
HAL Id: hal-03519138
https://hal.science/hal-03519138

Submitted on 10 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonlinear complementarity problems for n-player
strategic chance-constrained games

Shangyuan Zhang, Makhlouf Hadji, Abdel Lisser, Yacine Mezali

To cite this version:
Shangyuan Zhang, Makhlouf Hadji, Abdel Lisser, Yacine Mezali. Nonlinear complementarity problems
for n-player strategic chance-constrained games. International Conference on Operations Research and
Enterprise Systems (ICORES), Feb 2022, Online Streaming, France. �10.5220/0011005600003117�.
�hal-03519138�

https://hal.science/hal-03519138
https://hal.archives-ouvertes.fr


Nonlinear complementarity problems for n-player strategic
chance-constrained games

Shangyuan Zhang12 a, Makhlouf Hadji1 b, Abdel Lisser2 c and Yacine Mezali1 d

1Institut de Recherche Technologique SystemX, 8 Avenue de la Vauve, 91120 Palaiseau, France
2CentraleSupelec, L2S, Université Paris Saclay, 3 Rue Curie Joliot, 91190, Gif-sur-Yvette, France

{shangyuan.zhang, makhlouf.hadji, yacine.mezali}@irt-systemx.fr, abdel.lisser@l2s.centralesupelec.fr

Keywords: Chance-constrained optimization, Game theory, Nonlinear complementarity problem, Normal/Cauchy
distribution

Abstract: In this paper, we focus on n-player strategic chance-constrained games where the payoff of each player follows
either Cauchy or normal distribution. We transform the Nash equilibrium problem into its equivalent nonlinear
complementarity problem (NCP) through the Karush-Kuhn-Tucker (KKT) conditions. Then, we prove the
existence of the Nash equilibrium by the mean of Brouwer’s fixed-point theorem. In order to show the
efficiency of our approach, we perform numerical experiments on a set of randomly generated instances.

1 INTRODUCTION

Nash equilibrium is a crucial concept widely studied
in game theory literature. John Von Neumann
proved the existence of mixed strategy saddle point
equilibrium for two-player finite zero-sum games
(Neumann, 1928). John Nash extended this result to
finite games with n players and deterministic payoffs
(Nash et al., 1950).

In real-life problems, games input data might be
affected by different uncertainty sources leading to
numerous studies on games under uncertainty, namely
stochastic games. The oligopoly market is a typical
example where the payoff of each player is a random
variable. Generally, the players in an oligopoly
market are risk neutral. Therefore, they consider
the expectation of random payoffs and constraints
(De Wolf and Smeers, 1997; DeMiguel and Xu, 2009;
Jadamba and Raciti, 2015; Ravat and Shanbhag,
2011; Valenzuela and Mazumdar, 2007; Xu and
Zhang, 2013).

When the players are risk averse, chance-
constrained games can be used efficiently (Charnes
and Cooper, 1963; Cheng and Lisser, 2012; Prékopa,
2013). In (Singh et al., 2016a), the authors
prove the existence of Nash equilibrium for an n-
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player finite strategic chance-constrained game under
elliptical distributions. Furthermore, (Singh et al.,
2016b) show that a Nash equilibrium problem for
a two-player random bi-matrix game is equivalent
to a linear complementarity problem (LCP, for
short) when each player’s payoff follows independent
Cauchy distributions. When the player’s payoffs are
normally distributed, Nash equilibrium is equivalent
to a nonlinear complementarity problem (NCP, for
short). In (Singh and Lisser, 2018), the authors
characterized the set of Nash equilibria of a chance-
constrained game using the solution set of a
variational inequality problem. In the case where the
probability distributions are not known in advance,
(Singh et al., 2017) studied distributionally robust
chance-constrained games. Various approaches were
considered in the literature for chance-constrained
two-player stochastic zero-sum games (Blau, 1974;
Cassidy et al., 1972; Charnes et al., 1968; Cheng
et al., 2016; Song, 1992).

In addition, stochastic games with deterministic
payoffs and chance-constrained strategies were also
studied in the literature. For the case of two-
player zero sum games, (Singh and Lisser, 2019)
show that the saddle point is equivalent to a primal-
dual pair of second order cone programs. As for
the n-player general sum games with joint chance
constraints, (Peng et al., 2018) show the existence of
Nash equilibrium when the random linear constraints
are independently normally distributed.

In this paper, we extend the two-player results



in (Singh et al., 2016b) to the case of n-player
stochastic games. We show that the Nash equilibrium
problem can be reformulated as an NCP when the
player’s payoff follows either Logistic or Normal
distributions. We also prove the existence of
Nash equilibrium under different conditions using
Brouwer’s fixed-point theorem. As for the numerical
experiments, we solve several randomly generated
game instances to show the performance of our
approaches. Unlike (Singh et al., 2016b), we solve
instances where the size ranges from (2× 2) to (6×
6×6×6×6×6).

The chance-constrained game model can be
applied to solve real-life problems, e.g., competition
in electricity markets (Lee and Baldick, 2003)
and decision-making for autonomous vehicles
(Blackmore et al., 2006). When it comes to the
electricity market, companies seek to maximize their
profits by controlling prices or production quantities.
As the reward function is random, we can model this
situation by our chance-constrained game model to
determine each company’s Nash equilibrium strategy.
In the decision-making process, autonomous vehicles
seek to avoid potential collisions with obstacles
while taking into account perceptional errors and
environmental disturbances (Blackmore et al.,
2006). In the case of multiple vehicles, the chance-
constrained game theoretical framework can be used
to model the vehicles decisions under uncertainty.

The remainder of this paper is organized as
follows: Section 2 introduces our chance-constrained
modelling framework. In Section 3, we prove
the existence of Nash equilibrium by Brouwer’s
fixed-point theorem, and reformulate our stochastic
chance-constrained games as an NCP. Section 4 is
dedicated to numerical simulations. Finally, Section
5 concludes the paper.

2 CHANCE-CONSTRAINED
GAMES

We consider an n-player chance-constrained finite
strategic game with random payoffs. Let I =
{1,2,3, . . .n} be the set of players. Ai, i ∈ I is the
action set of player i with components ai. The set
of mixed strategies of player i includes all probability
distributions over its action set, defined by the
following k-simplex:

Xi = {τi ∈ Rk+1|
k+1

∑
j=1

τi j = 1,τi j ≥ 0}, (1)

where τi j is the jth component of vector τi, k = |Ai|−
1 with |Ai| the cardinality of the set Ai. Specifically,

τi j is the probability for the player i to choose the jth
action in Ai. Let X = ∏

n
i=1 Xi be the set of strategy

profiles for all players with components τ ∈ X . The
pure strategy set of player i is defined by

Yi = {yi ∈ Xi | ∃ j ∈ {1,2, ..|Ai|}, s.t. yi j = 1}, (2)

which is a subset of Xi. The set of pure strategy
profiles for all players is defined by Y = ∏

n
i=1 Yi, with

y ∈ Y its element. In order to describe the strategy
of one specific player in response to other players, we
denote X−i =∏

n
j=1, j ̸=i X j the strategy set of all players

except player i, with components τ−i ∈X−i. Similarly,
we denote Y−i = ∏

n
j=1, j ̸=i Yj where y−i ∈ Y−i is the

related generic element.
We assume that the pure strategy y based payoff

of player i denoted by rω
i (y) is a random variable.

Given the payoff corresponding to each pure
strategy, the payoff of player i for a mixed strategy
τ∈X is a linear combination of pure-strategy payoffs,
i.e.,

rω
i (τ) = ∑

y∈Y

n

∏
k=1

τk jyk
rω

i (y), (3)

where jyk is the index of yi’s component.
In a chance-constrained game, the objective of

each player is to maximize the expected payoff under
a given level of confidence, i.e.,

uαi
i (τ) = sup{u|P(rw

i (τ)≥ u)≥ αi}. (4)

In the next section, we show the existence of Nash
equilibrium for the chance-constrained games, and
derive the NCP reformulations.

3 NCP FOR N-PLAYER
CHANCE-CONSTRAINED
GAME

In this section, we assume that the random payoffs
of each player follow two probability distributions,
namely Cauchy and Normal distributions. For each
distribution, we derive a deterministic equivalent
NCP.

3.1 Independent Cauchy Distributed
Payoffs

We assume that the pure strategy payoffs for all
players follow independent Cauchy distribution, i.e.
rω

i (y) ∼ C(µi(y),σi(y)) for all y ∈ Y . Then,
for a mixed strategy τ ∈ X , the payoff rω

i (τ) =
∑y∈Y ∏

n
k=1 τk jyk

rω
i (y) of player i is Cauchy distributed



with µi(τ) = ∑y∈Y ∏
n
k=1 τk jyk

µi(y) and σi(τ) =

∑y∈Y ∏
n
k=1 τk jyk

σi(y). Therefore, ZC
i =

rω
i −µi(τ)

σi(τ)

follows a standard Cauchy distribution C(0,1). Let
F−1

ZC
i

be the quantile function of the standard Cauchy

distribution.
For each player i, the chance-constrained payoff

with confidence level αi is:

uαi
i (τ) = sup{u|P(rw

i (τ)≥ u)≥ αi}

= sup{u|P(
rw

i (τ)−µi(τ)

σi(τ)
≥

u−∑y∈Y ∏
n
k=1 τk jyk

µi(y)

∑y∈Y ∏
n
k=1 τk jyk

σi(y)
)≥ αi}

= sup{u|FZC
i
(

u−∑y∈Y ∏
n
k=1 τk jyk

µi(y)

∑y∈Y ∏
n
k=1 τk jyk

σi(y)
)

≤ 1−αi}

= ∑
y∈Y

n

∏
k=1

τk jyk
µi(y)

+F−1
ZC

i
(1−αi) ∑

y∈Y

n

∏
k=1

τk jyk
σi(y)

= ∑
y∈Y

n

∏
k=1

τk jyk
(µi(y)+F−1

ZC
i
(1−αi)σi(y))

= ∑
y∈Y

n

∏
k=1

τk jyk
Ai(y)

=V T
i (τ−i)τi,

(5)

where Vi(τ−i) ∈ R|Ai|.

Vi(τ−i) =



∑y−i∈Y−i Ai(y1
i ,y−i)∏

n
k=1, k ̸=i τk jyk

)
...

∑y−i∈Y−i Ai(ym
i ,y−i)∏

n
k=1, k ̸=i τk jyk

)
...

∑y−i∈Y−i Ai(y
|Ai|
i ,y−i)∏

n
k=1, k ̸=i τk jyk

)


,

(6)
where y j

i ∈ R|Ai| is a unit vector with jth element
equal to 1.

3.1.1 Existence of Nash Equilibrium

In the following, we prove the existence of
Nash equilibrium for stochastic games with Cauchy
distribution.

Theorem 1. There always exists a Nash equilibrium
for every n-player strategic chance-constrained
game, where the payoff of each player is
independently Cauchy distributed.

The proof of this theorem is similar to the proof
given in (Nash, 1951).

3.1.2 NCP Formulation

Given a strategy profile τ of all players, the chance-
constrained payoff of player i is uαi

i (τ) = V T
i (τ−i)τi.

The best response of player i, given the strategy
profile τ−i for all other players, can be obtained by
solving the following optimization problem:

max
τi

V T
i (τ−i)τi

s.t.
|Ai|

∑
j=1

τi j = 1,

τi j ≥ 0, ∀ j ∈ {1,2, ..., |Ai|}.

(7)

The objective function in (7) is concave subject
to linear constraints. Hence, Slater’s condition is
satisfied and the KKT conditions are necessary and
sufficient for optimality.

By KKT conditions, the best response of player i
can be reformulated as follows:

0 ≤ τi ⊥ −Vi −λ
i
11|ei|+λ

i
21|ei| ≥ 0,

0 ≤ λ
i
1 ⊥

|Ai|

∑
j=1

τi j −1 ≥ 0,

0 ≤ λ
i
2 ⊥ 1−

|Ai|

∑
j=1

τi j ≥ 0,

(8)

where 1n denotes all-ones vector with size n.

Putting together the KKT conditions for all
players, we obtain the Nash equilibrium of the
chance-constrained game by solving the following
NCP:

0 ≤ ζ ⊥ G(ζ)≥ 0, (9)

where

ζ = (τ1,τ2, ...,τn,λ
1
1,λ

1
2, ...,λ

n
1,λ

n
2) ∈ R∑i=1 n|Ai|+2n,

(10)



and

G(ζ) =



−V1 −λ1
11|A1|+λ1

21|A1|
−V2 −λ2

11|A2|+λ2
21|A2|

...
−Vn −λn

11|An|+λn
21|An|

∑
|A1|
j=1 τ1 j −1

1−∑
|A1|
j=1 τ1 j

∑
|A2|
j=1 τ2 j −1

1−∑
|A2|
j=1 τ2 j
...

∑
|An|
j=1 τn j −1

1−∑
|An|
j=1 τn j



. (11)

3.2 Independent Normally Distributed
Payoffs

In the following, we consider normally
distributed pure strategy payoffs for all the
players. Thus, for a mixed strategy τ ∈ X ,
the payoff rω

i (τ) = ∑y∈Y ∏
n
k=1 τk jyk

rω
i (y)

of player i follows a normal distribution
N(µi(τ),σ

2
i (τ)) with µi(τ) = ∑y∈Y ∏

n
k=1 τk jyk

µi(y) and
σ2

i (τ) = ∑y∈Y ∏
n
k=1 τ2

k jyk
σ2

i (y).

Therefore, ZN
i =

rω
i −µi(τ)

σi(τ)
follows a standard

normal distribution N(0,1). Let F−1
ZN

i
be the quantile

function of the standard normal distribution.
For each player i, the chance-constrained payoff

with confidence level αi is:

uαi
i (τ) = sup{u|P(rw

i (τ)≥ u)≥ αi}

= sup{u|P(
rw

i (τ)−µi(τ)

σi(τ)
≥

u−∑y∈Y ∏
n
k=1 τk jyk

µi(y)√
∑y∈Y ∏

n
k=1 τ2

k jyk
σ2

i (y)
)≥ αi}

= sup{u|FZN
i
(

u−∑y∈Y ∏
n
k=1 τk jyk

µi(y)√
∑y∈Y ∏

n
k=1 τ2

k jyk
σ2

i (y)
)

≤ 1−αi}

= ∑
y∈Y

n

∏
k=1

τk jyk
µi(y)+

F−1
ZC

i
(1−αi)

√
∑
y∈Y

n

∏
k=1

τ2
k jyk

σ2
i (y)

= PT
i (τ−i)τi +Ci∥Q

1
2
i (τ−i)τi∥,

(12)

where Ci = F−1
ZC

i
(1−αi) and Pi(τ−i) ∈ R|Ai|,

Pi(τ−i) =



∑y−i∈Y−i(µi(y1
i ,y−i)∏

n
k=1, k ̸=i τk jyk

)
...

∑y−i∈Y−i(µi(ym
i ,y−i)∏

n
k=1, k ̸=i τk jyk

)
...

∑y−i∈Y−i(µi(y
|Ai|
i ,y−i)∏

n
k=1, k ̸=i τk jyk

)


,

(13)

and Q
1
2
i (τ−i) ∈ M|Ai| ×|Ai| is a diagonal matrix

Q
1
2
i (τ−i) =


q

1
2
1 (τ−i) . . . 0

...
. . .

...

0 . . . q
1
2
|Ai|(τ−i)

 , (14)

where q
1
2
m(τ−i) =√

∑y−i∈Y−i(σ
2
i (y

m
i ,y−i)∏

n
k=1, k ̸=i τ2

k jyi
).

3.2.1 Existence of Nash Equilibrium

Lemma 1. If a function f (x) is strictly concave
and continuous on a compact convex set, then
argmaxx f (x) is a single-valued correspondence.

Proof. A continuous function can always reach its
maximum on a compact set. A strictly concave
function on a convex set has no more than one
maximum. Thus, the function f has one maximum,
which implies that argmaxx f (x) is a single-valued
correspondence.

Theorem 2. Consider an n-player chance-
constrained strategic game. If the pure strategy
payoff of each player follows an independent normal
distribution, then the Nash equilibrium exists for
confidence level α ∈ [0.5,1).

Proof. Firstly we construct a function

bri(τ) = argmax
τ∗i

(ui(τ
∗
i ,τ−i)−||τ∗i − τi||). (15)

For α∈ [0.5,1), bri is well-defined since fi(τ−i) =
ui(τ

∗
i ,τ−i)− ||τ∗i − τi|| is a strictly concave function.

Therefore argmaxτ−i
fi(τ−i) is a singleton by lemma

1. As fi(τ−i) is continuous, we can prove that bri(τ)
is a continuous function by the Maximum theorem.

By concatenating bri, we have

br(τ) =
n

∏
i=1

bri(τ−i). (16)

Since br is a continuous function from a convex
compact subset to itself, according to Brouwer’s



fixed-point theorem, there exists a point τ∗ where τ∗ =
br(τ∗). Based on the definition of br, we can conclude
that τ∗ is a Nash equilibrium for this game.

3.2.2 NCP Formulation

For a given strategy profile τ−i for all other players
and α ∈ [0.5,1), a best response strategy of player i
can be obtained by solving the following optimization
problem:

max
τi

PT
i (τ−i)τi +Ci∥Q

1
2
i (τ−i)τi∥

s.t.
|Ai|

∑
j=1

τi j = 1,

τi j ≥ 0, ∀ j ∈ {1,2, ..., |Ai|}.

(17)

Here the objective function is concave and the
constraints are linear, thus Slater’s condition holds
and the KKT conditions are both necessary and
sufficient for optimality.

By KKT conditions, the best response of player i
can be reformulated as follows

0 ≤ τi ⊥ −Pi(τ−i)−Ci
Qi(τ−i)τi

∥Q
1
2
i (τ−i)τi∥

−λ
i
11|ei|

+λ
i
21|ei| ≥ 0,

0 ≤ λ
i
1 ⊥

|Ai|

∑
j=1

τi j −1 ≥ 0,

0 ≤ λ
i
2 ⊥ 1−

|Ai|

∑
j=1

τi j ≥ 0.

(18)

Putting together the KKT conditions for all
players, we can obtain the Nash equilibrium of the
stochastic game by solving the following NCP:

0 ≤ ζ ⊥ G(ζ)≥ 0, (19)

where

ζ = (τ1,τ2, ...,τn,λ
1
1,λ

1
2, ...,λ

n
1,λ

n
2) ∈ R∑i=1 n|Ai|+2n,

(20)

and

G(ζ) =



−P1(τ−1)−C1
Q1(τ−1)τ1

∥Q
1
2
1 (τ−1)τ1∥

−λ1
11|e1|+λ1

21|e1|

−P2(τ−2)−C2
Q2(τ−2)τ2

∥Q
1
2
2 (τ−2)τ2∥

−λ2
11|e2|+λ2

21|e2|

...
−Pn(τ−n)−Cn

Qn(τ−n)τn

∥Q
1
2
n (τ−n)τn∥

−λn
11|en|+λn

21|en|

∑
|A1|
j=1 τ1 j −1

1−∑
|A1|
j=1 τ1 j

∑
|A2|
j=1 τ2 j −1

1−∑
|A2|
j=1 τ2 j
...

∑
|An|
j=1 τn j −1

1−∑
|An|
j=1 τn j



.

(21)

4 NUMERICAL EXPERIMENTS

In this section, we generate random instances in
Matlab and we use PATH Solver to come up with
Nash equilibrium.

PATH Solver is an implementation of a stabilized
Newton method for the solution of the Mixed
Complementarity Problem (MCP) (Dirkse and Ferris,
1995). For our concern, once the analytic form of
G(x) and its Jacobian is known and coded, we can
directly use PATH to solve our NCP.

As a matter of illustration, we give two
examples of (3×3×3) random games with different
distributions and then analyze the corresponding
results.

4.1 (3×3×3) Random Games with
Cauchy Distribution.

Three examples of randomly generated (3 × 3 × 3)
games, following independent Cauchy distribution
Ci(a) ∼ (µ(a),σ(a)), are given below. The mean µ
and deviation σ are uniformly generated between 1
and 3 as follows:

1.

µ1(:, :,1) =

1 1 2
2 3 1
1 3 1

 , µ1(:, :,2) =

2 1 3
3 1 2
1 2 2

 ,

µ1(:, :,3) =

2 1 2
1 3 2
3 1 3





σ1(:, :,1) =

1 2 1
3 2 2
3 2 2

 , σ1(:, :,2) =

3 2 2
3 3 3
2 2 3

 ,

σ1(:, :,3) =

2 1 1
2 1 3
2 2 1



µ2(:, :,1) =

1 2 2
1 1 1
1 3 3

 , µ2(:, :,2) =

3 1 1
2 2 2
1 2 3

 ,

µ2(:, :,3) =

1 1 1
1 2 1
1 2 3



σ2(:, :,1) =

1 2 2
3 2 3
3 1 2

 , σ2(:, :,2) =

2 2 2
1 3 3
2 2 1

 ,

σ2(:, :,3) =

3 1 3
3 1 1
3 2 3



µ3(:, :,1) =

1 3 3
2 3 2
2 3 3

 , µ3(:, :,2) =

1 2 2
1 2 2
3 3 3

 ,

µ3(:, :,3) =

3 1 2
2 3 1
1 1 3



σ3(:, :,1) =

3 1 1
2 3 2
2 1 1

 , σ3(:, :,2) =

3 1 3
3 2 2
3 2 3

 ,

σ3(:, :,3) =

2 1 2
2 1 3
3 1 3


2.

µ1(:, :,1) =

1 1 1
1 1 2
1 2 3

 , µ1(:, :,2) =

2 1 3
2 2 1
2 3 1

 ,

µ1(:, :,3) =

2 1 1
2 3 1
2 1 1



σ1(:, :,1) =

2 3 1
2 3 3
1 3 3

 , σ1(:, :,2) =

3 2 1
3 1 1
3 2 3

 ,

σ1(:, :,3) =

1 2 3
1 2 2
1 1 3



µ2(:, :,1) =

2 1 3
2 2 1
1 1 3

 , µ2(:, :,2) =

2 1 3
3 2 3
3 2 1

 ,

µ2(:, :,3) =

1 2 1
2 2 3
1 1 3



σ2(:, :,1) =

2 3 1
3 3 2
1 2 1

 , σ2(:, :,2) =

1 1 2
1 1 1
3 1 3

 ,

σ2(:, :,3) =

1 2 1
1 1 1
1 3 1



µ3(:, :,1) =

1 3 1
1 2 3
2 1 3

 , µ3(:, :,2) =

2 2 1
1 1 1
3 3 3

 ,

µ3(:, :,3) =

2 3 3
2 3 2
3 1 2



σ3(:, :,1) =

1 2 1
3 3 2
2 1 2

 , σ3(:, :,2) =

3 1 3
3 1 3
3 1 3

 ,

σ3(:, :,3) =

1 1 2
3 2 3
1 1 2


3.

µ1(:, :,1) =

1 2 3
1 2 2
2 2 2

 , µ1(:, :,2) =

2 1 2
3 2 3
3 2 1

 ,

µ1(:, :,3) =

1 2 2
1 2 2
3 2 2



σ1(:, :,1) =

3 1 1
2 1 2
3 1 2

 , σ1(:, :,2) =

2 3 1
3 3 1
2 3 3

 ,

σ1(:, :,3) =

1 3 3
2 2 3
2 2 2



µ2(:, :,1) =

2 1 1
1 1 2
2 3 3

 , µ2(:, :,2) =

2 3 1
3 3 1
2 2 2

 ,

µ2(:, :,3) =

1 2 3
1 3 2
3 2 3





σ2(:, :,1) =

3 3 3
2 3 2
1 1 3

 , σ2(:, :,2) =

3 3 2
1 2 1
3 3 1

 ,

σ2(:, :,3) =

2 3 1
3 1 1
3 2 1



µ3(:, :,1) =

3 2 3
2 1 2
1 1 3

 , µ3(:, :,2) =

3 3 3
2 3 2
3 1 3

 ,

µ3(:, :,3) =

2 1 2
2 2 3
3 3 3



σ3(:, :,1) =

2 1 3
1 2 3
2 2 3

 , σ3(:, :,2) =

3 2 3
2 1 2
3 1 3

 ,

σ3(:, :,3) =

1 1 1
2 2 2
2 2 1



For the above randomly generated examples, the
mean and the deviation of each player’s payoff use
(3 × 3 × 3) tensors since there are 3 players in the
game and each player has 3 actions to choose. For
instance, if each player chooses the first action as
their strategy, then the payoff for player 1 follows
a Cauchy distribution with mean parameter µ = 1
and scale parameter σ = 1. Table 1 summarizes the
Nash equilibrium of the three examples for different
confidence levels α. Column 1 presents the index
of examples. Columns 2-4 contain the different
confidence levels α for the chance-constrained
game. The Nash equilibrium of the game is given in
Columns 5-7.

4.2 (3×3×3) Random Games with
Normal Distribution.

Similarly, three instances of randomly generated
(3 × 3 × 3) games, following independent normal
distribution Ni(a) ∼ (µ(a),σ2(a)), are given below.
The mean µ and deviation σ are uniformly generated
between 1 and 3 as follows:

1.

µ1(:, :,1) =

3 1 2
1 1 2
3 2 3

 , µ1(:, :,2) =

1 3 1
3 2 2
3 2 3

 ,

µ1(:, :,3) =

1 3 2
1 3 3
1 3 3



σ
2
1(:, :,1) =

9 1 1
4 9 1
4 1 4

 , σ
2
1(:, :,2) =

4 1 1
9 9 1
9 1 1

 ,

σ
2
1(:, :,3) =

4 4 4
4 4 4
1 9 1



µ2(:, :,1) =

2 1 3
2 1 2
1 1 3

 , µ2(:, :,2) =

2 2 3
2 3 1
1 2 2

 ,

µ2(:, :,3) =

2 3 1
3 1 1
3 2 2



σ
2
2(:, :,1) =

4 4 1
1 9 4
1 4 9

 , σ
2
2(:, :,2) =

9 4 4
1 4 9
4 1 1

 ,

σ
2
2(:, :,3) =

4 4 4
4 4 1
9 1 9



µ3(:, :,1) =

3 3 2
1 1 1
3 3 2

 , µ3(:, :,2) =

3 3 2
1 3 2
2 2 3

 ,

µ3(:, :,3) =

3 3 2
2 3 1
2 3 1



σ
2
3(:, :,1) =

1 9 9
9 9 1
9 4 1

 , σ
2
3(:, :,2) =

4 9 1
1 4 1
1 9 9

 ,

σ
2
3(:, :,3) =

9 1 9
1 4 9
4 4 9


2.

µ1(:, :,1) =

1 2 3
1 3 3
3 2 3

 , µ1(:, :,2) =

3 3 1
1 3 2
1 1 3

 ,

µ1(:, :,3) =

2 2 2
1 2 1
3 2 1





Table 1: Nash equilibrium for various values of α for Cauchy distribution.

No. α Nash Equilibrium

α1 α2 α3 x∗ y∗ z∗

1
0.4 0.4 0.4 (0, 1, 0) (1, 0, 0) (0.667, 0, 0.333)

0.5 0.5 0.5 (0, 1, 0) (0, 1, 0) (1, 0, 0)

0.7 0.7 0.7 (0, 1, 0) (0, 1, 0) (0, 0, 1)

2
0.4 0.4 0.4 (0.442, 0, 0.558) (0, 0, 1) (0, 0, 1)

0.5 0.5 0.5 (0, 0, 1) (1, 0, 0) (0, 1, 0)

0.7 0.7 0.7 (0, 0, 1) (0, 0, 1) (1, 0, 0)

3
0.4 0.4 0.4 (0, 0.775, 0.225) (0, 1, 0) (0, 1, 0)

0.5 0.5 0.5 (0, 0, 1) (0, 0, 1) (0, 0, 1)

0.7 0.7 0.7 (0, 0, 1) (0, 0, 1) (0, 0, 1)

σ
2
1(:, :,1) =

4 9 4
1 1 4
9 9 9

 , σ
2
1(:, :,2) =

9 1 9
4 9 9
1 9 9

 ,

σ
2
1(:, :,3) =

4 4 9
4 1 4
1 4 4



µ2(:, :,1) =

2 1 2
3 3 1
1 3 1

 , µ2(:, :,2) =

1 1 1
2 2 3
3 1 1

 ,

µ2(:, :,3) =

1 2 1
2 1 2
1 3 1



σ
2
2(:, :,1) =

4 9 4
9 4 4
4 4 9

 , σ
2
2(:, :,2) =

4 4 9
1 4 9
9 9 1

 ,

σ
2
2(:, :,3) =

4 9 4
4 1 1
9 9 4



µ3(:, :,1) =

1 2 1
3 3 1
3 3 2

 , µ3(:, :,2) =

3 3 3
3 3 1
1 1 2

 ,

µ3(:, :,3) =

2 1 3
2 1 3
1 2 1



σ
2
3(:, :,1) =

1 9 4
4 1 1
1 1 1

 , σ
2
3(:, :,2) =

9 9 9
9 4 9
9 1 4

 ,

σ
2
3(:, :,3) =

1 4 1
1 9 9
9 4 1



3.

µ1(:, :,1) =

2 3 1
2 3 3
2 1 2

 , µ1(:, :,2) =

2 2 2
2 3 1
2 2 2

 ,

µ1(:, :,3) =

2 1 1
1 1 2
3 3 1



σ
2
1(:, :,1) =

1 4 1
9 1 1
1 1 4

 , σ
2
1(:, :,2) =

4 9 4
4 4 1
9 4 4

 ,

σ
2
1(:, :,3) =

9 9 9
9 1 4
1 1 1



µ2(:, :,1) =

3 2 2
3 3 1
3 1 2

 , µ2(:, :,2) =

1 1 1
3 1 1
1 1 1

 ,

µ2(:, :,3) =

1 2 1
1 1 3
1 2 1





σ
2
1(:, :,1) =

1 4 1
9 1 1
1 1 4

 , σ
2
1(:, :,2) =

4 9 4
4 4 1
9 4 4

 ,

σ
2
1(:, :,3) =

9 9 9
9 1 4
1 1 1



µ3(:, :,1) =

3 3 2
1 3 3
1 1 2

 , µ3(:, :,2) =

2 3 3
3 3 1
2 1 3

 ,

µ3(:, :,3) =

2 3 3
2 2 3
3 3 2



σ
2
3(:, :,1) =

1 1 9
4 4 9
9 1 1

 , σ
2
3(:, :,2) =

9 9 1
1 4 1
1 9 1

 ,

σ
2
3(:, :,3) =

4 4 9
9 4 4
4 1 1





Table 2: Nash equilibrium for various values of α for normal distribution.

No. α Nash Equilibrium

α1 α2 α3 x∗ y∗ z∗

1
0.6 0.6 0.6 (0, 0, 1) (0, 0.187, 0.813) (0.092, 0.909, 0)

0.7 0.7 0.7 (0, 0, 1) (0, 0, 1) (0.673, 0.327, 0)

0.8 0.8 0.8 (0, 0, 1) (0.194, 0.229, 0.577) (0.764, 0.236, 0)

2
0.6 0.6 0.6 (0.623, 0, 0.377) (1, 0, 0) (0.424, 0.576, 0)

0.7 0.7 0.7 (0.851, 0.149, 0) (0.395, 0.386, 0.219) (0, 1, 0)

0.8 0.8 0.8 (0.067, 0.861, 0.069) (0.322, 0.678, 0) (0.771, 0.229, 0)

3
0.6 0.6 0.6 (0, 0.457, 0.543) (0, 0.291, 0.71) (0.058, 0 , 0.942)

0.7 0.7 0.7 (0, 0.626, 0.374) (0.072, 0.206, 0.722) (0.264, 0 , 0.736)

0.8 0.8 0.8 (0, 0, 1) (0, 1, 0) (0, 0, 1)

Table 3: Comparison of success rate and running time.

Game type Cauchy distribution Normal distribution

α success
rate

average
time(s)

α success
rate

average
time(s)

2×2
0.2 100% 0.0128 0.6 99% 0.0389

0.4 100% 0.0122 0.7 95% 0.0449

0.6 100% 0.0107 0.8 90% 0.0487

0.8 100% 0.0098 0.9 86% 0.0509

3×3×3
0.2 100% 0.0463 0.6 98% 0.2198

0.4 100% 0.0378 0.7 92% 0.2419

0.6 100% 0.0420 0.8 86% 0.3398

0.8 100% 0.0337 0.9 83% 0.3264

4×4×4×4
0.2 100% 1.1165 0.6 96% 4.5894

0.4 100% 1.0237 0.7 90% 5.4259

0.6 100% 0.8908 0.8 87% 7.4005

0.8 100% 0.7670 0.9 86% 6.5441

5×5×5×5×5
0.2 81% 39.8803 0.6 64% 144.8211

0.4 80% 48.8849 0.7 52% 196.6912

0.6 89% 44.9324 0.8 67% 201.4756

0.8 94% 36.1606 0.9 86% 126.2685



For the above randomly generated examples, the
mean and the deviation of each player’s payoff use
(3× 3× 3) tensors. Considering the first example, if
each player chooses the first action as their strategy,
the payoff for player 1 follows a normal distribution
with mean parameter µ = 3 and variance parameter
σ2 = 9. Table 2 summarizes the Nash equilibrium
in the same way as Table 1. Column 1 presents the
index of examples. Columns 2-4 show the different
confidence levels α for the chance-constrained
game. The Nash equilibrium of the game is given in
Columns 5-7.

4.3 Numerical Results for Large Size
Game Instances

Here we solve large size instances with up to (5×5×
5×5×5) games.

The NCPs are implemented in Matlab and solved
by PATH on Intel Core i72,6 GHz with 32GB RAM.
We randomly generated 100 tests of several groups
of different game sizes and confidence levels for
both distributions, then we computed the average
running time and the success rate in relation of solved
instances by PATH solver. Table 3 summarizes the
numerical results for different sizes of the chance-
constrained games. Column 1 presents the size of the
game instances. Columns 2-4 show the confidence
level α, success rate and average CPU time for
problems under Cauchy distribution, respectively.
Columns 5-7 provide the same information as
Columns 2-4 for problems under normal distribution.

As shown in Table 3, the average CPU time for
the instances up to (4×4×4×4) is within 1 second,
whilst (5 × 5 × 5 × 5) instances are solved within
49 seconds. Games with Cauchy distributions have
100% success rates for all the instances except (5×
5 × 5 × 5) instances where the success rates range
from 81% up to 94%. As for normal distribution
games, the success rate ranges from 52% for the
large instance to 99% for the smallest instances. In
addition, we also solve game instances with size
(6×6×6×6×6×6) within 30 minutes. PATH failed
to solve game instances with more than (6× 6× 6×
6×6×6).

5 CONCLUSION

In this paper, we solved the Nash equilibrium problem
with n-player chance-constrained games. We proved
the existence of Nash Equilibrium for stochastic
games with Cauchy and normal distributions. We

derive a deterministic equivalent NCP for these
games.

In order to show the performances of our
approaches, we generated random instances and used
the PATH solver to solve the related NCPs.

For future work, we will consider different
distributions for the addressed stochastic games and
apply our approach to real-life applications, e.g.,
autonomous vehicles.
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