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INTRODUCTION

Nash equilibrium is a crucial concept widely studied in game theory literature. John Von Neumann proved the existence of mixed strategy saddle point equilibrium for two-player finite zero-sum games [START_REF] Neumann | Zur theorie der gesellschaftsspiele[END_REF]. John Nash extended this result to finite games with n players and deterministic payoffs [START_REF] Nash | Equilibrium points in n-person games[END_REF].

In real-life problems, games input data might be affected by different uncertainty sources leading to numerous studies on games under uncertainty, namely stochastic games. The oligopoly market is a typical example where the payoff of each player is a random variable. Generally, the players in an oligopoly market are risk neutral. Therefore, they consider the expectation of random payoffs and constraints [START_REF] De Wolf | A stochastic version of a stackelberg-nash-cournot equilibrium model[END_REF][START_REF] Demiguel | A stochastic multipleleader stackelberg model: analysis, computation, and application[END_REF][START_REF] Jadamba | Variational inequality approach to stochastic nash equilibrium problems with an application to cournot oligopoly[END_REF][START_REF] Ravat | On the characterization of solution sets of smooth and nonsmooth convex stochastic nash games[END_REF][START_REF] Valenzuela | Cournot prices considering generator availability and demand uncertainty[END_REF][START_REF] Xu | Stochastic nash equilibrium problems: sample average approximation and applications[END_REF].

When the players are risk averse, chanceconstrained games can be used efficiently [START_REF] Charnes | Deterministic equivalents for optimizing and satisficing under chance constraints[END_REF][START_REF] Cheng | A second-order cone programming approach for linear programs with joint probabilistic constraints[END_REF][START_REF] Prékopa | Stochastic programming[END_REF].

In (Singh et al., 2016a), the authors prove the existence of Nash equilibrium for an n-player finite strategic chance-constrained game under elliptical distributions. Furthermore, [START_REF] Singh | Solving chance-constrained games using complementarity problems[END_REF] show that a Nash equilibrium problem for a two-player random bi-matrix game is equivalent to a linear complementarity problem (LCP, for short) when each player's payoff follows independent Cauchy distributions. When the player's payoffs are normally distributed, Nash equilibrium is equivalent to a nonlinear complementarity problem (NCP, for short). In [START_REF] Singh | Variational inequality formulation for the games with random payoffs[END_REF], the authors characterized the set of Nash equilibria of a chanceconstrained game using the solution set of a variational inequality problem. In the case where the probability distributions are not known in advance, [START_REF] Singh | Distributionally robust chance-constrained games: existence and characterization of nash equilibrium[END_REF] studied distributionally robust chance-constrained games. Various approaches were considered in the literature for chance-constrained two-player stochastic zero-sum games [START_REF] Blau | Random-payoff two-person zero-sum games[END_REF][START_REF] Cassidy | Solution of a satisficing model for random payoff games[END_REF][START_REF] Charnes | Zerozero chance-constrained games[END_REF][START_REF] Cheng | Randompayoff two-person zero-sum game with joint chance constraints[END_REF][START_REF] Song | On random payoff matrix games[END_REF].

In addition, stochastic games with deterministic payoffs and chance-constrained strategies were also studied in the literature.

For the case of twoplayer zero sum games, [START_REF] Singh | A second-order cone programming formulation for two player zero-sum games with chance constraints[END_REF] show that the saddle point is equivalent to a primaldual pair of second order cone programs. As for the n-player general sum games with joint chance constraints, [START_REF] Peng | General sum games with joint chance constraints[END_REF] show the existence of Nash equilibrium when the random linear constraints are independently normally distributed.

In this paper, we extend the two-player results in [START_REF] Singh | Solving chance-constrained games using complementarity problems[END_REF] to the case of n-player stochastic games. We show that the Nash equilibrium problem can be reformulated as an NCP when the player's payoff follows either Logistic or Normal distributions.

We also prove the existence of Nash equilibrium under different conditions using Brouwer's fixed-point theorem. As for the numerical experiments, we solve several randomly generated game instances to show the performance of our approaches. Unlike [START_REF] Singh | Solving chance-constrained games using complementarity problems[END_REF], we solve instances where the size ranges from (2 × 2) to (6 × 6 × 6 × 6 × 6 × 6).

The chance-constrained game model can be applied to solve real-life problems, e.g., competition in electricity markets [START_REF] Lee | Solving three-player games by the matrix approach with application to an electric power market[END_REF] and decision-making for autonomous vehicles [START_REF] Blackmore | A probabilistic approach to optimal robust path planning with obstacles[END_REF]. When it comes to the electricity market, companies seek to maximize their profits by controlling prices or production quantities. As the reward function is random, we can model this situation by our chance-constrained game model to determine each company's Nash equilibrium strategy. In the decision-making process, autonomous vehicles seek to avoid potential collisions with obstacles while taking into account perceptional errors and environmental disturbances [START_REF] Blackmore | A probabilistic approach to optimal robust path planning with obstacles[END_REF]. In the case of multiple vehicles, the chanceconstrained game theoretical framework can be used to model the vehicles decisions under uncertainty.

The remainder of this paper is organized as follows: Section 2 introduces our chance-constrained modelling framework. In Section 3, we prove the existence of Nash equilibrium by Brouwer's fixed-point theorem, and reformulate our stochastic chance-constrained games as an NCP. Section 4 is dedicated to numerical simulations. Finally, Section 5 concludes the paper.

CHANCE-CONSTRAINED GAMES

We consider an n-player chance-constrained finite strategic game with random payoffs. Let I = {1, 2, 3, . . . n} be the set of players. A i , i ∈ I is the action set of player i with components a i . The set of mixed strategies of player i includes all probability distributions over its action set, defined by the following k-simplex:

X i = {τ i ∈ R k+1 | k+1 ∑ j=1 τ i j = 1, τ i j ≥ 0}, (1) 
where τ i j is the jth component of vector τ i , k = |A i | -1 with |A i | the cardinality of the set A i . Specifically, τ i j is the probability for the player i to choose the jth action in A i . Let X = ∏ n i=1 X i be the set of strategy profiles for all players with components τ ∈ X. The pure strategy set of player i is defined by

Y i = {y i ∈ X i | ∃ j ∈ {1, 2, ..|A i |}, s.t. y i j = 1}, (2)
which is a subset of X i . The set of pure strategy profiles for all players is defined by Y = ∏ n i=1 Y i , with y ∈ Y its element. In order to describe the strategy of one specific player in response to other players, we denote X -i = ∏ n j=1, j̸ =i X j the strategy set of all players except player i, with components τ -i ∈ X -i . Similarly, we denote Y -i = ∏ n j=1, j̸ =i Y j where y -i ∈ Y -i is the related generic element.

We assume that the pure strategy y based payoff of player i denoted by r ω i (y) is a random variable. Given the payoff corresponding to each pure strategy, the payoff of player i for a mixed strategy τ ∈ X is a linear combination of pure-strategy payoffs, i.e.,

r ω i (τ) = ∑ y∈Y n ∏ k=1 τ k j y k r ω i (y), (3) 
where j y k is the index of y i 's component.

In a chance-constrained game, the objective of each player is to maximize the expected payoff under a given level of confidence, i.e.,

u α i i (τ) = sup{u|P(r w i (τ) ≥ u) ≥ α i }. (4) 
In the next section, we show the existence of Nash equilibrium for the chance-constrained games, and derive the NCP reformulations.

NCP FOR N-PLAYER CHANCE-CONSTRAINED GAME

In this section, we assume that the random payoffs of each player follow two probability distributions, namely Cauchy and Normal distributions. For each distribution, we derive a deterministic equivalent NCP.

Independent Cauchy Distributed Payoffs

We assume that the pure strategy payoffs for all players follow independent Cauchy distribution, i.e. r ω i (y) ∼ C(µ i (y), σ i (y)) for all y ∈ Y . Then, for a mixed strategy τ ∈ X, the payoff

r ω i (τ) = ∑ y∈Y ∏ n k=1 τ k j y k r ω i (y) of player i is Cauchy distributed with µ i (τ) = ∑ y∈Y ∏ n k=1 τ k j y k µ i (y) and σ i (τ) = ∑ y∈Y ∏ n k=1 τ k j y k σ i (y). Therefore, Z C i = r ω i -µ i (τ) σ i (τ)
follows a standard Cauchy distribution C(0, 1). Let F -1

Z C i
be the quantile function of the standard Cauchy distribution.

For each player i, the chance-constrained payoff with confidence level α i is:

u α i i (τ) = sup{u|P(r w i (τ) ≥ u) ≥ α i } = sup{u|P( r w i (τ) -µ i (τ) σ i (τ) ≥ u -∑ y∈Y ∏ n k=1 τ k j y k µ i (y) ∑ y∈Y ∏ n k=1 τ k j y k σ i (y) ) ≥ α i } = sup{u|F Z C i ( u -∑ y∈Y ∏ n k=1 τ k j y k µ i (y) ∑ y∈Y ∏ n k=1 τ k j y k σ i (y) ) ≤ 1 -α i } = ∑ y∈Y n ∏ k=1 τ k j y k µ i (y) + F -1 Z C i (1 -α i ) ∑ y∈Y n ∏ k=1 τ k j y k σ i (y) = ∑ y∈Y n ∏ k=1 τ k j y k (µ i (y) + F -1 Z C i (1 -α i )σ i (y)) = ∑ y∈Y n ∏ k=1 τ k j y k A i (y) = V T i (τ -i )τ i , (5) 
where

V i (τ -i ) ∈ R |A i | . V i (τ -i ) =          ∑ y -i ∈Y -i A i (y 1 i , y -i ) ∏ n k=1, k̸ =i τ k j y k ) . . . ∑ y -i ∈Y -i A i (y m i , y -i ) ∏ n k=1, k̸ =i τ k j y k ) . . . ∑ y -i ∈Y -i A i (y |A i | i , y -i ) ∏ n k=1, k̸ =i τ k j y k )          , (6) where y 
j i ∈ R |A i |
is a unit vector with jth element equal to 1.

Existence of Nash Equilibrium

In the following, we prove the existence of Nash equilibrium for stochastic games with Cauchy distribution.

Theorem 1. There always exists a Nash equilibrium for every n-player strategic chance-constrained game, where the payoff of each player is independently Cauchy distributed.

The proof of this theorem is similar to the proof given in [START_REF] Nash | Non-cooperative games[END_REF].

NCP Formulation

Given a strategy profile τ of all players, the chanceconstrained payoff of player i is

u α i i (τ) = V T i (τ -i )τ i .
The best response of player i, given the strategy profile τ -i for all other players, can be obtained by solving the following optimization problem:

max τ i V T i (τ -i )τ i s.t. |A i | ∑ j=1 τ i j = 1, τ i j ≥ 0, ∀ j ∈ {1, 2, ..., |A i |}. (7) 
The objective function in ( 7) is concave subject to linear constraints. Hence, Slater's condition is satisfied and the KKT conditions are necessary and sufficient for optimality.

By KKT conditions, the best response of player i can be reformulated as follows:

0 ≤ τ i ⊥ -V i -λ i 1 1 |e i | + λ i 2 1 |e i | ≥ 0, 0 ≤ λ i 1 ⊥ |A i | ∑ j=1 τ i j -1 ≥ 0, 0 ≤ λ i 2 ⊥ 1 - |A i | ∑ j=1 τ i j ≥ 0, (8) 
where 1 n denotes all-ones vector with size n.

Putting together the KKT conditions for all players, we obtain the Nash equilibrium of the chance-constrained game by solving the following NCP:

0 ≤ ζ ⊥ G(ζ) ≥ 0, (9) 
where

ζ = (τ 1 , τ 2 , ..., τ n , λ 1 1 , λ 1 2 , ..., λ n 1 , λ n 2 ) ∈ R ∑ i=1 n|A i |+2n , (10) 
and

G(ζ) =                        -V 1 -λ 1 1 1 |A 1 | + λ 1 2 1 |A 1 | -V 2 -λ 2 1 1 |A 2 | + λ 2 2 1 |A 2 | . . . -V n -λ n 1 1 |A n | + λ n 2 1 |A n | ∑ |A 1 | j=1 τ 1 j -1 1 -∑ |A 1 | j=1 τ 1 j ∑ |A 2 | j=1 τ 2 j -1 1 -∑ |A 2 | j=1 τ 2 j . . . ∑ |A n | j=1 τ n j -1 1 -∑ |A n | j=1 τ n j                        . ( 11 
)

Independent Normally Distributed Payoffs

In the following, we consider normally distributed pure strategy payoffs for all the players.

Thus, for a mixed strategy τ ∈ X, the payoff

r ω i (τ) = ∑ y∈Y ∏ n k=1 τ k j y k r ω i (y) of player i follows a normal distribution N(µ i (τ), σ 2 i (τ)) with µ i (τ) = ∑ y∈Y ∏ n k=1 τ k j y k µ i (y) and σ 2 i (τ) = ∑ y∈Y ∏ n k=1 τ 2 k j y k σ 2 i (y).
Therefore,

Z N i = r ω i -µ i (τ) σ i (τ)
follows a standard normal distribution N(0, 1). Let F -1

Z N i
be the quantile function of the standard normal distribution.

For each player i, the chance-constrained payoff with confidence level α i is:

u α i i (τ) = sup{u|P(r w i (τ) ≥ u) ≥ α i } = sup{u|P( r w i (τ) -µ i (τ) σ i (τ) ≥ u -∑ y∈Y ∏ n k=1 τ k j y k µ i (y) ∑ y∈Y ∏ n k=1 τ 2 k j y k σ 2 i (y) ) ≥ α i } = sup{u|F Z N i ( u -∑ y∈Y ∏ n k=1 τ k j y k µ i (y) ∑ y∈Y ∏ n k=1 τ 2 k j y k σ 2 i (y) ) ≤ 1 -α i } = ∑ y∈Y n ∏ k=1 τ k j y k µ i (y)+ F -1 Z C i (1 -α i ) ∑ y∈Y n ∏ k=1 τ 2 k j y k σ 2 i (y) = P T i (τ -i )τ i +C i ∥Q 1 2 i (τ -i )τ i ∥, (12) 
where

C i = F -1 Z C i (1 -α i ) and P i (τ -i ) ∈ R |A i | , P i (τ -i ) =          ∑ y -i ∈Y -i (µ i (y 1 i , y -i ) ∏ n k=1, k̸ =i τ k j y k ) . . . ∑ y -i ∈Y -i (µ i (y m i , y -i ) ∏ n k=1, k̸ =i τ k j y k ) . . . ∑ y -i ∈Y -i (µ i (y |A i | i , y -i ) ∏ n k=1, k̸ =i τ k j y k )          , (13) 
and Q

1 2 i (τ -i ) ∈ M |A i | ×|A i | is a diagonal matrix Q 1 2 i (τ -i ) =      q 1 2 1 (τ -i ) . . . 0 . . . . . . . . . 0 . . . q 1 2 |A i | (τ -i )      , ( 14 
)
where q

1 2 m (τ -i ) = ∑ y -i ∈Y -i (σ 2 i (y m i , y -i ) ∏ n k=1, k̸ =i τ 2 k j y i
).

Existence of Nash Equilibrium

Lemma 1. If a function f (x) is strictly concave and continuous on a compact convex set, then arg max x f (x) is a single-valued correspondence.

Proof. A continuous function can always reach its maximum on a compact set. A strictly concave function on a convex set has no more than one maximum. Thus, the function f has one maximum, which implies that arg max x f (x) is a single-valued correspondence.

Theorem 2. Consider an n-player chanceconstrained strategic game. If the pure strategy payoff of each player follows an independent normal distribution, then the Nash equilibrium exists for confidence level α ∈ [0.5, 1).

Proof. Firstly we construct a function br i (τ) = arg max

τ * i (u i (τ * i , τ -i ) -||τ * i -τ i ||). ( 15 
)
For α ∈ [0.5, 1), br i is well-defined since

f i (τ -i ) = u i (τ * i , τ -i ) -||τ * i -τ i || is a strictly concave function. Therefore arg max τ -i f i (τ -i ) is a singleton by lemma 1. As f i (τ -i
) is continuous, we can prove that br i (τ) is a continuous function by the Maximum theorem.

By concatenating br i , we have

br(τ) = n ∏ i=1 br i (τ -i ). ( 16 
)
Since br is a continuous function from a convex compact subset to itself, according to Brouwer's fixed-point theorem, there exists a point τ * where τ * = br(τ * ). Based on the definition of br, we can conclude that τ * is a Nash equilibrium for this game.

NCP Formulation

For a given strategy profile τ -i for all other players and α ∈ [0.5, 1), a best response strategy of player i can be obtained by solving the following optimization problem: max

τ i P T i (τ -i )τ i +C i ∥Q 1 2 i (τ -i )τ i ∥ s.t. |A i | ∑ j=1 τ i j = 1, τ i j ≥ 0, ∀ j ∈ {1, 2, ..., |A i |}. ( 17 
)
Here the objective function is concave and the constraints are linear, thus Slater's condition holds and the KKT conditions are both necessary and sufficient for optimality.

By KKT conditions, the best response of player i can be reformulated as follows

0 ≤ τ i ⊥ -P i (τ -i ) -C i Q i (τ -i )τ i ∥Q 1 2 i (τ -i )τ i ∥ -λ i 1 1 |e i | + λ i 2 1 |e i | ≥ 0, 0 ≤ λ i 1 ⊥ |A i | ∑ j=1 τ i j -1 ≥ 0, 0 ≤ λ i 2 ⊥ 1 - |A i | ∑ j=1 τ i j ≥ 0. (18) 
Putting together the KKT conditions for all players, we can obtain the Nash equilibrium of the stochastic game by solving the following NCP:

0 ≤ ζ ⊥ G(ζ) ≥ 0, (19) 
where

ζ = (τ 1 , τ 2 , ..., τ n , λ 1 1 , λ 1 2 , ..., λ n 1 , λ n 2 ) ∈ R ∑ i=1 n|A i |+2n , (20) 
and

G(ζ) =                               -P 1 (τ -1 ) -C 1 Q 1 (τ -1 )τ 1 ∥Q 1 2 1 (τ -1 )τ 1 ∥ -λ 1 1 1 |e 1 | + λ 1 2 1 |e 1 | -P 2 (τ -2 ) -C 2 Q 2 (τ -2 )τ 2 ∥Q 1 2 2 (τ -2 )τ 2 ∥ -λ 2 1 1 |e 2 | + λ 2 2 1 |e 2 | . . . -P n (τ -n ) -C n Q n (τ -n )τ n ∥Q 1 2 n (τ -n )τ n ∥ -λ n 1 1 |e n | + λ n 2 1 |e n | ∑ |A 1 | j=1 τ 1 j -1 1 -∑ |A 1 | j=1 τ 1 j ∑ |A 2 | j=1 τ 2 j -1 1 -∑ |A 2 | j=1 τ 2 j . . . ∑ |A n | j=1 τ n j -1 1 -∑
In this section, we generate random instances in Matlab and we use PATH Solver to come up with Nash equilibrium.

PATH Solver is an implementation of a stabilized Newton method for the solution of the Mixed Complementarity Problem (MCP) [START_REF] Dirkse | The path solver: a nommonotone stabilization scheme for mixed complementarity problems[END_REF]. For our concern, once the analytic form of G(x) and its Jacobian is known and coded, we can directly use PATH to solve our NCP.

As a matter of illustration, we give two examples of (3 × 3 × 3) random games with different distributions and then analyze the corresponding results.

(3 × 3 × 3) Random Games with Cauchy Distribution.

Three examples of randomly generated (3 × 3 × 3) games, following independent Cauchy distribution C i (a) ∼ (µ(a), σ(a)), are given below. The mean µ and deviation σ are uniformly generated between 1 and 3 as follows:

1.

µ 1 (:, :, 1) =   1 1 2 2 3 1 1 3 1   , µ 1 (:, :, 2) =   2 1 3 3 1 2 1 2 2   , µ 1 (:, :, 3) =   2 1 2 1 3 2 3 1 3   σ 1 (:, :, 1) =   1 2 1 3 2 2 3 2 2   , σ 1 (:, :, 2) =   3 2 2 3 3 3 2 2 3   , σ 1 (:, :, 3) =   2 1 1 2 1 3 2 2 1   µ 2 (:, :, 1) =   1 2 2 1 1 1 1 3 3   , µ 2 (:, :, 2) =   3 1 1 2 2 2 1 2 3   , µ 2 (:, :, 3) =   1 1 1 1 2 1 1 2 3   σ 2 (:, :, 1) =   1 2 2 3 2 3 3 1 2   , σ 2 (:, :, 2) =   2 2 2 1 3 3 2 2 1   , σ 2 (:, :, 3) =   3 1 3 3 1 1 3 2 3   µ 3 (:, :, 1) =   1 3 3 2 3 2 2 3 3   , µ 3 (:, :, 2) =   1 2 2 1 2 2 3 3 3   , µ 3 (:, :, 3) =   3 1 2 2 3 1 1 1 3   σ 3 (:, :, 1) =   3 1 1 2 3 2 2 1 1   , σ 3 (:, :, 2) =   3 1 3 3 2 2 3 2 3   , σ 3 (:, :, 3) =   2 1 2 2 1 3 3 1 3   2. µ 1 (:, :, 1) =   1 1 1 1 1 2 1 2 3   , µ 1 (:, :, 2) =   2 1 3 2 2 1 2 3 1   , µ 1 (:, :, 3) =   2 1 1 2 3 1 2 1 1   σ 1 (:, :, 1) =   2 3 1 2 3 3 1 3 3   , σ 1 (:, :, 2) =   3 2 1 3 1 1 3 2 3   , σ 1 (:, :, 3) =   1 2 3 1 2 2 1 1 3   µ 2 (:, :, 1) =   2 1 3 2 2 1 1 1 3   , µ 2 (:, :, 2) =   2 1 3 3 2 3 3 2 1   , µ 2 (:, :, 3) =   1 2 1 2 2 3 1 1 3   σ 2 (:, :, 1) =   2 3 1 3 3 2 1 2 1   , σ 2 (:, :, 2) =   1 1 2 1 1 1 3 1 3   , σ 2 (:, :, 3) =   1 2 1 1 1 1 1 3 1   µ 3 (:, :, 1) =   1 3 1 1 2 3 2 1 3   , µ 3 (:, :, 2) =   2 2 1 1 1 1 3 3 3   , µ 3 (:, :, 3) =   2 3 3 2 3 2 3 1 2   σ 3 (:, :, 1) =   1 2 1 3 3 2 2 1 2   , σ 3 (:, :, 2) =   3 1 3 3 1 3 3 1 3   , σ 3 (:, :, 3) =   1 1 2 3 2 3 1 1 2   3. µ 1 (:, :, 1) =   1 2 3 1 2 2 2 2 2   , µ 1 (:, :, 2) =   2 1 2 3 2 3 3 2 1   , µ 1 (:, :, 3) =   1 2 2 1 2 2 3 2 2   σ 1 (:, :, 1) =   3 1 1 2 1 2 3 1 2   , σ 1 (:, :, 2) =   2 3 1 3 3 1 2 3 3   , σ 1 (:, :, 3) =   1 3 3 2 2 3 2 2 2   µ 2 (:, :, 1) =   2 1 1 1 1 2 2 3 3   , µ 2 (:, :, 2) =   2 3 1 3 3 1 2 2 2   , µ 2 (:, :, 3) =   1 2 3 1 3 2 3 2 3   σ 2 (:, :, 1) =   3 3 3 2 3 2 1 1 3   , σ 2 (:, :, 2) =   3 3 2 1 2 1 3 3 1   , σ 2 (:, :, 3) =   2 3 1 3 1 1 3 2 1   µ 3 (:, :, 1) =   3 2 3 2 1 2 1 1 3   , µ 3 (:, :, 2) =   3 3 3 2 3 2 3 1 3   , µ 3 (:, :, 3) =   2 1 2 2 2 3 3 3 3   σ 3 (:, :, 1) =   2 1 3 1 2 3 2 2 3   , σ 3 (:, :, 2) =   3 2 3 2 1 2 3 1 3   , σ 3 (:, :, 3) =   1 1 1 2 2 2 2 2 1  
For the above randomly generated examples, the mean and the deviation of each player's payoff use (3 × 3 × 3) tensors since there are 3 players in the game and each player has 3 actions to choose. For instance, if each player chooses the first action as their strategy, then the payoff for player 1 follows a Cauchy distribution with mean parameter µ = 1 and scale parameter σ = 1. Table 1 summarizes the Nash equilibrium of the three examples for different confidence levels α. Column 1 presents the index of examples. Columns 2-4 contain the different confidence levels α for the chance-constrained game. The Nash equilibrium of the game is given in Columns 5-7.

(3 × 3 × 3) Random Games with

Normal Distribution.

Similarly, three instances of randomly generated (3 × 3 × 3) games, following independent normal distribution N i (a) ∼ (µ(a), σ 2 (a)), are given below.

The mean µ and deviation σ are uniformly generated between 1 and 3 as follows:

1. (1, 0, 0) (0.667, 0, 0.333) 0.5 0.5 0.5 (0, 1, 0) (0, 1, 0) (1, 0, 0) 0.7 0.7 0.7 (0, 1, 0) (0, 1, 0) (0, 0, 1) 2 0.4 0.4 0.4 (0.442, 0, 0.558) (0, 0, 1) (0, 0, 1) 0.5 0.5 0.5 (0, 0, 1) (1, 0, 0) (0, 1, 0) 0.7 0.7 0.7 (0, 0, 1) (0, 0, 1) (1, 0, 0) 3 0.4 0.4 0.4 (0, 0.775, 0.225) (0, 1, 0) (0, 1, 0) 0.5 0.5 0.5 (0, 0, 1) (0, 0, 1) (0, 0, 1) 0.7 0.7 0.7 (0, 0, 1) (0, 0, 1) (0, 0, 1) µ 1 (:, :, 1) = For the above randomly generated examples, the mean and the deviation of each player's payoff use (3 × 3 × 3) tensors. Considering the first example, if each player chooses the first action as their strategy, the payoff for player 1 follows a normal distribution with mean parameter µ = 3 and variance parameter σ 2 = 9. Table 2 summarizes the Nash equilibrium in the same way as Table 1. Column 1 presents the index of examples. Columns 2-4 show the different confidence levels α for the chance-constrained game. The Nash equilibrium of the game is given in Columns 5-7.

µ 1 (:, :, 1) =   3 1 2 1 1 2 3 2 3   , µ 1 (:, :, 2) =   1 3 1 3 2 2 3 2 3   , µ 1 (:, :, 3) =   1 3 2 1 3 3 1 3 3   σ 2 1 (:, :, 1) =   9 1 1 4 9 1 4 1 4   , σ 2 1 (:, :, 2) =   4 1 1 9 9 1 9 1 1   , σ 2 1 (:, :, 3) =   4 4 4 4 4 4 1 9 1   µ 2 (:, :, 1) =   2 1 3 2 1 2 1 1 3   , µ 2 (:, :, 2) =   2 2 3 2 3 1 1 2 2   , µ 2 (:, :, 3) =   2 3 1 3 1 1 3 2 2   σ 2 2 (:, :, 1) =   4 4 1 1 9 4 1 4 9   , σ 2 2 (:, :, 2) =   9 4 4 1 4 9 4 1 1   , σ 2 2 (:, :, 3) =   4 4 4 4 4 1 9 1 9   µ 3 (:, :, 1) =   3 3 2 1 1 1 3 3 2   , µ 3 (:, :, 2) =   3 3 2 1 3 2 2 2 3   , µ 3 (:, :, 3) =   3 3 2 2 3 1 2 3 1   σ 2 3 (:, :, 1) =   1 9 9 9 9 1 9 4 1   , σ 2 3 (:, :, 2) =   4 9 1 1 4 1 1 9 9   , σ 2 3 (:, :, 3) =   9 1 9 1 4 9 4 4 9   2. µ 1 (:, :, 1) =   1 2 3 1 3 3 3 2 3   , µ 1 (:, :, 2) =   3 3 1 1 3 2 1 1 3   , µ 1 (:, :, 3) =   2 2 2 1 2 1 3 2 1  
  2 3 1 2 3 3 2 1 2   , µ 1 (:, :, 2) =   2 2 2 2 3 1 2 2 2   , µ 1 (:, :, 3) =   2 1 1 1 1 2 3 3 1   σ 2 1 (:, :, 1) =   1 4 1 9 1 1 1 1 4   , σ 2 1 (:, :, 2) =   4 9 4 4 4 1 9 4 4   , σ 2 1 (:, :, 3) =   9 9 9 9 1 4 1 1 1   µ 2 (:, :, 1) =   3 2 2 3 3 1 3 1 2   , µ 2 (:, :, 2) =   1 1 1 3 1 1 1 1 1   , µ 2 (:, :, 3) =   1 2 1 1 1 3 1 2 1   σ 2 1 (:, :, 1) =   1 4 1 9 1 1 1 1 4   , σ 2 1 (:, :, 2) =   4 9 4 4 4 1 9 4 4   , σ 2 1 (:, :, 3) =   9 9 9 9 1 4 1 1 1   µ 3 (:, :, 1) =   3 3 2 1 3 3 1 1 2   , µ 3 (:, :, 2) =   2 3 3 3 3 1 2 1 3   , µ 3 (:, :, 3) =   2 3 3 2 2 3 3 3 2   σ 2 3 (:, :, 1) =   1 1 9 4 4 9 9 1 1   , σ 2 3 (:, :, 2) =   9 9 1 1 4 1 1 9 1   , σ 2 3 (:, :, 3) =   4 4 9 9 4 4 4 1 1  

Numerical Results for Large Size

Game Instances

Here we solve large size instances with up to (5 × 5 × 5 × 5 × 5) games.

The NCPs are implemented in Matlab and solved by PATH on Intel Core i72,6 GHz with 32GB RAM. We randomly generated 100 tests of several groups of different game sizes and confidence levels for both distributions, then we computed the average running time and the success rate in relation of solved instances by PATH solver. Table 3 summarizes the numerical results for different sizes of the chanceconstrained games. Column 1 presents the size of the game instances. Columns 2-4 show the confidence level α, success rate and average CPU time for problems under Cauchy distribution, respectively. Columns 5-7 provide the same information as Columns 2-4 for problems under normal distribution.

As shown in Table 3, the average CPU time for the instances up to (4 × 4 × 4 × 4) is within 1 second, whilst (5 × 5 × 5 × 5) instances are solved within 49 seconds. Games with Cauchy distributions have 100% success rates for all the instances except (5 × 5 × 5 × 5) instances where the success rates range from 81% up to 94%. As for normal distribution games, the success rate ranges from 52% for the large instance to 99% for the smallest instances. In addition, we also solve game instances with size (6 × 6 × 6 × 6 × 6 × 6) within 30 minutes. PATH failed to solve game instances with more than (6 × 6 × 6 × 6 × 6 × 6).

CONCLUSION

In this paper, we solved the Nash equilibrium problem with n-player chance-constrained games. We proved the existence of Nash Equilibrium for stochastic games with Cauchy and normal distributions. We derive a deterministic equivalent NCP for these games.

In order to show the performances of our approaches, we generated random instances and used the PATH solver to solve the related NCPs.

For future work, we will consider different distributions for the addressed stochastic games and apply our approach to real-life applications, e.g., autonomous vehicles.

Table 1 :

 1 Nash equilibrium for various values of α for Cauchy distribution.

	No.	α			Nash Equilibrium	
	α 1	α 2	α 3	x *	y *	z *
	0.4	0.4	0.4	(0, 1, 0)		
	1					

Table 2 :

 2 Nash equilibrium for various values of α for normal distribution.

	No.		α			Nash Equilibrium	
		α 1	α 2	α 3	x *	y *	z *
		0.6	0.6	0.6	(0, 0, 1)	(0, 0.187, 0.813)	(0.092, 0.909, 0)
	1	0.7	0.7	0.7	(0, 0, 1)	(0, 0, 1)	(0.673, 0.327, 0)
		0.8	0.8	0.8	(0, 0, 1)	(0.194, 0.229, 0.577)	(0.764, 0.236, 0)
		0.6	0.6	0.6	(0.623, 0, 0.377)	(1, 0, 0)	(0.424, 0.576, 0)
	2	0.7	0.7	0.7	(0.851, 0.149, 0)	(0.395, 0.386, 0.219)	(0, 1, 0)
		0.8	0.8	0.8	(0.067, 0.861, 0.069)	(0.322, 0.678, 0)	(0.771, 0.229, 0)
		0.6	0.6	0.6	(0, 0.457, 0.543)	(0, 0.291, 0.71)	(0.058, 0 , 0.942)
	3	0.7	0.7	0.7	(0, 0.626, 0.374)	(0.072, 0.206, 0.722)	(0.264, 0 , 0.736)
		0.8	0.8	0.8	(0, 0, 1)	(0, 1, 0)	(0, 0, 1)

Table 3 :

 3 Comparison of success rate and running time.

	Game type		Cauchy distribution		Normal distribution
		α	success	average	α	success	average
			rate	time(s)		rate	time(s)
		0.2	100%	0.0128	0.6	99%	0.0389
	2 × 2	0.4	100%	0.0122	0.7	95%	0.0449
		0.6	100%	0.0107	0.8	90%	0.0487
		0.8	100%	0.0098	0.9	86%	0.0509
		0.2	100%	0.0463	0.6	98%	0.2198
	3 × 3 × 3	0.4	100%	0.0378	0.7	92%	0.2419
		0.6	100%	0.0420	0.8	86%	0.3398
		0.8	100%	0.0337	0.9	83%	0.3264
		0.2	100%	1.1165	0.6	96%	4.5894
	4 × 4 × 4 × 4	0.4	100%	1.0237	0.7	90%	5.4259
		0.6	100%	0.8908	0.8	87%	7.4005
		0.8	100%	0.7670	0.9	86%	6.5441
		0.2	81%	39.8803	0.6	64%	144.8211
	5 × 5 × 5 × 5 × 5	0.4	80%	48.8849	0.7	52%	196.6912
		0.6	89%	44.9324	0.8	67%	201.4756
		0.8	94%	36.1606	0.9	86%	126.2685