1992; Baby et al. 1995; Mandal et al. 1997; Nieuwland et al. 2000; 90 

Costa & Vendeville 2002; Koyi & Vendeville 2003; Konstantinovskaia & Malavieille 91 

2005; Stockmal et al. 2007; Malavieille 2010; Smit et al. 2010), décollements in a 92 

sedimentary sequence or basement-cover interface (e.g. Konstantinovskaia & 93 

Malavieille 2011), rheological evolution of the crust due to P-T changes through time 94 

(Carry et al. 2009; Gueydan et al. 2009), or structures and fabrics inherited from an 95 

earlier tectonic history (Sutton & Watson 1986; Holdsworth et al. 1997; Butler et al. 96 

2006, 2008; Bonnet et al. 2007, 2008). Among the large number of previous 97 

experimental studies of thrust wedges involving multiple décollements, only a few 98 

have suggested that faults development and evolution of structures could be cyclical 99 

under specific deformation conditions (e.g. Mulugeta & Koyi 1992; Gutscher et al. 100 

1998a; Malavieille 2010).  101 



Analog models allow to investigate the importance of surface processes (i.e. erosion 102 

and sedimentation) and their influence on the dynamics of accretionary wedges (e.g. 103 

Baby et al. 1995; Larroque et al. 1995; Storti & McClay 1995; Mugnier et al. 1997; 104 

McClay et al. 1999; Persson & Sokoutis 2002; McClay et al. 2004; McClay & 105 

Whitehouse 2004; Konstantinovskaia & Malavieille 2005, 2011; Graveleau & 106 

Dominguez 2008; Cruz et al. 2008, 2010; Malavieille 2010; Smit et al. 2010). Folding 107 

represents another aspect of deformation processes investigated using analog 108 

experiments but, although studied at different scales through different experimental 109 

setups (e.g. Abbassi & Mancktelow 1990; Grujic & Mancktelow 1995; Tikof & 110 

Peterson 1998; Bazalgette & Petit 2007; Noble & Dixon 2011), fold development 111 

have rarely been investigated at the scale of a whole accretionary wedge. 112 

 113 

This study address five major questions: 1) how do décollements influence  114 

deformation partitioning within thrust wedges, and their long term evolution, 2) which 115 

mechanisms govern the development of large scale overturned folds commonly 116 

preserved in mountain belt forelands as synformal fold-nappes klippen, 3) what 117 

controls the growth of large scale antiformal structures that develop concomitantly in 118 

the hinterland, 4) what are the interactions between relatively strong plastic layers 119 

versus weak décollements, and 5) what is the impact of surface processes on all these 120 

mechanisms? We present results of an analog modeling approach that takes into 121 

account large amounts of shortening of mechanically heterogeneous, multilayered 122 

materials and simultaneous surface erosion. Our first goal is to analyze the role of 123 

strain partitioning in relation with material transfer by erosion. Then, we study the 124 

impact of thin plastic layers interlayered in the incoming material on folding 125 

mechanisms and on its evolution at the scale of a fold and thrust wedge. The main 126 



experimental results are discussed and compared to large-scale tectonic structures 127 

from several mountain belts to better interpret their geometry and kinematic 128 

evolution. 129 

 130 

Experimental set up and procedure 131 

The experimental set-up simulates the basic geometry and the main mechanisms of a 132 

subduction zone where lower plate crustal materials sink beneath an upper plate. This 133 

domain of the upper-plate located above the subduction interface corresponds in the 134 

experiments to a deformable proto-forewedge equivalent to the units of the orogen 135 

already accreted, deformed and structured following subduction. All experiments are 136 

performed under normal gravity field in a classical sandbox (see Malavieille 1984 and 137 

Konstantinovskaia & Malavieille 2005, 2011), adapted to allow large shortening (over 138 

200 cm) and presenting a flexure of the basal plate taking into account the curvature 139 

of a subducting plate. 140 

The sandbox (Fig. 2) is 10 cm wide and 300 cm long, with a vertical rigid buttress. At 141 

the base a thin plastic strip (dacron cloth) exits from the device through a thin slot 142 

located at the base of the buttress. It is pulled by a computer controlled step by step 143 

electric motor. Analog materials materializing the upper crust rocks of the lower plate 144 

are deposited onto the plastic strip and are dragged toward the backstop. As they 145 

cannot exit from the device, they are accreted against the upper-plate backstop. A thin 146 

layer of sand is glued on the upper surface of the plastic strip, leading to a very rough 147 

surface. It creates a high basal friction (µb ≈ 0.5) between the basal strip and the 148 

analogue material of the models. According to the critical wedge theory (Davis et al. 149 

1983; Dahlen et al. 1984; Dahlen 1984), the strength of the basal décollement 150 



influences the dipping of the main thrusts and backthrusts and the surface slope angle 151 

of a wedge that satisfies the yield conditions. 152 

 153 

Three different materials are used in the models. 1) Aeolian sand, with a density of 154 

1690 kg/m3, well rounded grains, less than 300µm in size, coefficient of internal 155 

friction (µ0) is 0.57 and the cohesion (C) is 100-150 Pa. It composes the upper plate 156 

protowedge and a large part of lower plate layers. 2) Glass microbeads poured in the 157 

sandcake are used to model weak layers (décollements). Diameter is 100/200 µm, and 158 

the perfect roundness of the grains leads a smaller coefficient of internal friction (µ0 = 159 

0.44) and a negligible cohesion. 3) Plasticine is used to simulate folding because it 160 

presents a plastic behavior. It is composed by mineral oils, waxes and a solid filler 161 

made of fine powder (15µm). It does not contain water, does not dry, and can be 162 

reused. The Plasticine is melted in an oven (softening point between 39 and 42°C) and 163 

poured in a 200 x 9.8 cm mold. After cooling, 1 mm thin layers are sliced and then 164 

included in the multilayered model. To observe the final deformation of the plastic 165 

layer at the end of experiment, we have carefully cleaned the sand around the fold 166 

limbs. Practically, in the experimental procedure, when a plasticine layer is emplaced 167 

in the sand cake, the width of the thin plasticine sheet is slightly lower than the space 168 

between the two glass sidewalls to avoid parasitic effects of lateral friction along the 169 

glass. So, less than 1 mm of sand separates the plastic layer from the sidewall. As a 170 

consequence, what we can observe directly through the glass sidewall is not the 171 

plasticine layer itself, but the thin coloured sand marker which outlines its 172 

deformation. 173 

 174 

 175 



Aeolian sand and glass microbeads are commonly used in physical modeling studies 176 

as analogue of upper crustal rocks with a brittle behavior. The scaling factor between 177 

their mechanical properties and those of the natural prototype is 105 (Krantz 1991; 178 

Schellart 2000; Lohrman et al. 2003). The same 105 scaling factor is therefore used 179 

for model dimensions (1 cm = 1 km), in order to satisfy the fundamental scaling 180 

theory for analogue modelling (Hubbert 1937, 1951; Horsfield 1977; Ramberg 1981; 181 

Davy & Cobbold 1991; Graveleau et al. 2011). Plasticine is a non-Newtonian fluid 182 

characterized by strain rate-dependant plastic yielding and strain hardening. At 183 

constant temperature, the constitutive flow law for plasticine is given by 

! 

˙ " = C#n , 184 

where 

! 

˙ "  is the strain rate, C is a material constant, n is a stress exponent, and σ is the 185 

differential stress (McClay 1976; Ranalli 1995). The apparent dynamic viscosity (

! 

") 186 

of plasticine is given by one half the ratio between the differential stress and the strain 187 

rate: 

! 

" =# /(2 ˙ $ ) .  188 

Considering that experiments were carried at constant room temperature (T ∼ 22-189 

25°C) and that the strain rate of the plasticine layer during deformation is constant 190 

and very low (

! 

˙ " #1$10%3 s-1) then 

! 

" # 4 $107Pa s. This value of viscosity was 191 

determined by mechanical experiments on plasticines (Schöpfer & Zulauf 2002; 192 

Zulauf & Zulauf 2004) whose composition is similar to the plasticine used in our 193 

analogue models. 194 

The yield strength of a plasticine layer with millimetric thickness is roughly 195 

equivalent to the compressional strength of a sand layer with centimetric thickness. 196 

Thus, the strength contrast between plasticine layers and granular layers (sand or glass 197 

microbeads) in our models is roughly equivalent to the strength contrast between 198 

ductile yet strong rock layers (such as limestone) and weak rock layers (such as 199 



siltstones or shale). This strength contrast is typical of sedimentary sequences 200 

observed in foreland and intra-mountainous basins in orogenic wedges. 201 

 202 

Thirteen experiments have been run (Table 1). Among them, seven are chosen as 203 

representative to describe the main results of our study. Erosion has been applied to 204 

most of them, following the procedure described here below. First, an initial 205 

shortening without erosion is applied to the models, allowing the development of a 206 

wedge shaped topographic relief. This first step of wedge growth could be considered 207 

as the analogue of wedge development in a poorly erosional submarine setting. Then, 208 

erosion is applied step by step, each 2 cm of convergence (see digital screen in 209 

experiment pictures for shortening values), simulating a climate-dependent erosion in 210 

a subaerial wedge setting and keeping a constant evolution of the wedge topography. 211 

It is performed by scraping off all the material rising above an imposed erosion 212 

surface and then removing it with a vacuum cleaner. The slope of this erosion surface 213 

can be variable or fixed and predetermined. In the former case the slope of the erosion 214 

surface is adjusted step by step, in order to follow the “instantaneous” average slope 215 

of the wedge, just smoothing in this way the small scale irregularities of the 216 

topographic profile without altering its average slope. In the latter case an average 217 

tilted erosion profile dipping from 3 to 10° toward the foreland is maintained 218 

(Konstantinovskaia & Malavieille 2005, 2011; Bonnet et al. 2007, 2008). This slope 219 

corresponds to the critical taper slope of a dry sand wedge (Davis et al. 1983). In this 220 

case, local erosion rates are directly controlled by the activity of thrusts. Even if the 221 

role of sedimentation has not specifically been taken into account in this study, small 222 

piggy back basins that develop during wedge growth have been filled while 223 

performing erosion to avoid unrealistic foreland topographies. 224 



 225 

Experimental results 226 

Our new set of experiments complements previous modeling works on orogenic 227 

processes carried out at the Geosciences Laboratory in Montpellier, which outline the 228 

impact of coupling between surface and tectonic processes and the important role of 229 

décollement levels during deformation (see, Malavieille et al. 1993; Larroque et al. 230 

1995; Konstantinovskaia & Malavieille 2005, 2011; Bonnet et al. 2007, 2008; 231 

Malavieille 2010). Décollement layers favor the mechanical decoupling of stratified 232 

material of the subducting plate and consequently, induce deformation partitioning. 233 

While upper units are accreted at the toe of the wedge during propagation of the 234 

deformation front (frontal accretion), lower units are underthrusted below the main 235 

décollement fault and accreted at the base of the wedge by duplexing and 236 

underplating (i.e. basal accretion). This partition between vertical and horizontal 237 

accretion has a major impact on the organization of tectonic structures, deformation 238 

and exhumation of deep units (e.g. Gutscher et al. 1998; Bonini 2001, 2003; Adam et 239 

al. 2002; Kukowski et al. 2002; Konstantinovskaia & Malavieille 2005, 2011; Bonnet 240 

et al. 2007, 2008; Hoth et al. 2006, 2007, 2008; Malavieille 2010). 241 

 242 

Influence of weak layers 243 

A microbeads layer deposited on the top surface of the lower plate (experiment 1, Fig. 244 

 3a) favors underthrusting of the tectonic units below the protowedge in the first steps 245 

of experiments. During shortening, the wedge grows mostly in sequence by frontal 246 

accretion and shows the typical structure of a simple sand wedge with no décollement 247 

in the incoming sequence. We recognize typical structures of high basal friction 248 

wedges built up by underthrusting of long tectonic units (e.g. Malavieille et al. 1992; 249 



Lallemand et al. 1994; Gutscher et al. 1998a, 1998b; Nieuwland et al. 2000; Agarwal 250 

& Agrawal 2002; Kukowski et al. 2002; Konstantinovskaia & Malavieille 2005; 251 

Graveleau et al. 2012). In some cases, when the deformation front advances toward 252 

the foreland through the nucleation of a new thrust, the previous frontal thrust remains 253 

active until the end of the experiment. Internal deformation of individual foreward 254 

vergent thrust units is accommodated by small backthrusts and only few large 255 

backthrusts propagate through the whole wedge. 256 

 257 

A microbeads layer positioned at ~1/3 of the total lower plate thickness favors 258 

remarkable strain partitioning (experiment 4, Fig. 3b). Materials of the upper portion 259 

of the subducting plate are deformed by frontal accretion, leading to the development 260 

of a typical low basal friction thrust wedge. Given the reduced thickness of the 261 

materials deformed by frontal accretion and the reduced basal friction, both the wedge 262 

taper angle (Fig. 3b) and the spacing between new thrust faults, are smaller than in 263 

experiment 1. Materials of the lower portion of the subducting plate are deformed by 264 

underplating and basal accretion (Fig. 3b). As already described in previous papers 265 

(e.g. Mulugeta & Koyi 1992; Gutscher 1996, 1998a), underplating is not a steady-266 

state process. More in detail, it can be noted that the evolution of the duplex structure 267 

is characterized by the activity of: i) large-offset faults (continuous lines in Fig. 3b 268 

and 3c) allowing the accretion of a new unit at the base of the wedge; ii) small-offset 269 

faults (dotted lines in Fig. 3b and 3c), allowing the accommodation of the internal 270 

deformation of individual underplated units (Adam et al. 2002; Kukovski et al. 2002; 271 

Hoth et al. 2008). The large shortening (of the experiments presented in this paper) 272 

also allowed a second type of cyclicity to be observed at the whole-wedge scale. 273 

When the first antiformal stack of underplated units reaches a critical size, it becomes 274 



inactive and the locus of underplating shifts to a more external position (e.g. toward 275 

the foreland) where a second antiformal stack starts developing. The first underplating 276 

domain is thus passively accreted and becomes part of the wedge upper-plate. Such a 277 

mechanism of accretion repeats itself cyclically during the long-term evolution of a 278 

wedge. 279 

Growth of the antiformal stacks leads to some localized uplift of the overlying portion 280 

of the wedge as manifested by the shape of the topographic profile, which shows two 281 

evident bumps corresponding with the deep duplexes. By contrast the topographic 282 

profile is quite regular in wedges lacking strain partitioning (Fig. 3a and 3b). 283 

 284 

A microbeads layer located at shallow depth in the sandcake has a slight influence on 285 

active deformation, without leading to efficient strain partitioning (experiment 6, Fig. 286 

3d). Only second order small thrust units develop along the weak layer, involving the 287 

upper portion of the subducting plate. Such small thrusts are regularly alternated with 288 

major thrusts involving the whole subducting plate, and can therefore be considered 289 

local splays of the main thrusts. The overall architecture of the wedge is that of a 290 

classical high basal friction wedge, similar to the one obtained without microbeads 291 

layer (Fig. 3d). 292 

 293 

Influence of a plastic layer on folding 294 

In experiment 10 (Fig. 4a) the introduction of a plastic layer in the subducting plate 295 

drastically changes the tectonic style and kinematic evolution of the wedge, and leads 296 

to folding processes at the scale of a whole accretionary wedge. The main 297 

mechanisms of folds development in the experiment with no erosion are described 298 

Fig. 5. Development of folds begins by buckling of the plastic layer, which is 299 



accommodated by a pop up structure in the overlying “brittle” sand layer. The 300 

wavelength of buckling and the folding mechanism are controlled by the strength 301 

contrast between the relatively strong yet ductile plasticine layer and weaker sand 302 

layers (see previous section). Soon afterwards, the folding amplitude increases, folds 303 

become asymmetric and overturned, controlled by progressive shearing deformation 304 

induced by the growth of the prism. Shearing is partly responsible for the 305 

development of the long inverted limbs, but the plastic layer is never disrupted or 306 

stretched enough to be cut, thus allowing unrolling of the synclinal hinge. Fold 307 

growth proceeds by continuous unrolling of the synclinal hinge which causes existing 308 

nearby thrusts to become inactive, while new ones form. Then, the inactive faults are 309 

passively transported along the inverted fold limb, although some can be reactivated 310 

by out-of-sequence thrusting. 311 

 312 

Impact of surface erosion 313 

The effect of surface erosion is tested on wedges characterized by different tectonic 314 

styles. In experiment 6, a simple high friction thrust wedge showing no strain 315 

partitioning or folding is submitted to erosion. It is comparable to experiment 1, 316 

except the latter did not include erosion. Figure 3d outlines the similar tectonic styles 317 

of both models, and similar taper angle of their pro-wedges.  318 

 319 

Experiment 5 (Fig. 3c) shows the effects of erosion on a wedge characterized by 320 

strong strain partitioning, to be compared with experiment 4, which has the same 321 

initial setup but no erosion. In both models permanent underplating leads to the 322 

development of a large antiformal stack formed by basal accretion of duplex units. It 323 

induces uprising of internal domain and subsequent localized surface uplift. In model 324 



5, however, surface uplift enhances localized surface erosion, which in return favors 325 

further uplift and localization of underplating. As shown in figure 3c the final product 326 

of this process is the exhumation of underplated units in localized areas.  327 

 328 

In experiment 11 (Fig. 4b) a model involving a plastic layer is submitted to erosion in 329 

order to investigate the impact of surface processes on the dynamics of folding. 330 

Compared to experiment 10, which has the same initial setup, experiment 11 shows 331 

several differences in the general tectonic style. Despite erosion of anticlinal fold 332 

hinges, shear deformation increases the length of the inverted sequence, which is 333 

associated with the unrolling, and migration of the synclinal fold hinge. Frontal 334 

accretion spreads but the amount of shortening accommodated through each folded 335 

tectonic unit is higher. The material removed by erosion delays the growth of the 336 

wedge and thus its ability to propagate the deformation forward through new tectonic 337 

units. Although the anticline hinge is being removed by erosion, unrolling of the 338 

syncline hinge continues suggesting that the inverted limb is not submitted to traction. 339 

The diffuse shear deformation involved in the core of folds due to asymmetric 340 

shortening could be responsible for the forward migration (relative to the undeformed 341 

foreland) of the synclinal hinge.  342 

To summarize the main differences, we note that each unit is more intensely deformed 343 

and that the length of fold limbs is greater in the experiment with erosion. In addition, 344 

for an equivalent amount of shortening, less tectonic units were formed. 345 

 346 

Brittle/ductile multilayer and underplating 347 

In experiments 10 and 11, large-scale isoclinals folds developed with an average final 348 

overturning of the limbs ranging between 30° and 50°. These modeling results cannot 349 



explain what is commonly observed in many natural mountain forelands where large 350 

scale inverted fold limbs rest close to horizontal over kilometers. Thus, important 351 

questions remain: what mechanism is responsible for the huge overturning observed? 352 

And, does this mechanism occur during folds development or by rigid rotation due to 353 

late tilting? In order to answer these questions, we have taken into account the 354 

insights from the experiments involving basal accretion. As previously shown, 355 

décollement layers play a key role during deformation and interactions with surface 356 

processes, that seems major too for the development of folding during the growth of 357 

fold and thrust belts. 358 

In experiment 13 (Fig. 4c) we tested the impact of heterogeneous layering involving 359 

décollements, brittle and plastic behaviors (very common in foreland belts). The 360 

model combines strain partitioning, folding and surface erosion. A 5 mm thick layer 361 

of sand is placed between a 1 mm thick plasticine sheet and the 3 mm thick weak 362 

layer of glass microbeads. The complete evolution of the experiment is described in 363 

the figure 6. Erosion begins after 15 cm of shortening and the wedge slope is 364 

sustained at about 3° during shortening (60% at the end of the experiment). During 365 

convergence, fold hinges are rapidly eroded, while active thrusting occurs in the core 366 

of folds. Six folded tectonic units were obtained and a large domain of deeply 367 

accreted units is exhumed behind the prism. Note that we also observed the cyclical 368 

behavior of underplating as described previously. 369 

The structures located above the décollement layer are passively deformed and 370 

uplifted due to basal accretion, tilting the back part of folded tectonic units. These 371 

deep accretionary processes are responsible for the important overturning and rotation 372 

of the flanks of folded structures. During continuous shortening, the kinematics of 373 

deformation reflects the complex interaction between wedge mechanics and erosion. 374 



At the final stage most of the folded units from the backpart of the wedge have been 375 

removed by erosion. Finally, three different tectonic domains characterized by 376 

specific deformation features are juxtaposed. From the frontal part of the wedge to the 377 

backstop respectively, we have (Fig. 6): a frontal imbricate of thrust and fold sheets; a 378 

synformal klippe of folded units previously accreted to the front and progressively 379 

deformed; and, an antiformal stack of underplated thrust units refolding the upper 380 

décollement layer.  381 

 382 

Discussion and case studies 383 

Results of this series of experiments give some insights for the interpretation of 384 

several debated features of the forewedge domain of mountain belts formed in 385 

continental subduction settings. Chosen case studies are discussed in the light of our 386 

experimental results. The last model, which contains the main features described in 387 

previous sections, is used to illustrate the general mechanisms explaining the 388 

relationships between the main tectonic units of natural orogenic wedges (Fig. 7).   389 

 390 

Examples from the Variscan Belt 391 

The Variscan orogen developed during the Gondwana-Laurasia collision from 392 

Devonian to middle Carboniferous times (e.g. Matte 2007). The Montagne Noire in 393 

southern French Massif Central and the Galicia Mountains in northwest Spain 394 

represent segments of this orogen characterized by a foreland fold and thrust belt 395 

domain associated with a syntectonic foreland basin (e.g. Arthaud 1970; Matte 1968; 396 

Pérez-Estàun et al. 1991; Simancas et al. in press). Low-grade tectonic units mainly 397 

composed by sedimentary rocks of the Paleozoic cover (schists, limestones and 398 

quartzites of Cambrian to Carboniferous ages) are intensely folded and juxtaposed 399 



with antiformal stacks of Proterozoic to Cambrian metamorphic basement rock units 400 

largely exhumed in the hinterland. The Montagne Noire which forms the 401 

southernmost part of the Variscan French Massif Central (Fig. 8) is generally 402 

subdivided into three tectonostratigraphic units (e.g. Gèze 1949; Arthaud 1970). (1) A 403 

Northern Flank upper-plate unit with a southward tectonic vergence, consists of 404 

folded and faulted low-grade lower Paleozoic metasedimentary rocks. (2) An Axial 405 

Zone lower-plate unit, is formed by an antiformal structure of crystalline rocks 406 

(gneiss, migmatite, and micaschist) of Proterozoic to Ordovician age. This 407 

metamorphic domain composed by high grade rocks has been variously interpreted in 408 

terms of : diapirism (e.g. Gèze 1949; Beaud 1985 ; Charles et al. 2009), contractional 409 

tectonics (Arthaud et al. 1966; Mattauer et al. 1996; Aerden & Malavieille, 1999; 410 

Soula et al. 2001; Matte, 2007; Malavieille 2010), emplacement in a crustal scale 411 

strike-slip setting (e.g. Nicolas et al. 1977; Franke et al. 2011), or as extensional 412 

metamorphic core complex (e.g. Echtler & Malavieille, 1990; Van den Driessche & 413 

Brun 1992). In fact, most authors agree on the geological evidences for a 414 

contractional history followed (or assisted) by gravity induced extensional processes 415 

favoring exhumation, detachment formation and diapirism in the evolutionary stages 416 

of the orogen. (3) A Southern Flank, well known in the literature for the kilometer-417 

scale recumbent fold nappes, is composed by very low-grade Paleozoic sedimentary 418 

sequences. The south verging nappes stack is intimately associated with syntectonic 419 

Visean flysch sediments deposited in a foreland basin setting, in a shallow marine 420 

environment. The upper-plate nappes are separated from high-grade lower-plate 421 

basement units by major fault zones that record a complex pattern of deformation 422 

(e.g. Echtler & Malavieille 1990; Aerden & Malavieille 1999). Figure 8 shows an 423 

interpreted cross section of The Montagne Noire (Malavieille 2010).  424 



Similar key structures of the Galicia Mountain Belt are outlined on the cross-section 425 

of figure 9, modified from Pérez-Estàun et al. (1991). Proterozoic metamorphic units 426 

outcrop in the internal domain while a domain of large scale recumbent folds made of 427 

Cambrian quartzite/limestone characterizes external foreland units. These kilometric 428 

scale folds present horizontal or overtilted limbs (Matte 1968; Pérez-Estàun et al. 429 

1991). Note that in this segment of the Variscan belt, a cyclical basal accretion may 430 

have occurred at large scale, as two antiformal stack structures formed during wedge 431 

growth. 432 

 433 

Comparing wedges architecture and analog models, we can outline geometrical and 434 

kinematic similarities. As observed in models involving décollements and 435 

brittle/plastic behavior, there is a good analogy between the geometric configuration 436 

of the folded superficial domain and the underlying deeper structures. Where 437 

underplating develops, the folded units located above the décollement layer are 438 

strongly tilted by subsequent uplift in the antiformal stack domain. This can be 439 

compared to the fold-nappes structures of the Galicia belt or Montagne Noire. In the 440 

parts of the orogenic wedge located far from the locus of basal accretion, large scale 441 

folds are simply overturned. During the growth of the Montagne Noire, syntectonic 442 

flysches (Visean) are deposited at the toe of the wedge due to erosion of developing 443 

fold nappes (Southern flank). At the same time, basal accretion is active during the 444 

growth of the prism involving underthrusting of sliced Proterozoic basement and 445 

subsequent uplift at the back of the overturned fold domain. Already deformed Upper 446 

Paleozoic units are overtilted by progressive uplift. The décollement layer allowing 447 

strain partitioning between shallow and deep parts of the wedge is located along the 448 



main inherited discontinuity, between the crystalline basement and the Paleozoic 449 

cover.  450 

Figure 6 highlights the major effect of erosion on deformation processes. During 451 

wedge growth, due to combined basal accretion, surface uplift and erosion, 452 

continuous folding affects tectonic units of the upper-plate that remain at the same 453 

structural level in the upper crust whereas large domains of deep metamorphic units 454 

of the lower-plate are exhumed. Thus, the deformation mechanisms highlighted in our 455 

study may explain how the large scale recumbent fold-nappes with inverted limbs of 456 

10 km develop, and why they suffered only slight or no metamorphism.  457 

 458 

Northern Apennines 459 

The Apennines are a fold and thrust mountain chain constituting the backbone of the 460 

Italian peninsula. Figure 10a outlines some aspects of the northernmost portion of this 461 

chain (e.g. Molli 2008). The internal zone is characterized by a metamorphic core 462 

where two main exhumed tectonostratigraphic units outcrop. The lowermost is the 463 

Apuane unit, a low grade metamorphic unit showing greenschist assemblages 464 

(deepest estimated burial: ~ 20 km). On the western side of the core, the Apuane unit 465 

is overlaid by the Massa unit, an HP greenschist facies metamorphic unit with higher 466 

grade P/T peak conditions (estimated deepest burial: ~ 25/30 km). The whole 467 

metamorphic core is overlaid by the Tuscan Nappe, an anchimetamorphic unit with a 468 

deepest estimated burial of ~ 7 km, which in turn is overlaid by Subligurian and 469 

Ligurian non-metamorphic units and by the Epiligurian basin (e.g. Fellin et al. 2007 470 

and references therein). In a central portion, east of the Alpi Apuane, the chain is 471 

characterized by a recumbent fold domain (Fig. 10b) where the Tuscan Nappe is 472 

folded in a kilometric-scale recumbent structure (the Val di Lima fold), with an 473 



outcropping kilometers long inverted limb. This recumbent fold shows minor 474 

structures related with superimposed deformations (Baldacci et al. 1992; Fazzuoli et 475 

al. 1998) with development of the long inverted limb by progressive hinge migration 476 

(Botti et al. 2010).  477 

The overall geometrical configuration of the analyzed segment of the Apennines (Fig. 478 

10) can be interpreted in the light of our models. The combined action of basal 479 

accretion and underplating of tectonic units  produced  the growth of a syn-480 

metamorphic antiformal stack (Molli & Vaselli 2006) responsible of strong uplift and 481 

exhumation by submarine (in the early stages) and later surface erosion  (Molli et al. 482 

2002; Fellin et al. 2007). Erosion-processes were associated with tectonic thinning by 483 

normal-slip reactivation of the basal thrust of the unmetamorphic units at the hanging 484 

wall and the metamorphic core at the footwall (Carmignani & Kligfield 1990; Molli et 485 

al. 2002; Fellin et al. 2007; Molli 2008). Moreover, the growth of the antiformal stack 486 

may have induced progressive tilting of the basal detachment and the formation of 487 

recumbent geometry of the folded Tuscan unit in the Lima Valley (Fig.10a,b). 488 

Indeed, the locus of basal accretion and the folded domain are close enough to 489 

presume the influence of the underlying deep structures on the passive rotation of the 490 

fold limbs. Model results can give some more hints on the processes that may have 491 

influenced the geological evolution of the metamorphic core, suggesting that two 492 

successive episodes of underplating, could have been responsible for the syn-493 

contractional juxtaposition of the Massa unit above the Apuan unit. 494 

 495 

Open questions in other mountain belts 496 

Mechanisms responsible for deformation structures and exhumation processes 497 

developed in the Himalayas are presently widely discussed through two main kind of 498 



models (ductile channel flow, e.g. Nelson et al. 1996; Beaumont et al. 2001; Jamieson 499 

et al. 2004; and wedge extrusion in a thrust system, e.g. Burchfiel & Royden 1985; 500 

England & Molnar 1993; Guillot & Allemand 2002, Webb et al. 2007, Kali et al. 501 

2010). Our study outline simple mechanisms that seem to be consistent with the 502 

observed large-scale geological structures (antiformal stacks, synformal klippen of 503 

fold and thrust units), in agreement with the second orogenic wedge model. 504 

 505 

Conclusions 506 

Interaction between climate controlled surface processes including erosion, 507 

sedimentation and deformation processes plays a key role in the structural evolution, 508 

kinematics and exhumation of rocks in orogenic wedges. During continental 509 

subduction, the role of the rheologic layering of the crust can be major as it 510 

determines the partitioning of deformation in a growing orogenic wedge into domains 511 

undergoing horizontal and vertical accretion. Partitioning is first controlled by 512 

tectonic processes, but material transfer induced by surface processes exerts a strong 513 

feed-back on wedge dynamics. Insights from analog models applied to natural cases 514 

allow us to emphasize several first order interaction mechanisms that result from this 515 

coupling. Experiments show that strain partitioning is not systematic but depends on 516 

the position of weak layers in the layered incoming sequence. They show a cyclical 517 

behavior of basal accretion, leading to episodic underplating of tectonic units, which 518 

has a strong impact on the vertical component of displacement of rock material. In 519 

turn, it changes surface slopes favoring erosion in domains of strong surface uplift. In 520 

addition, our experiments offer an explanation for the enigmatic domains of non 521 

metamorphic large scale fold nappes units observed in the foreland of many orogenic 522 

wedges. To a first order, the dynamics of folding involves rolling of a synclinal hinge 523 



and develop exclusively overturned fold types. This mechanism was observed, in 524 

particular, for multilayered models constituted of both strong yet ductile layers and 525 

comparatively weaker granular layers.  526 

The influence of the deep wedge dynamics, such as the growth of basal duplexes, 527 

causes further rotation of fold structures, leading to the horizontalization of fold 528 

limbs, while erosion processes keep the folded units in a superficial low-grade 529 

metamorphic domain. Natural wedges (e.g. Galicia, Montagne Noire and Northern 530 

Apennines) present close similarities to the experiments described herein, both in 531 

terms of architecture and orogenic dynamics. Other orogenic wedges exposing similar 532 

structures such as exhumed antiformal metamorphic domes juxtaposed with domains 533 

of largely folded upper-crustal rock sequences need to be revisited in the light of the 534 

general mechanisms here outlined.  535 

Future work should concentrate on multilayered models with different rheological 536 

contrasts (e.g. weak ductile layers and strong brittle layers) to determine other 537 

possible large-scale folding mechanisms in the shallow domains of orogenic wedges. 538 

 539 
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Figures and Captions 1007 
 1008 

Experiment	   Total	  	  
Protowedge	   Lower	  plate	   Decollement	   Plastiline	   Erosion	  

name	   shortening	   Length	   Slope	   	  Total	  thickness	   Termination	   	  position*	   Present	   Thickness	   Position*	   Present	   Start†	   Slope	  
	  	   (cm)	   (cm)	   (°)	   (cm)	   	  	   (cm)	   	  	   (cm)	   (cm)	   	  	   (cm)	   	  	  

Exp	  1	   150	   61	   7	   3.1	   Straight	   Top	  lower	  plate	   No	   	  	   	  	   No	   	  	   	  	  
Exp	  2	   150	   66	   4	   3.1	   Straight	   Top	  lower	  plate	   No	   	  	   	  	   No	   	  	   	  	  
Exp	  3	   160	   80	   2	   3.1	   Gradual	   Top	  lower	  plate	   No	   	  	   	  	   No	   	  	   	  	  
Exp	  4	   180	   74	   0	   3.1	   Straight	   1.1	   No	   	  	   	  	   No	   	  	   	  	  
Exp	  5	   201	   74	   0	   3.1	   Straight	   1.1	   No	   	  	   	  	   Yes	   30	   Variable	  
Exp	  6	   198	   66	   4	   3.1	   Straight	   2.1	   No	   	  	   	  	   Yes	   30	   Variable	  
Exp	  7	   220	   66	   4	   3.1	   Straight	   2.1	   No	   	  	   	  	   Yes	   20	   Fixed	  (5°)	  
Exp	  8	   160	   80	   2	   3.3	   Gradual	   Top	  lower	  plate	   Yes	   0.3	   1.7	   No	   	  	   	  	  
Exp	  9	   167	   90	   0	   3.3	   Gradual	  (-‐15cm)‡	   Top	  lower	  plate	   Yes	   0.2	   1	   No	   	  	   	  	  
Exp	  10	   163	   90	   0	   3.3	   Gradual	  (-‐15cm)‡	   Top	  lower	  plate	   Yes	   0.1	   1	   No	   	  	   	  	  
Exp	  11	   193	   90	   0	   3.3	   Gradual	  (-‐15cm)‡	   Top	  lower	  plate	   Yes	   0.1	   1	   Yes	   25	   Fixed	  (5°)	  
Exp	  12	   175	   80	   2	   3.3	   Gradual	   1.48	   Yes	   0.2	   1.5	   No	   	  	   	  	  
Exp	  13	   200	   90	   0	   3.5	   Gradual	  (-‐15cm)‡	   1	   Yes	   0.1	   1.7	   Yes	   15	   Fixed	  (3°)	  
Notes:	  

	   	   	   	   	   	   	   	   	   	   	   	  *	  Height	  from	  base	  plate	  
	   	   	   	   	   	   	   	   	   	   	  †	  Amount	  of	  initial	  shortening	  without	  erosion	  

	   	   	   	   	   	   	   	   	  ‡	  Lower	  plate	  ends	  before	  the	  backstop	  
	   	   	   	   	   	   	   	   	   	   1009 

Table 1. Parameters used for the thirteen experiments. (Models described in the text are in bold) 1010 
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Fig. 1.1013 
Fig. 1. Cartoon showing two folding mechanisms to generate large-scale overturned 1014 

folds in fold and thrust belts. The first mechanism involve an important burial 1015 

whereas the second one allows the development of large folds with slight burial. (a) 1016 

Buckling and folding during compressional shortening followed by shearing and 1017 

tilting of fold limbs; (b) Fold amplification by thrusting and subsequent shearing, 1018 

unrolling and migration of the synclinal hinge in the frame of a fold and thrust wedge; 1019 

(c) Simplified kinematic sketch of the same process. Coloured circles are passive 1020 

markers regularly spaced in the folded layer. 1021 
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Fig. 2. Experimental set-up. The width of the device is 10 cm. 1024 
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1026 
Fig. 3. Initial configuration and final result of models involving a microbeads layer 1027 

located at different heights (“d” on sketch). (a) Classical high friction thrust wedge. 1028 

The thrust front propagates in a piggy-back style, but some faults remain active after 1029 

the nucleation of new faults at the front. (b) Strain partitioning: duplexing at the base 1030 

of the wedge and frontal accretion at the toe. Note the cyclical behavior of 1031 

underplating. (c) Impact of surface erosion on the wedge dynamics, location of 1032 



underplating and exhumation of underplated units. (d) Underplating is inhibited when 1033 

décollement is too shallow. Shortening in cm on digital screen. 1034 

 1035 

1036 
Fig. 4. Initial setting and final stage of model involving a thin layer of plasticine (Hp: 1037 

Height of the plasticine layer on sketch). (a) Case no erosion. Folds are overturned 1038 

with an angle between 30° and 50°; (b) Same experiment with erosion; (c) 1039 

Brittle/plastic model with décollement layer and erosion. Shortening in cm on digital 1040 

screen. 1041 

 1042 



 1043 

Fig. 5. Kinematic model of folding. The thick line with circles represents the 1044 

plasticine with displacement indicators. 1045 
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Fig. 61047 
Fig. 6. Evolution of complex model involving brittle/plastic multilayer, erosion and 1048 

décollement layer. Upper units situated above décollement layer are composed of 1049 

sand and plasticine; deep units below décollement layer are composed of sand. At the 1050 

final stage (e), three domains are juxtaposed: (1) exhumation of deep rocks, (2) the 1051 

domain of recumbent folds and (3) the overturned folds. 1052 
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Fig. 7. Relationships between cyclical duplexing and kinematics of folding in a 1055 

brittle/plastic model with erosion and décollement level. 1056 
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Fig. 8. Cross-section of the Montagne Noire, southern part of French Massif Central 1059 

(modified from Malavieille 2010). U.P.: Upper Plate, L.P.: Lower Plate. AZ: Axial 1060 

Zone, SFN: Southern Fold Nappes, VFB: Visean Foreland Basin. 1061 

 1062 



 1063 

Fig. 9. Cross-section of Variscan Belt in Galicia, Spain (modified from Pérez-Estàun 1064 

et al. 1991). U.P.: Upper Plate; L.P.: Lower Plate. 1065 
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Fig. 10. (a) Cross section of the Northern Apennines, Italy (modified from Molli 1068 

2008).  (b) Cross-section of the Val di Lima fold structure (modified from Baldacci et 1069 

al. 1992). T: Tertiary; J-K: Jurassic-Cretaceous; Tr: Triassic. 1070 
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