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Abstract:

Scanning Transmission Electron Microscopy (STEM) is a crucial tool for 
nanoscience, achieving sub-nanometric spatial resolution in both image 
and spectroscopic studies. This generates large datasets that cannot be 
analyzed without computational assistance. The so-called “machine 
learning” procedures can exploit redundancies and find hidden 
correlations. Principal Component Analysis (PCA) is the most popular 
approach to denoise data by reducing data dimensionality and extracting 
meaningful information; however, there are many open questions on the 
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accuracy of reconstructions. We have used experiments and simulations 
to analyze the effect of PCA on quantitative chemical analysis of binary 
alloy (AuAg) nanoparticles using energy dispersive x-ray spectroscopy 
(EDS). Our results demonstrate that it is possible obtain very good 
fidelity of chemical composition distribution when the signal-to-noise 
ratio exceeds a certain minimal level. Accurate denoising derives from a 
complex interplay between redundancy (data matrix size), counting 
noise and noiseless data intensity variance (associated to sample 
chemical composition dispersion). We have suggested several 
quantitative bias estimators and noise evaluation procedures to help in 
the analysis and design of experiments. This work demonstrates the high 
potential of PCA denoising, but it also highlights the limitations and 
pitfalls that need to be avoided to minimize artifacts and perform reliable 
quantification.
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Abstract: 

Scanning Transmission Electron Microscopy (STEM) is a crucial tool for nanoscience, achieving 

sub-nanometric spatial resolution in both image and spectroscopic studies. This generates large datasets 

that cannot be analyzed without computational assistance. The so-called “machine learning” procedures 

can exploit redundancies and find hidden correlations. Principal Component Analysis (PCA) is the most 

popular approach to denoise data by reducing data dimensionality and extracting meaningful information; 

however, there are many open questions on the accuracy of reconstructions. We have used experiments 

and simulations to analyze the effect of PCA on quantitative chemical analysis of binary alloy (AuAg) 

nanoparticles using energy dispersive x-ray spectroscopy (EDS). Our results demonstrate that it is possible 

obtain very good fidelity of chemical composition distribution when the signal-to-noise ratio exceeds a 

certain minimal level. Accurate denoising derives from a complex interplay between redundancy (data 

matrix size), counting noise and noiseless data intensity variance (associated to sample chemical 

composition dispersion). We have suggested several quantitative bias estimators and noise evaluation 

procedures to help in the analysis and design of experiments. This work demonstrates the high potential 

of PCA denoising, but it also highlights the limitations and pitfalls that need to be avoided to minimize 

artifacts and perform reliable quantification.

Key words: Nanoparticles, Machine Learning, denoising, Principal Components Analysis-PCA, 

quantitative chemical analysis, Transmission Electron Microscopy-TEM, Energy dispersive X-ray 

Spectroscopy-EDS
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1. Introduction

Nanotechnology exploits the unique properties of nanoparticles (NPs) in many different fields such 

as catalysis, magnetism, plasmonics, etc. (Heiz & Landman, 2007; Odom & Schatz, 2011; Binns, 2014). 

The electronic properties of bimetallic NPs show a complex behaviour in relation to size and elemental 

composition; for example, several suggested applications exploit the optimization of either physical 

properties such as surface plasmons in some optical devices, or chemical reactivity/selectivity in catalysis. 

Morphological and structural characterization of a NP sample requires the measurement of crystalline 

structure, shape (rod, sphere, wire, etc.), crystal habit (possible faceting), and size distribution (mean 

diameter and size dispersion). In the case of multi-elemental nanosystems (i.e. nanoalloys (Alloyeau et 

al., 2012; Ferrando, 2016)), we must determine the chemical composition (mean one and distribution as a 

function of size), and possibly the occurrence of chemical  inhomogeneity within (the particles (core-shell 

segregation, Janus distribution, compositional gradients, etc. (Mukherjee et al., 2012, 2015; Lyman et al., 

1995)). 

Transmission Electron Microscopy (TEM) has made huge progress in the last decades, considering 

electron optics, detector efficiency, reproducibility, automation, etc. (Williams & Carter, 2009, 2016; 

Hawkes & Spence, 2019). Scanning Transmission Electron Microscopes (STEMs) are capable of 

recording the so-called hyperspectral image (HSI) (Pennycook & Nellist, 2011), where an entire analytical 

spectrum or diffraction pattern can be registered at each image pixel. The HSI approach is currently used 

to generate huge 3D or 4D data sets (X-ray Energy Dispersive Spectroscopy (EDS), Electron Energy Loss 

Spectroscopy (EELS), Cathodoluminescence (CL), electron diffraction (ED), scattering distribution, etc.) 

(Thomas et al., 2015).

A typical HSI datacube may routinely contain 107 voxels (100x100 pixels, each containing a 

spectrum of 1000 channels). The information contained in such massive arrays can be leveraged to a better 

signal-to-noise ratio (SNR) by applying blind source separation algorithms (Williams & Carter, 2016; 
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Brown et al, 2020; Cueva et al., 2012). By exploiting redundancies, Machine Learning (ML) methods also 

are able to efficiently classify data by finding hidden correlations. The most popular algorithm is Principal 

Component Analysis (PCA) (Jolliffe, 2002, Jolliffe & Cadima, 2016), that provides a number of 

orthogonal eigenvectors (referred to as “loadings” or “components”) encoding the information contained 

in data variance. The reconstruction data with a few PCA components allows the extraction of meaningful 

information and reduction of noise (usually called “denoising”) (Titchmarsh, 1999; Lichtert & Verbeeck, 

2013; Keenan & Kotula, 2004; Kotula & Keenan, 2006; Kotula & Van Benthem, 2015; Potapov & Lubk, 

2019). EDS data is particularly well suited for PCA processing, because signal is constituted by well-

defined peaks on a low varying background (Lichtert & Verbeeck, 2013). In contrast, EELS display 

absorption edges and background which may show changing complex shapes as a function of chemistry 

and sample thickness, so PCA application may be rather complex (Cueva et al., 2012; Lichtert & 

Verbeeck, 2013).

EDS chemical mapping has become one of the most popular TEM related experiments because 

the high counting capabilities of Silicon Drift Detector (SDD) has strongly reduced total acquisition time 

(Watanabe et al., 2010; Schlossmacher et al., 2010). PCA has become a popular easy-to-use tool to denoise 

and improve qualitatively EDS elemental maps. In contrast, it has scarcely been used for quantitative 

chemical EDS-STEM analysis (Burke et al., 2006), where it is essential to confirm the PCA reconstruction 

fidelity (accuracy) and calculate reliable confidence intervals. The user-friendly profile of PCA may 

erroneously indicate a fault-free procedure; indeed, seriously biased reconstructions (i.e. derived values 

differ from true noiseless ones) may arise from low SNR datasets. The achievement of successful unbiased 

denoising is strongly dependent on appropriately designed and executed EDS HSI experiments. Despite 

the widespread use of PCA processing (Burke et al., 2006; Parish & Brewer, 2010; Rossouw,  et al., 2015), 
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there are still many open questions on noise-related effects and on how to infer if reconstructions are 

biased.

Alloy NP samples are expected to display a size dispersion and elemental composition variation, 

making their detailed characterization an extremely challenging task. In this work, we have explored the 

application of PCA denoising in quantitative analysis of binary alloy NP using EDS HSI; this issue 

represents a rich, complex ensemble of yet open questions. This investigation requires the scrutiny of the 

two different aspects associated with any measurement: accuracy and precision. The first one requires the 

minimization of PCA reconstruction bias; the second topic deals with the potential improvement of 

uncertainty interval due to PCA capacity of using the redundancy of the whole dataset.  We will tackle 

these two different points using both experiments and simulations, and the results will be described in a 

series of two papers (Part I and Part II respectively). For EDS studies, the main contribution arises from 

counting noise (leading to PCA random noise bias), and the present manuscript reports a thorough analysis 

of the minimal level that the SNR must exceed to guarantee that PCA reconstruction carries the 

information of true NP composition variation in the sample. We have analyzed the applicability of several 

suggested PCA bias estimators (Malinowski, 2002; Faber et al., 1995a, 1995b; Nadler, 2008, 2009) and 

suggested some criteria to predict the reliability of derived chemical composition distributions. 

2. Materials and methods

Nanoparticle synthesis. Bimetallic (AuxAg1-x) NPs have been produced using a homemade gas 

aggregation cluster source where a cylindrical magnetron is used to sputter atoms from a central target 

made of twisted Au and Ag wires (de Sá et al., 2014). A series of electrostatic lenses are used to reduce 

NP kinetic energy to achieve a “soft landing” on the TEM grid (for a ~4 nm in diam. NP, this corresponds 

to ~0.05 eV/atom). The NP size distribution contained in the molecular beam can be followed in-situ by 
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time-of-flight mass spectrometer (TOF-MS). TEM images indicate that NP size distribution follows a log-

normal function (mean diameter ~4 nm, width ~3 nm in width, see Figure S1). Three different bimetallic 

nanoparticle samples (A, B, C) have been used in the present study whose Au content in atomic fraction 

is (0.73±0.01), (0.55±0.02) and (0.48±0.01) respectively. The chemical composition has been measured 

on an ensemble of NPs using an open parallel TEM beam with a long counting time to increase x-ray total 

intensity while minimizing radiation damage (dose ~ 10 e-/Å2). 

Electron microscopy: data acquisition and processing. We have used several STEM microscopes to 

compare and optimize experimental configurations and beam energy values: JEM-2100F (SDD 30 mm2, 

LNNANO-Campinas-Brazil), JEM-F200 (two SDD, 0.8 sR, JEOL), FEI-Tecnai G20F (Si(Li) 30 mm2, 

LCE-UFSCAR-Brazil), TitanThemis (Super X Quad SDD, 0.8 sR, LNNANO-Campinas-Brazil). 

Microscopes were set up for ~ 0.5 nm pixel size, probe diameter ~ 0.7-1.0 nm, and a dwell time of ~200 

ms per pixel for the sake of comparison between instruments. We have used different TEM instruments 

and, for all experiments, specimens were mounted in a low background Be holder. On average, each HSI 

image contains about 5-8 particles, then several HSIs are necessary to gather statistical meaningful 

description of the NP sample.  

Measured EDS spectra have been binned to get a total of 512 energy channels, in order to increase 

SNR for PCA processing. Automatic recognition of NPs on the chemical maps (binarization and 

segmentation) has been performed using Scikit-image Python library (van der Walt et al., 2014). We have 

calculated the total x-ray characteristic signal (Au-M and Ag-L peaks) from individual particles by 

adding signal from the pixels located inside each NP region, because it is well known that addition 

maintains the Poisson nature of the sum. 

The quantitative analysis of the NP chemical composition followed the Cliff-Lorimer approach 
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(Eq. 1, Cx and Ix are the atomic fraction and the x-ray intensity of element x respectively, (Cliff &Lorimer, 

1975)). The Cliff-Lorimer factors (kAB) were derived experimentally using a thin film of known 

composition (  for data from Experiment I and  for Experiment 3, 𝑘𝐴𝑢𝐴𝑔 = 0.93 ± 0.01 𝐾𝐴𝑢𝐴𝑔 = 0.85 ± 0.01

simulations used . The film was generated using a multilayer thin film calibrated using a quartz 𝑘𝐴𝑔𝐴𝑢 = 1 )

balance to control the atomic ratio through the relative film thickness. 

 

       (Eq. 1) 
𝐶𝐴𝑢

𝐶𝐴𝑔
= 𝑘𝐴𝑢𝐴𝑔

𝐼𝐴𝑢

𝐼𝐴𝑔

The calculation of chemical composition error bars has taken into account all EDS quantitative 

analysis steps applied on a fitted curved on the experimental EDS spectra (background removal, x-ray 

peak integration and composition determination). All EDS and HSI PCA processing steps have been 

performed using the open-source Hyperspy Python library (de la Peña et al., 2017).  

We have performed experiments at 80 kV to increase electron ionization cross-section 

considering relativistic estimations (Zaluzec, 2019). It is important to consider that recent microscopes (as 

the AC microscope used here) show very good performance at low voltages. However, in practice, the 

reduction from the nominal microscope voltage (300/200 keV) to lower values (100-80 keV) may reduce 

electron gun efficiency and increase the effect of TEM optical aberrations. Consequently, the probe current 

may decrease significantly, producing an unwanted consequence of,  effectively, reducing EDS counts.  It 

is important to verify properly the microscope performance at a lower voltage, because the optimal setup 

is strongly dependent on the particular TEM instrument. In addition, lower voltages (80-100 keV) should 

be preferred for lower atomic number samples in order to reduce knock-on damage (preferential damage 

mechanism for lower atomic number samples (Egerton et al., 2010; Egerton, 2012, 2019; Braidy et al., 
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2008). We would like to remind note that all experiments discussed in this study have been acquired using 

the same dwell time (200 ms) for the sake of comparison between different experimental conditions. 

Our experiments accumulated several frames for the final HSI (Jones et al., 2018), what 

minimizes the dose rate and extends the sample useful life. Instead of taking a single image with dwell 

time 200 ms, we have taken a series of images of the same region (for example 10 scans at 20 ms dwell 

time), and subsequently, added the individual frames.  An important issue related to alloy NPs analysis is 

guarantying that composition is not modified along measurement time by radiation damage. As Ag atoms 

should be sputtered more easily than the Au ones, we would expect a gold enrichment with time (Egerton, 

2019). To analyze this issue, we have taken a long series of 20 ms dwell time scans and followed the 

chemical composition evolution. This allowed us to verify that no detectable composition changes occur 

for the chosen dwell time in this work (200 ms). 

At present, high spatial resolution chemical mapping is routinely performed with good reliability 

and reasonably short acquisition times, but spectra from individual pixels typically have insufficient 

counts for proper statistical quantification. According to the basic procedures of EDS microanalysis, a 

characteristic peak occurrence can be identified if the signal is three times (3x) the background noise (𝜎𝐵𝐺𝐷

). This criterion, however, only applies to detection, and is inadequate for quantitative EDS chemical 

analysis. The seminal work of Currie (Currie, 1968, 1999; Belter et al., 2014; Williams & Carter, 2016) ) 

shows that a quantitative analysis requires a significant increase of the signal level (approximately 15 

timed higher than the uncertainty interval) to attain the measurement of a quantity with 10% relative error. 

This increases enormously the signal required, in particular when the detection suffers from shot noise, 

given that in Poisson statistics intensity uncertainty is the square root of the intensity itself,  .𝜎𝐼 = 𝐼
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PCA Processing. PCA takes as basic input a 2D matrix D of dimension mxn; m represents the number of 

pixels that have been acquired and, n the number of channels in the spectra (Jolliffe, 2002). This matrix 

description shows that PCA does not consider any specific information about spatial location of the pixels 

in the experimental image. When a spectral correlation exists between pixels it will show up as a 

significant weight (score) for a particular PCA component (loading). 

PCA processing provides a number of orthogonal eigenvectors encoding the information contained 

in data variance. The eigenvalues (or singular values) associated with each component express their 

information content and are usually displayed in the so-called scree-plot (Jolliffe, 2002; Jolliffe & 

Cadima, 2016;  Titchmarsh, 1999).  In our experiments, the scree-plots show a clear and regular profile 

with a well-defined kink, where the number of components showing data variance visibly higher than 

noise can be easily identified (see example in Figure 1). 

The principal source of noise in an EDS HSI is counting noise of Poisson nature; then before PCA 

processing, we have performed the variance stabilization using a data scaling procedure (Keenan & 

Kotula, 2004; Kotula & Keenan, 2006; Kotula & Van Benthem, 2015). The scaled data set matrix Ds has 

been calculated from Ds= GDH, where G is the spatial scaling factor, D is the raw data, and H is the 

spectral scaling factor (as implemented in Hyperspy (de la Peña et al., 2017)). Recently, it has been have 

suggested that for a very sparse data matrix obtained from NP samples (Kotula & Van Benthem, 2015), 

better multi-variate decomposition results are obtained if the scaling only considers the spectral scaling 

factor (Ds= DH). These authors analyzed a rather high sparse measurement (99.8 %). Our experiments 

have been acquired with a pixel area of 0.5x0.5 nm2=0.25 nm2, considering a particle of 6 nm in diameter, 

its area is about 28 nm2, which should be covered by approximatively 110 pixels. This simple calculation 

shows that the sparsity level of in about 85-90% (scans of 64x64 pixels containing about 5-8 NPs, about 

80-90%,  [1-(660/4096)]~0.84 or 84%).). As the sparsity of our data is not so extremely low, we have 
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used the conventional complete spatial and spectral scaling in this work; the possible influence of changing 

the scaling procedure will be analyzed in future work.   

In this report, the analyzed samples are very close to ideal ones: binary alloy particles (with a certain 

composition variation) distributed on a uniform thin substrate (a-C). As a consequence, the information 

content of each PCA principal component can be understood reasonably well; simulations of high SNR 

HSI indicate three dominant loadings without significant information mixing (see Figure 2):  a) 1st 

component associated to TEM support grid and another EDS spurious x-ray sources (Fe from magnetic 

lenses, Cu from grid, etc.), what is due to the fact that in our experiments and simulations most of pixels 

( ~85%) do not contain any NP EDS signal; b) 2nd component containing information on the mean NP 

EDS spectrum and mean chemical composition defined by the Au and Ag counts ratio of this component 

( ); and, finally, c) 3rd component accounting for variation of composition among different 𝐼𝐴𝑢,𝑃𝐶#2 𝐼𝐴𝑔,𝑃𝐶#2

particles (Potapov & Lubk, 2019). We must note that the 3rd component represents an unphysical 

spectrum (Potapov, 2016), because the EDS peaks (Au-M and Ag-L edges) show up with opposite signs 

for the two elements (positive/negative, see Figures 2c), as mathematically required to induce composition 

variation (or different   ratio values). 𝐼𝐴𝑢 𝐼𝐴𝑔

As a rule of thumb, some components beyond the scree-plot elbow (2-3 additional components) are 

included in the reconstruction in order to include some remaining information carried by the first 

components associated with noise. All reconstructions in this work have included 5 components to render 

easy comparison between different experiments and simulations of binary alloy NPs (see Figure 1). 

Simulated Datasets. Simulations offer irrefutable advantage against an experiment because the number, 

nature and strength of latent factors can be fully controlled and the related effects followed in detail. Also, 
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as the “true” object is precisely known, it is possible to compare the same object under situations of 

different noise levels. 

It is critical that model spectra reproduce key features associated with measurements 

(background, energy calibration and magnitude of the typical signals) which strongly influence PCA 

output. We must be aware that most of simulations do not include complex factors such as plural scattering 

(critical issue for EELS) or EDS sum/escape peaks, etc. In fact, several of these issues are consciously 

neglected because they might severely complicate interpretation between information content of the data 

set and the PCA output). 

Our simulations consider binary alloy NPs on a TEM grid and they include all other elemental 

EDS peaks related to the Cu grid and sample environment (Fe, Ni, etc.); the intensities of these peaks were 

scaled in relation to Au and Ag ones in agreement with our experimental data. After a noise-less spectra 

is calculated, random Poisson noise was added to data in order to yield a realistic model of experiments.

Once the total counts per NP to be considered in the simulation is defined, these counts are 

distributed inside pixels forming a circle (NP projection) in the simulated HIS. It is important to emphasize 

that counts distribution inside the NP associated pixels considers the spherical shape of the NPs, such that 

counts and SNR diminish gradually from pixels located from center to surface (thickness variation along 

electron path). As a final step, we add the random Poisson noise to the voxels x-ray intensity. This issue 

is essential for a faithful description of experiments, as it induces variation in the overall EDS SNR for 

each NP pixel, which will strongly influence the PCA output. 

3. Results

Figure 3 shows an example of a typical EDS HSI data from AuAg nanoparticles taken in an 

uncorrected 200 kV FEG TEM/STEM (described in the text as Experiment I); the spectrum in Figure 2a 
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represents a good illustration of counting level that can be achieved. On average, we observe IAu ~380 total 

counts for a ~6 nm NP, resulting in an intensity relative error of approximately 5% considering ∆𝐼 𝐼 =

Poisson noise ( ~ 19 cts). 𝜎𝐼 = 𝐼

For these experiments, we have decided to apply the PCA processing to each HSI individually, 

because, in many cases, the HSIs were acquired several weeks apart. Grouping several HSIs may be useful 

to exploit additional redundancy, but noise components may vary between images. For example, a thicker 

substrate or the change of grid contribution due to a scan located closer to a grid bar may induce the 

appearance of additional meaningless principal components. These issues were not significant in our 

experiments (usually a square scan, ~30 nm side), but a careful analysis of EDS intensity showed that the 

beam current of the used microscope (more than 10 years old) was varying significantly. Then each scan 

showed a slightly different SNR, which hindered their grouping into a big data set and, analyzed by a 

single PCA processing step. For data acquired with a modern AC TEM/STEM stability and reproducibility 

were not an issue and the dataset could be built by the stacking of several  (64x64 pixels) HSI .

After PCA reconstruction, the automatic numerical recognition of smaller NPs on the chemical 

maps has been more efficient; this is even more pronounced for very small particles, 2-3 nm in diameter 

(Figures 3e,f). PCA treatment generates a scree-plot where two components display much higher variance 

than noise (see Figure 1); as expected, these two loadings carry information about the sample support and 

the average NP spectrum, respectively. In figure 4a, raw and PCA derived composition estimations (CAu) 

of single NPs are distributed around the expected mean composition value. The analysis of composition 

distributions histograms at the right side of  Figure 4a yields a standard deviation (STD) of   𝛴𝐶𝐴𝑢,𝑑𝑒𝑛~0.022

vs. , (hereafter symbol  will be used to describe the calculated STD of a distribution 𝛴𝐶𝐴𝑢,𝑟𝑎𝑤~0.05 𝛴 𝛴𝑆𝑇𝐷
2 =

). The width of calculated concentration distribution obtained after PCA denoising is ∑(𝑥 ― 𝑥)2 (𝑛 ― 1)

much narrower than derived from raw data. This comparison indicates a strongly biased PCA 
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reconstruction: due to the rather low SNR, PCA processing has been unable to rank properly the 

information on intensity variations between NPs (expected to be contained in the 3rd principal component, 

Figure 2c, (Potapov & Lubk, 2019)). Then, the ratio ( ) and the chemical composition derived from 𝐼𝐴𝑢 𝐼𝐴𝑔

it is almost completely fixed and determined by the 2nd principal component (representing the average NP 

spectrum). This generates a strong correlation between  and  intensities significantly narrows  the 𝐼𝐴𝑢 𝐼𝐴𝑔

chemical composition distribution calculated for the ensemble of NPs. It is important to note that PCA-

treated points are displayed without error bars, because there is no accepted and well-defined procedure 

for calculating confidence intervals after denoising (this issue will be addressed in a forthcoming paper 

associated with Part II of this work (Moreira, 2021)). 

To test the above interpretation, we have built a dataset containing a bimodal distribution of 

chemical compositions by stacking a series of 4 HSI measured with the same microscope on two different 

NP samples (A-2x, B-2x, CAu~0.50 and ~0.75 Au respectively, hereafter noted Experiment II). Using raw 

data, chemical analysis can distinguish the separate composition distributions (see Figure 4b, the 

calculated composition uncertainty  bar was estimated to be  ~ 0.04 or 4 at%). After PCA treatment, 𝜎𝐶𝐴𝑢

the chemical composition distribution from Exp. II appears significantly different from raw data: it is quite 

narrow and centred around the average composition of the two NP populations. The results derived from 

Exp. I and  Exp. II,  indicate that this SNR level merely allows the reliable determination of average 

ensemble chemical composition, and information on individual NP intensity remains indistinguishable 

from noise (variations of  should carried by the 3rd principal component for a high SNR dataset, see 𝐼𝐴𝑢 𝐼𝐴𝑔

Figure ). This represents a clear example of random noise PCA bias, showing that insufficient counting 

may yield unrealistic results. If this PCA reconstructed dataset is analyzed with hubris, serious 

misinterpretations may follow about the chemical homogeneity of the analyzed sample.  
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The logical solution to make further progress is to increase the SNR by collecting more x-ray 

counts. Reducing the incident beam energy from 200 to 80 keV increases the ionization cross-section (and 

consequently the EDS signal) by a factor of 1.6x considering relativistic estimations (Zaluzec, ,, 2019). 

We have performed experiments at 80 keV using an aberration-corrected (AC) STEM microscope 

equipped with four EDS detectors (named Experiment III).  A significant counting improvement has been 

attained, leading to a total integrated count of  counts for a 6 nm NP (see Figure 5). Considering 𝐼𝐴𝑢 = 1950

noise, the obtained ~5-fold gain in counts, just leads to a 2-fold decrease of intensity relative error ∆𝐼 𝐼 ~2%

; which clearly exemplifies how difficult and complex is to increase SNR in data subjected to Poisson 

statistics. For this experiment, the raw dataset was built by grouping  4x acquisitions of 64x64 HIS. PCA 

treatment of Experiment III shows a substantial improvement of the reconstruction; Figure 5c shows a 

reasonable reasonably good agreement between chemical composition derived from raw and denoised 

data, indicating a strong reduction of random noise bias.  The majority of measured NPs show similar 

composition within experimental confidence level (the measured composition distribution show similar 

widths as evidenced by the calculated standard deviations  and ). This 𝛴𝐶𝐴𝑢,𝑟𝑎𝑤 = 0.043 𝛴𝐶𝐴𝑢,𝑑𝑒𝑛 = 0.031

amelioration is mainly associated to the better retrievability of a 3rd PCA component carrying information 

on individual NP intensity variations due to chemical composition variability (note the slight improvement 

of the 3rd component ranking in Figure 1b).  Only few NPs display significant differences with raw data, 

suggesting the occurrence of some biasing; in fact, these points correspond to the smallest detected NPs 

(i.e. with smaller count value per NP, ex. IAu ~ 400 cts, diameter ~3 nm). 

4. Discussion

Experiment III provides evidence that it is essential to obtain measurements with counting level 

(or SNR) exceeding a certain minimal value to allow the minimization of random noise bias when 

analyzing alloy NP samples displaying a chemical composition variation. This allows the reliable ranking 
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of physically significant PCA components and produces good fidelity denoised PCA reconstruction 

(Figure 5c). 

Comparison of Experiments I and III shows that PCA may allow reliable denoising, but it can 

not recover information that is not actually carried by the combination of data SNR and redundancy (data 

set size); this property has been named “EDS retrievability limit” (Potapov & Lubk, 2019). The observed 

bias is associated to inefficient retrieval of the “true” NP intensity variations, an information carried by 

the 3rd principal component (see Figures 1 and 2).

To advance further, it is important to develop criteria/expressions to gather predictions of potential 

PCA random noise biasing effects directly from the measured data (counts value, data matrix size, etc.). 

Looking carefully at our results, we may note that the comparison of composition histograms of raw and 

denoised data reveals the different quality of data reconstructions from Exp. I and Exp. III (Figures 4a and 

5c), Then, it is interesting to suggest that the ratio of calculated composition distribution STDs or widths 

( / )  represents a good assessment of reconstruction fidelity and a potential indicator 𝑅𝑤 =  𝛴𝐶𝐴𝑢,𝑑𝑒𝑛 𝛴𝐶𝐴𝑢,𝑟𝑎𝑤

of occurrence of random noise biasing.  

Many studies have addressed the effect of random measurement noise on PCA bias (Malinowski, 

2002; Faber et al., 1995a, 1995b; Nadler, 2008, 2009) when noise is assumed to be uncorrelated and 

homoscedastic (all its random variables have the same finite variance, ). In contrast, our experiments 𝜎2
𝐻

involve Poisson noise, where the variance is dependent on the value of the particular voxel intensity (σ2=I). 

Then, the straightforward application of several bias indicators must be performed with extreme care to 

predict potential biasing (i.e. displacement from “true solutions”). Additional complications to estimate 

random noise variance arise from the high sparsity of EDS HSI of NPs (Keenan & Kotula, 2004)  (many 

spectral energy channels include zero or just a few counts). For example, only 10-15% of pixels in our 

64x64 scans carry x-ray counts from the particles.  This leads to an average counting value per voxel (
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) that may be <<1 by several orders of magnitude. Then, an estimation of data Poisson noise from 𝐼𝑎𝑣𝑒,𝑣𝑜𝑥𝑒𝑙

mean voxel intensity (  ) is nonfunctional, because noise becomes always larger than the 𝜎 = 𝐼𝑎𝑣𝑒,𝑣𝑜𝑥𝑒𝑙

measurement itself.  From another angle, the variance stabilization through data scaling of EDS spectra 

before PCA processing (Keenan & Kotula, 2004; Kotula & Keenan, 2006; Kotula & Van Benthem, 2015) may 

induce additional significant error if sparsity is present.  

Several studies  (Cueva et al., 2012; Lichtert &Verbeeck, 2013; Spiegelberg & Rusz, 2017; 

Potapov, 2017; Verbeeck & Van Aert, 2004)  have analyzed PCA eigenvalues bias using derivations of 

Faber et al. (Faber et al., 1995a, 1995b), where the eigenvalue shift contains two terms. The first one 

represents an additive contribution directly related to random noise variance, and the second term depends 

on the number of pixels m and spectral channels n. Furthermore, combining Fisher’s information concept 

and the Cramérs-Rao inequality, Verbeeck et al (Verbeeck & Van Aert, 2004, Lichtert &Verbeeck, 2013) 

have been able to estimate a lower bound for systematical errors occurring in PCA reconstructed EELS 

data. This estimation requires the evaluation of a homoscedastic-like variance from the average count of 

the HSI voxels; as mentioned above, the sparsity of EDS HSIs strongly limits the applicability of these 

approaches.

In this work, we have explored the bias estimator derived from the so-called spiked covariance 

model (Nadler, 2008, 2009). This author has revealed the existence of an abrupt information-loss phase 

transition as a function of noise variance, leading to a well-defined bias estimator (  Eq. 6); a bias-free 𝐸𝐼𝐿,

PCA reconstruction is always achieved when the estimator is less that a threshold value ( ). This bias 𝑇𝐼𝐿

estimator displays a simple mathematical expression describing the interaction between data set size (n,m) 

and the ratio of experimental noise (variance σ2) and noise-free data variance (ν*2, hereafter * will indicate 

that the variable is the true noise-free data value ). It is important to emphasize that “true” parameters are 

seldom accessible to the experimentalist, so the elaboration of predictions is somewhat challenging. In the 
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limit n,m tending to infinity, the threshold becomes   and the criterion becomes . The 𝑇𝐼𝐿 = 1 𝐸𝐼𝐿 < 1

behavior of estimator has already been explored both in EELS and EDS HSI processing (Lichtert & 

Verbeeck, 2013; Potapov, 2016; Potapov & Lubk, 2019). 

    (2)  𝐸𝐼𝐿 =
𝑛
𝑚( 𝜎2

𝜈 ∗ 2)2

For our EDS experiments, the calculation of the  using the average count per voxel yields very 𝐸𝐼𝐿

high values (107-1010). It is essential to keep in mind that the interpretation of bias estimators must be 

analyzed in the context of the particular experimental constrains and targeted scientific problem. The EDS 

determination of  NP elemental compositions requires the total number of counts per particle ( ), instead 𝐼𝑁𝑃

of the value of the individual spectral channels (or voxels) themselves. It is, therefore, crucial to identify 

a procedure to correctly evaluate the ratio of counting noise and true data variances ( )  considering 𝜎2 𝜈 ∗ 2

how it affects the information we are looking for (assessment of composition variation between NPs), 

overcoming issues introduced by the intrinsic sparsity of the data. 

For example, let´s consider a NP generating a Au-M line total counts of  ; we will assume 𝐼𝐴𝑢,𝑁𝑃

that these counts are homogeneously distributed over the number of pixels ( ) inside the particle region 𝑚𝑁𝑃

(for a scanning step 0.5 nm, this correspond to ~110 pixels for a 6 nm NP). Then, we distribute the 

estimated pixel counts ( ) homogeneously on the spectral channels ( ) under the EDS 𝐼𝑁𝑃 𝑚𝑁𝑃 𝑛𝑃𝑒𝑎𝑘

characteristic peak (for EDS peak ~200 eV wide and a spectrum channel width of 20 eV, we obtain = 𝑛𝑃𝑒𝑎𝑘

10). The Poisson noise  variance for voxels under the EDS peak is . In fact, 𝜎𝐼𝐴𝑢,𝑣𝑜𝑥
2 = 𝐼𝐴𝑢,𝑁𝑃 (𝑚𝑁𝑃𝑛𝑃𝐸𝐴𝐾)

even taking this simple estimation of voxel intensity, it yields a value < 1 for Exp. I, indicating strong 
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sparsity. Only for the count values in Exp. III, the average total cts/voxel results slightly > 1 and the 

counting error Poisson statistic (square root) can now be applied, always resulting in noise < measurement.

An essential parameter to evaluate the  bias estimator is the noiseless data variance, so we must 𝐸𝐼𝐿

estimate how chemical composition dispersion influences the noise-free voxel x-ray count values. Let´s 

start with a rather simple model case, where the NP ensemble displays a Gaussian distribution of chemical 

composition (mean , variance ). To go further, we must deduce how to convert the Au 𝐶𝐴𝑢,0 𝛴2
𝐶𝐴𝑢

composition standard deviation  into a characteristic EDS intensity variation or number of Au counts 𝛴𝐶𝐴𝑢

( ).∆𝐼𝐴𝑢,𝑁𝑃

Chemical compositions are derived from EDS intensity using the Cliff Lorimer expression in (Eq. 

1)  (Cliff &Lorimer, 1975). Considering the normalization of a binary AuAg alloy compositions (𝐶𝐴𝑢 +

), we can relate CAu to the EDS signal from Au atom:𝐶𝐴𝑔 = 1

     ( Eq. 3)𝐶𝐴𝑢(1 +
𝐼𝐴𝑔

𝑘𝐴𝑢𝐴𝑔𝐼𝐴𝑢) = 1

As our experimental values for the Cliff-Lorimer factor have resulted been determined to be very 

close to 1, we will assume that kAuAg=1, or in other terms that Au and Ag generate the same quantity of 

characteristic photons per atom. This approximation renders the calculation simpler for a binary alloy; if 

we consider that all particles have the same number of atoms,  a change in the number of atoms of one 

element, reduces (or increases) its characteristic EDS peak by the same amount of count that increase (or 

reduces) the  other element peak. In other words, the total number of characteristic x-ray counts generated 

by the NP is constant  (    For kAuAg=1, Equation (3) may be rewritten as 𝐼𝑇𝑜𝑡,𝑁𝑃 = (𝐼𝐴𝑢 + 𝐼𝐴𝑔) = 𝑐𝑛𝑠𝑡. 𝐶𝐴𝑢

  or     . Then, we can deduce that(𝐼𝐴𝑢 + 𝐼𝐴𝑔) = 𝐼𝐴𝑢 𝐶𝐴𝑔(𝐼𝐴𝑢 + 𝐼𝐴𝑔) = 𝐼𝐴𝑔
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      &     ,     (Eq. 4)𝐼𝐴𝑢 = 𝐶𝐴𝑢(𝐼𝑇𝑜𝑡,𝑁𝑃) 𝐼𝐴𝑔 = 𝐶𝐴𝑔(𝐼𝑇𝑜𝑡,𝑁𝑃)

Let´s assume a NP population of average chemical composition  (showing total counts   and  𝐶𝐴𝑢,0 𝐼𝐴𝑢,0

ratio  ( ) at this concentration) and a STD . We can derive how many counts ( ) must be 𝐼𝐴𝑢,0 𝐼𝐴𝑔,0 𝛴𝐶𝐴𝑢 ∆𝐼𝐴𝑢,𝜎

added to  in order to get a NP with a new concentration  Due to the direct 𝐼𝐴𝑢,0 𝐶𝐴𝑢,𝜎 = 𝐶𝐴𝑢,0 + 𝛴𝐶𝐴𝑢.

proportionality relation of Eq. 4, a composition change of   is induced from an intensity change of 𝛴𝐶𝐴𝑢 ∆𝐼𝐴𝑢

 = 𝐼𝑇𝑜𝑡,𝑁𝑃𝛴𝐶𝐴𝑢

Next, we will use these approximations using experimental values; for example, let´s take CAu,0= 0.5  

(50% Au atoms content)   then   (or ). A 6 nm diameter NP from Experiment I, 𝐶𝐴𝑢,0 𝐶𝐴𝑔,0 = 1 𝐼𝐴𝑢,0 𝐼𝐴𝑔,0 = 1

should show a total EDS signal  2    =   760 cts. In our STEM HSI, a particle of (𝐼𝐴𝑢 + 𝐼𝐴𝑔) = 𝐼𝑇𝑜𝑡,𝑁𝑃 = 𝐼𝐴𝑢,0

6 nm in diameter contains ~ 110 pixels. Then, each image pixel in the NP image must contain on average 

IAu,pixel ~380/110~3 cts/pixel. These counts are distributed in the EDS peak, which we can consider with 

~200 eV at the base (or 10 energy channels, if E=20 eV); then we finally arrive at  IAu,voxel ~ 380/(110x10 

)~0.34 cts per voxel  in average, considering all pixels and energy channels in the HSI region containing 

the NP. Finally, the Poisson noise of each voxel is obtained by taking the square root  𝜎𝑣𝑜𝑥𝑒𝑙,𝑃𝑜𝑖𝑠𝑠𝑜𝑛 = 𝐼𝑣𝑜𝑥𝑒𝑙 

. ~0.6

Assuming a “true” chemical composition distribution with standard deviation    , then  𝛴 ∗
𝐶𝐴𝑢 = 0.04

= 760 x 0.04 = 30 cts for a single nanoparticle. This value will be considered the “true” ∆𝐼𝐴𝑢,𝑁𝑃 = 𝐼𝑇𝑜𝑡,𝑁𝑃𝜎𝐶𝐴𝑢

sample composition dispersion expressed in “true” counts variation per NP, . Subsequently We 𝜈 ∗
𝐼𝐴𝑢,𝑁𝑃

distribute these counts between the NP pixels and energy channels under EDS peak to get “true” noise-

free intensity variations in the sample  (as made above for NP intensity). This 𝜈 †
𝐼𝐴𝑢,𝑣𝑜𝑥 = ∆𝐼𝐴𝑢,𝑁𝑃 (𝑚𝑁𝑃𝑛𝑃𝐸𝐴𝐾)

yields the “true” voxel intensity STD associated with the composition dispersion in the NP ensemble ( 

cts). 𝜈 †
𝐴𝑢,𝑣𝑜𝑥~ 30 (110𝑥10)~ 0.029 
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These noise and true noise-free variances estimations (  and ) yield a robust       𝜎2
𝐼𝐴𝑢,𝑣𝑜𝑥    𝜈 † 2

𝐼𝐴𝑢,𝑣𝑜𝑥  

assessment of the effect of counting noise and how chemical composition dispersion influences the true 

noiseless data variance of EDS intensity, and they can be used to evaluate the information loss criterion 

and analyze PCA bias in our experimental studies. Hereafter, we will use these noise values in all 

evaluations of information loss bias estimators and redundancy parameters ( ) will be derived from the 𝑚,𝑛

HSI matrix size. Taking as basis our best experimental results, we will consider the dispersion measured 

from Exp. III (our best measurement) as the “true” distribution concentration variance ( =  = 𝜈 ∗
𝐶𝐴𝑢 𝛴𝐶𝐴𝑢,𝐸𝑥𝑝.𝐼𝐼𝐼

0.043, Figure 5c).

Table I shows main parameters associated with the evaluation of counting levels (per NP and per 

voxel), ratio of raw and denoised compositions distribution widths ( ), and  bias estimator for our 𝑅𝑤 𝐸𝐼𝐿

experiments. Although Experiment III shows a counting noise ( ~1.3) which is about 10 times the 𝜎𝐼𝐴𝑢,𝑣𝑜𝑥

“true” standard deviation ( ) due to composition dispersion,  PCA  exploits redundancy and it is able 𝜈 †
𝐼𝐴𝑢,𝑣𝑜𝑥

to obtain a PCA  reconstruction conserving reasonably well the raw composition distribution (see Fidelity 

column, ). 𝑅𝑤

Table 1.  Experimental counts and bias estimators evaluated for the Experiments I-III, considering 6-nm 

NP, and  a “true” composition dispersion . 𝜈 ∗
𝐶𝐴𝑢 = 0.043

𝐼𝐴𝑢,𝑁𝑃

(cts)

 𝐼𝐴𝑢,𝑣𝑜𝑥

(cts)

Bias

(Qualitative)

 𝜎𝐼𝐴𝑢,𝑣𝑜𝑥

(cts)

𝜈 †
𝐼𝐴𝑢,𝑣𝑜𝑥

(cts)

Fidelity

(𝑅𝑤)

Inform. Loss

( )𝐸𝐼𝐿

Experim. I 380 0.35 Strong 0.59 0.029 0.44 19100

Experim. II 293 0.37 Strong 0.61 0.079 0.20 1460

Experim. III 1950 1.77 Moderate/Low 1.33 0.15 0.73 180
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It is very encouraging to see that denoising has preserved the small EDS signal variations necessary 

to describe concentration dispersion after PCA processing of Experiment III. Nonetheless, this contradicts 

the value of the information loss criterion value (  = 180), which is much higher than the expected 𝐸𝐼𝐿

information loss threshold value   (Nadler, 2008). In order to deepen our understanding of bias, we 𝑇𝐼𝐿 = 1

will analyze PCA reconstructions from a series of simulated HSI, where it is possible to consider a series 

of conditions in such a way that different SNR situations can be distinguished by comparing different NP 

“true” composition dispersions (variances  )  vs. total x-ray counting. 𝜈 ∗
𝐶𝐴𝑢

2

Firstly, we will consider a bimetallic NP system with a Gaussian chemical composition distribution 

(noiseless composition standard deviation of  = 0.02).  Figure 6 compares the distribution of chemical 𝜈 ∗
𝐶𝐴𝑢

compositions ( ) for simulated HSI using raw and PCA reconstructed data. These simulations show two 𝐶𝐴𝑢

distinct behaviors; a strong bias occurs in the first case (low fidelity reconstruction,   cts, ~ 𝐼𝐴𝑢,𝑁𝑃 = 1780

Experiment III counts) where the calculated composition distributions is much narrower after denoising (

~ 0.0002, see histogram at Figure 6a, right plot). The second case (  cts) seems to yield 𝛴𝐶𝐴𝑢,𝑑𝑒𝑛 𝐼𝐴𝑢,𝑁𝑃 = 7100

a much better output, although some narrowing of the chemical composition distribution of the NP 

ensemble is still observable ( =0.014, Fig. 6b), indicating that this counting level is still insufficient 𝛴𝐶𝐴𝑢,𝑑𝑒𝑛

to fully retrieve composition dispersion information. A very good recovery of the true composition 

distribution width ( =0.019, Figure 6c  requires a further increase of Au counts per NP (10660 cts, 𝛴𝐴𝑢,𝑑𝑒𝑛

~ 5-fold increase on Exp. III counts).  It is interesting to note the scree plots from simulations in Fig. 6a 

and 6c (high and low biased reconstructions) do no apparently show significant differences (Figure 7a,b). 

For the strongly biased simulation displayed in Fig. 6a ( ~1780 cts), the 3rd principal component is 𝐼𝐴𝑢,𝑁𝑃

mostly flat in the region of Au and Ag EDS signal (Figure 7c), generating no information of intensity 

variation associated to composition dispersion. In contrast, the low bias PCA reconstruction (Figure 6c) 

shows that the high SNR ( ~11160 cts) generates a 3rd components (displaying well defined Au and 𝐼𝐴𝑢,𝑁𝑃
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Ag EDS peaks of opposite sign). It is surprising that this very good retrieval of the 3rd component, is 

associated with an singular value in the scree-plot which very close to the noise related components (see 

scree-plot in Figure 7b)

By increasing the noiseless composition distribution width to = 0.036 (Figures 6d,e), we can 𝜈 ∗
𝐶𝐴𝑢

analyze bias occurrence as a function of SNR and true composition dispersion. As expected, it is possible 

to get a high-quality reconstruction with much less counts, due to the larger “true“ variance of intensity 

associated to the much wider composition variability. In analogy to the precedent case, a counting level 

of  = 1730 cts produces significantly low fidelity and biased reconstruction ( =0.005), but just 𝐼𝐴𝑢,𝑁𝑃 𝛴𝐶𝐴𝑢,𝑑𝑒𝑛

a 2-fold increase of counts ( = 3540 cts) allows an excellent recovery of underlying ”true” variability 𝐼𝐴𝑢,𝑁𝑃

(i.e. accuracy) of  NP composition distribution ( = 0.035). This total counts value is experimentally 𝛴𝐶𝐴𝑢,𝑑𝑒𝑛

achievable, as it just represents less than a 2-fold increase of Exp. III counts.

Finally, we have also used simulations considering a bimodal true chemical composition 

distribution. We have considered two particle populations with composition averages around   𝐶𝐴𝑢,1 = 0.75

and  , each with =0.02 (Figure 8). A strong bias is observed for rather low counting (𝐶𝐴𝑢,2 = 0.65 𝜈 ∗
𝐶𝐴𝑢,𝑆𝑇𝐷

 cts, Figure 8a) and the existence of two populations remains undetected, the composition 𝐼𝐴𝑢,𝑁𝑃 = 650

distribution is narrowly packed around the average elemental composition (equivalent to Experiment II). 

After increasing counting (  cts), PCA reconstruction reveals the existence of two populations 𝐼𝐴𝑢,𝑁𝑃 = 1650

with a clear indication of certain concentration distribution for each one. A further 4-fold increase in 

counts (  cts) yields a reliable chemical composition assessment after denoising (see Fig. 8c).  𝐼𝐴𝑢,𝑁𝑃 = 6600

These very good results are obtained at lower counting levels than before (Figure 6), because the sample 

exhibits a quite wide “effective true” dispersion for the sample considered as a whole ( =0.053, 𝜈 ∗
𝐶𝐴𝑢,𝑆𝑇𝐷

wrapping the bimodal distribution). Briefly, simulations indicate that PCA reconstructions may attain an 
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excellent accuracy for chemical composition distribution estimation (shown in Figures 6c, 6e and 8c), 

when the SNR exceeds a certain threshold value.  

At this point, we must carefully look at the PCA calculations (ex. scree-plot) to see if it can gather 

additional information of bias occurrence that can guide the analysis of experimental studies. Our 

simulations suggest that even for a very light increase in the ranking of the 3rd principal component in 

relation to noise component seems to increase significantly the accuracy of reconstructions (see scree-

plots in Figures 1b and 7d). As all PCA reconstructions have included 5 components, we will assume that 

the 5th principal component represents just noise (see scree-plot in Figures 1 and 7). Then, the ratio of 

singular values of 3rd and 5th components ( ) may represent an interesting quantitative guideline 𝑅𝜆 = 𝜆3 𝜆5

to identify if PCA processing has been able to rank correctly the 3rd component and detect chemical 

composition variability. 

Table 2 displays the different bias estimators, discussed in this article, (  ,  and ) calculated 𝑅𝑤 𝑅𝜆 𝐸𝐼𝐿

for our simulations in Figure 6.  The cases displaying the low bias reconstructions (Figures 6c and 6e) are 

correctly identified by  and   showing values around 0.9 and 1.14 respectively. Also, the information 𝑅𝑤 𝑅𝜆

loss estimator   show the lowest values for the best PCA reconstruction, however the numerical values 𝐸𝐼𝐿

(~400) is much higher that the theoretical threshold value =1 for an abrupt information loss event.  Then, 

it is yet unclear if it can be used to predict the fidelity of NP composition assessment, even more 

considering that its evaluation requires the knowledge of noiseless data variance. For example, our 

estimation of  from Exp. III yield a smaller value ( 180) than for very high signal SNR simulations 𝐸𝐼𝐿 𝐸𝐼𝐿~

( 400); this is unexpected and it is probably due to our too optimistic guess of the “true” concentration 𝐸𝐼𝐿~

variance (extracted from Figure 5c).  Both  and    are readily accessible from measurements and data 𝑅𝑤 𝑅𝜆

treatment without previous knowledge of “true” composition distribution, then their very good correlation 

with bias minimization suggest that they may be very useful for practical applications. 
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Figure 9 shows a plot of  vs.  for datasets (experiment and simulations) considered in this work. 𝑅𝜆 𝑅𝑤

All cases displaying low bias are at the right top corner of the graph, allowing a direct assessment of PCA 

denoising performance. Then, for sample of binary alloy NPs with approximatively a Gaussian 

composition distribution, we suggest a criterion for obtaining a low bias PCA reconstructions:      𝑅𝜆 ≥ 1.15

and ; it is important to mention that both   and  must exceed the minimal values. 𝑅𝑤 ≥ 0.9 𝑅𝜆 𝑅𝑤

If the sample composition distribution is more complex and measurements are rather noisy (ex. 

bimodal distribution as in Exp. II and simulations of Figure 7), the meaningful information may be 

distributed among more principal components. A strong random noise bias is immediately revealed by a 

low ; however, a proper understanding of information content carried by components may require 𝑅𝑤

additional simulations and a careful analysis of scree-plots and loading profiles before to define a different 

 criterion.𝑅𝜆

Table 2.  Bias estimators evaluated for the simulated HSIs shown in Figure 6. Different true concentration 

dispersion and counting levels are compared (ensemble of 54x 6-nm NPs, number spectral channels 

n=500; image size m=64x384=24576  pixels, scanning step 0.5 nm).  

𝜈𝐶𝐴𝑢

 

𝐼𝐴𝑢,𝑁𝑃

(cts)

Bias

(Qualitative)

𝑅𝑤 𝑅𝜆 Inform.Loss

𝐸𝐼𝐿

Simul. 1 (Fig. 6a) 0.02 1780 Strong 0.01 1.043 15400

Simul. 2 (Fig. 6b) 0.02 7100 Moderate 0.70 1.035 970

Simul. 3 (Fig. 6c) 0.02 10660 Low 0.90 1.138 430

Simul. 4 (Fig. 6d) 0.036 1730 Strong 0.13 1.010 1550

Simul. 5 (Fig. 6e) 0.036 3540 Low 0.97 1.149 370

Page 25 of 50

Cambridge University Press

Microscopy and Microanalysis



For Peer Review

25

Finally, we would like to provide a tool to roughly estimate EDS counts generated by NPs of 

different sizes and incident energy and detector geometries (remember that we have always used 200 ms 

dwell time, beam current ~400-500 pA). We have compiled the values of EDS counts per NP as a function 

of particle diameter for different instruments (uncorrected 200 kV and AC corrected 80 kV experiments) 

versus NP diameter);  the experimental points were fitted with a 3rd-order polynomial  (see Figure S2). 

We expect that this plot may be exploited to  llow a rough estimation of expected SNR for metal 

nanoparticle EDS experiments. 

In this work, we have mainly addressed random noise bias, and not discussed underfactoring bias 

(reconstruction using an insufficient number of principal components) (Malinowski, 2002; Faber et al., 

1995a, 1995b; Nadler, 2008, 2009), because the information content of each PCA principal component 

can be understood reasonably well for our sample.  We would like to emphasize Potapov & Lubk have 

reported an interesting tool to identify if the PCA component contains information or just carry noise 

(Potapov & Lubk, 2019)  by plotting the scores for successive principal components: noisy ones generate 

isotropic round clouds, but information-carrying ones show a structured anisotropic cloud (see example 

in Figure S3). 

Conclusions:  

Given the outstanding progress of TEMs instruments and associated detectors, it is essential to 

exploit their capabilities to target “quantitative” interpretation for image, diffraction, or spectroscopic data. 

PCA data processing is a very powerful tool to improve the SNR of hyperspectral images and extract all 

underlying information contained in the data. Our high spatial EDS experiments and simulations show 

that if the SNR exceeds a minimal threshold value, it is possible to avoid random noise biasing in PCA 
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reconstructions and, then get chemical composition distribution with very good fidelity of true values (i.e. 

accuracy). In fact, the experimental requirements represent a compromise between dataset size 

(redundancy), counting leval , and sample true composition variance.

We have suggested a few quantitative estimators that may provide information about random 

noise bias occurrence, and they can be derived for PCA processing output without knowledge of “true” 

noiseless sample properties. However, numerical simulations may be necessary to analyze the particular 

nanostructured system, in order to design properly data acquisition parameters and support the criteria 

used for the interpretation. It is important to emphasize that the physical behavior may vary dramatically 

between NP systems, so it is essential that simulations reproduce experiments as close as possible.

A natural question arises: how should one analyze measurements of bimodal distributions or 

three-element metal alloys? Which of the components will carry information on local differences? It is 

not easy to answer this question with a general applicable recipe for all kinds of samples. It is important 

to mention factors such as vibrations, scan noise or filament current oscillation may generate additional 

principal components in the scree-plot, and chemical information can become scattered into several 

components, so one must be prepared to carefully examine the scree-plots and information carried by 

principal component profiles.

 ASSOCIATED CONTENT *sı 

Page 27 of 50

Cambridge University Press

Microscopy and Microanalysis



For Peer Review

27

Supporting Information: Details on NP size distribution. Experimental intensities as a function of NP 

size for different TEM instruments.  Identification of information content of principal components 

though scatter plots of scores. Figures S1-S3 (PDF) 
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Figure Captions.

Figure 1. Comparison of scree-plots derived from EDS measurements on AuAg alloy nanoparticles 

experiments acquired using a non-corrected FEG TEM /STEM (a) and a modern aberration corrected 

microscope equipped with multiple EDS detectors (b).  Reconstruction derived from experiments 

associated with (a) showed a strong random noise bias, while HSI described by (b) showed a good PCA 

reconstruction (see text for explanations). Note that the variance of the 3rd principal component is slightly 

above noise component in (b). Triangular points represent the components used for data reconstruction in 

this work.

Figure 2. Principal component profiles derived from a high SNR simulated HIS of bimetallic AuAg 

nanoparticles; for this ideal case, it is possible to make a clear identification of carried information. The 

loading in (b) includes Au and Ag peaks with the same signal (both negative, allowing the calculation of 

the NP average NP chemical composition); in contrast the component in (c) shows Au and Ag peaks with 

opposite signal (negative-positive) then it is possible to induce concentration variations in the PCA 

reconstruction.

Figure 3. Typical EDS HSI data from AuAg alloy nanoparticles (uncorrected FEG-STEM, 200KV, 64x64 

pixels scan). Comparison of raw and denoised EDS spectrum from a ~6 nm NP for a single pixel (a) and 

the entire NP (b) where the orange curve represent the final fit of EDS processing derived from Hyperspy 

software used to integrate the peak intensity. c), and d ) raw and denoised Au chemical maps, respectively; 

the corresponding NP identification is displayed in (e) and (f) respectively (NP pixels are presented in 

Page 35 of 50

Cambridge University Press

Microscopy and Microanalysis



For Peer Review

35

different colors render easy the nanoparticles recognition). Note the increase in compactness of detected 

particles after PCA processing.

Figure 4. Quantitative chemical composition analysis of alloy NPs. a) Au atomic concentration derived 

from Exp. I using either raw or PCA denoised HIS (dashed line indicates average composition). b) Au 

atomic concentration from Exp. II, including a bimodal chemical composition distribution (atomic 

concentration CAu~0.5 and ~0.75). Resulting chemical composition distributions are plotted at the right. 

The two populations are easily identified from raw data, while denoising generates a strongly biased 

results and NP composition is close to the average of the ensemble of NPs.

Figure 5. Typical EDS HSI data from AuAg alloy nanoparticles obtained for Experiment III (AC STEM, 

4 SDD detectors, 80KV, 64x64 pixels scan). Comparison of raw and denoised EDS spectrum from a ~6 

nm NP for a single pixel (a) and the entire NP (b) where the orange curve represent the final fit of EDS 

processing derived from HyperSpy software used to integrate the peak intensity. c) Comparison of 

chemical composition calculations derived using raw and denoised data; resulting chemical composition 

distribution are plotted at the right. 

Figure 6. Effect of denoising on the assessment of chemical composition distribution deduced from 

simulated data sets including different “true” composition dispersion and counting levels. a-c) NP sample 

of average composition   and distribution width  =0.02. d-e) NP sample of average 𝐶𝐴𝑢 = 0.75 𝜈 ∗
𝐶𝐴𝑢,𝑆𝑇𝐷

composition   and a wider distribution  =0.036 (see text for explanations). The NPs 𝐶𝐴𝑢,1 = 0.75 𝜈 ∗
𝐶𝐴𝑢,𝑆𝑇𝐷

are displayed following the increasing Au concentration along horizontal axis, allowing an easy 
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visualization of the composition distribution (histograms are displayed along the vertical direction on the 

right).

Figure 7.  Scree-plot and 3rd principal component profile derived from the simulated HIS shown in Figures 

6a and 6c. Note that for low counting level (1780 cts, (a)) the profile of principal component #3 (arrowed) 

does not carry any information of chemical composition variation (characteristic peaks from Au and Ag 

are not present (c)). In contrast, the low bias (or higher cts.) reconstruction of simulation from Fig. 6c is 

associated to a 3rd principal component with well formed Au and Ag peaks of opposite sign (d) in order 

to induce changes of the  ratio that determines NP chemical composition.𝐼𝐴𝑢 𝐼𝐴𝑔

Figure 8. Effect of denoising on the assessment of chemical composition distribution deduced from 

simulated data sets including bimodal “true” distributions of chemical composition (population 1: 𝐶𝐴𝑢,1

 , population 2: , for both the distribution width is =0.02). The calculated = 0.75 𝐶𝐴𝑢,2 = 0.65 𝜈 ∗
𝐶𝐴𝑢,𝑆𝑇𝐷

chemical composition distribution is plotted at the right (see text for explanations).

Figure 9. Plot showing the correlation of proposed bias estimators  and   for Experiments I and III 𝑅𝑤 𝑅𝜆

and simulations displayed in Fig. 6 (index 1-5 indicated simulation describes in Fig. 6a-6f respectively).  
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Table 1.  Experimental counts and bias estimators evaluated for the Experiments I-III, considering 6-nm 

NP, and  a “true” composition dispersion . 𝜈 ∗
𝐶𝐴𝑢 = 0.043

𝐼𝐴𝑢,𝑁𝑃

(cts)

 𝐼𝐴𝑢,𝑣𝑜𝑥

(cts)

Bias

(Qualitative)

 𝜎𝐼𝐴𝑢,𝑣𝑜𝑥

(cts)

𝜈 †
𝐼𝐴𝑢,𝑣𝑜𝑥

(cts)

Fidelity

(𝑅𝑤)

Inform. Loss

( )𝐸𝐼𝐿

Experim. I 380 0.35 Strong 0.59 0.029 0.44 19100

Experim. II 293 0.37 Strong 0.61 0.079 0.20 1460

Experim. III 1950 1.77 Moderate/Low 1.33 0.15 0.73 180
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Table 2.  Bias estimators evaluated for the simulated HSIs shown in Figure 6. Different true concentration 

dispersion and counting levels are compared (ensemble of 54x 6-nm NPs, number spectral channels 

n=500; image size m=64x384=24576  pixels, scanning step 0.5 nm).  

𝜈𝐶𝐴𝑢

 

𝐼𝐴𝑢,𝑁𝑃

(cts)

Bias

(Qualitative)

𝑅𝑤 𝑅𝜆 Inform.Loss

𝐸𝐼𝐿

Simul. 1 (Fig. 6a) 0.02 1780 Strong 0.01 1.043 15400

Simul. 2 (Fig. 6b) 0.02 7100 Moderate 0.70 1.035 970

Simul. 3 (Fig. 6c) 0.02 10660 Low 0.90 1.138 430

Simul. 4 (Fig. 6d) 0.036 1730 Strong 0.13 1.010 1550

Simul. 5 (Fig. 6e) 0.036 3540 Low 0.97 1.149 370
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Figure 1. Comparison of scree-plots derived from EDS measurements on AuAg alloy nanoparticles 
experiments acquired using a non-corrected FEG TEM /STEM (a) and a modern aberration corrected 

microscope equipped with multiple EDS detectors (b).  Reconstruction derived from experiments associated 
with (a) showed a strong random noise bias, while HSI described by (b) showed a good PCA reconstruction 

(see text for explanations). Note that the variance of the 3rd principal component is slightly above noise 
component in (b). Triangular points represent the components used for data reconstruction in this work. 
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Figure 2. Principal component profiles derived from a high SNR simulated HIS of bimetallic AuAg 
nanoparticles; for this ideal case, it is possible to make a clear identification of carried information. The 

loading in (b) includes Au and Ag peaks with the same signal (both negative, allowing the calculation of the 
NP average NP chemical composition); in contrast the component in (c) shows Au and Ag peaks with 
opposite signal (negative-positive) then it is possible to induce concentration variations in the PCA 

reconstruction. 
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Figure 3. Typical EDS HSI data from AuAg alloy nanoparticles (uncorrected FEG-STEM, 200KV, 64x64 pixels 
scan). Comparison of raw and denoised EDS spectrum from a ~6 nm NP for a single pixel (a) and the entire 

NP (b) where the orange curve represent the final fit of EDS processing derived from Hyperspy software 
used to integrate the peak intensity. c), and d ) raw and denoised Au chemical maps, respectively; the 

corresponding NP identification is displayed in (e) and (f) respectively (NP pixels are presented in different 
colors render easy the nanoparticles recognition). Note the increase in compactness of detected particles 

after PCA processing. 
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Figure 4. Quantitative chemical composition analysis of alloy NPs. a) Au atomic concentration derived from 
Exp. I using either raw or PCA denoised HIS (dashed line indicates average composition). b) Au atomic 
concentration from Exp. II, including a bimodal chemical composition distribution (atomic concentration 

CAu~0.5 and ~0.75). Resulting chemical composition distributions are plotted at the right. The two 
populations are easily identified from raw data, while denoising generates a strongly biased results and NP 

composition is close to the average of the ensemble of NPs. 
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Figure 5. Typical EDS HSI data from AuAg alloy nanoparticles obtained for Experiment III (AC STEM, 4 SDD 
detectors, 80KV, 64x64 pixels scan). Comparison of raw and denoised EDS spectrum from a ~6 nm NP for a 

single pixel (a) and the entire NP (b) where the orange curve represent the final fit of EDS processing 
derived from HyperSpy software used to integrate the peak intensity. c) Comparison of chemical 

composition calculations derived using raw and denoised data; resulting chemical composition distribution 
are plotted at the right. 
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Figure 6. Effect of denoising on the assessment of chemical composition distribution deduced from simulated 
data sets including different “true” composition dispersion and counting levels. a-c) NP sample of average 
composition C_Au^ =0.75  and distribution width  〖ν^*〗_(C_Au,STD)=0.02. d-e) NP sample of average 

composition C_(Au,1)^ =0.75  and a wider distribution  〖ν^*〗_(C_Au,STD)=0.036 (see text for 
explanations). The NPs are displayed following the increasing Au concentration along horizontal axis, 

allowing an easy visualization of the composition distribution (histograms are displayed along the vertical 
direction on the right). 
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Figure 7.  Scree-plot and 3rd principal component profile derived from the simulated HIS shown in Figures 
6a and 6c. Note that for low counting level (1780 cts, (a)) the profile of principal component #3 (arrowed) 
does not carry any information of chemical composition variation (characteristic peaks from Au and Ag are 

not present (c)). In contrast, the low bias (or higher cts.) reconstruction of simulation from Fig. 6c is 
associated to a 3rd principal component with well formed Au and Ag peaks of opposite sign (d) in order to 

induce changes of the I_Au⁄I_Ag  ratio that determines NP chemical composition. 
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Figure 8. Effect of denoising on the assessment of chemical composition distribution deduced from simulated 
data sets including bimodal “true” distributions of chemical composition (population 1: C_(Au,1)^ =0.75 , 

population 2: C_(Au,2)^ =0.65, for both the distribution width is 〖ν^*〗_(C_Au,STD)=0.02). The 
calculated chemical composition distribution is plotted at the right (see text for explanations). 
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Figure 9. Plot showing the correlation of proposed bias estimators R_w and R_λ  for Experiments I and III 
and simulations displayed in Fig. 6 (index 1-5 indicated simulation describes in Fig. 6a-6f respectively).   
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Figure S1. 

 
Figure S1. Typical size distribution of the alloy NP used in Experiment I, II and III as 
measured by TEM. The continuous curve represents a log-normal description of the 
distribution.  
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Figure S2. 

 
Figure S2. Integrated total counts per NP at the Au L peak (200 ms dwell time), as a function 

of NP diameter for different instruments. This allows a quick estimation of expected counts 

and Poisson noise for nanoparticle. A the mathematical expression describing the general 

tendency of the plots has been obtained by fitting the data. The observed counts as a function 

of NP diameter (D) can be estimated the equation below, derived from Figure S2.   

for Titan-80kV,                I(D)= 38.3 D3 -287.4 D2  + 670.7 D   

for JEM2100F-200kV,   I(D)= 2.4 D3 -6.9 D2  + 18.6 D  
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Figure S3. 
 

 

Figure S3. Cluster plot of scores for successive principal components obtained PCA 

processing a high SNR simulated EDS HSI of bimetallic NPs (Potapov, P., Lubk, A. (2019). 

Optimal principal component analysis of STEM XEDS spectrum images. Adv. Struct. Chem. 

Imag. 5, 4). Note that information-carrying component shows a structured anisotropic cloud 

(top), while noise components generate isotropic round clouds. 
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