
HAL Id: hal-03519121
https://hal.science/hal-03519121

Submitted on 10 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Replication Strategies with Performance Objective
in Data Grid Systems: A Survey

Riad Mokadem, Abdelkader Hameurlain

To cite this version:
Riad Mokadem, Abdelkader Hameurlain. Data Replication Strategies with Performance Objective in
Data Grid Systems: A Survey. International Journal of Grid and Utility Computing, 2015, 6 (1),
pp.30-46. �10.1504/IJGUC.2015.066395�. �hal-03519121�

https://hal.science/hal-03519121
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12933

To link to this article : DOI :10.1504/IJGUC.2015.066395
URL : http://dx.doi.org/10.1504/IJGUC.2015.066395

To cite this version : Mokadem, Riad and Hameurlain, Abdelkader
Data Replication Strategies with Performance Objective in Data Grid
Systems: A Survey. (2015) International Journal of Grid and Utility
Computing, vol. 6 (n° 1). pp. 30-46. ISSN 1741-847X

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://oatao.univ-toulouse.fr/12933/
http://oatao.univ-toulouse.fr/12933/
http://dx.doi.org/10.1504/IJGUC.2015.066395
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Data replication strategies with performance
objective in data grid systems: a survey

Riad Mokadem* and Abdelkader Hameurlain

Institut de Recherche en Informatique de Toulouse (IRIT),

Paul Sabatier University,

118 Route de Narbonne 31062, Toulouse, France

Email: mokadem@irit.fr

Email: hameurlain@irit.fr

*Corresponding author

Abstract: Replicating for performance constitutes an important issue in large-scale data

management systems. In this context, a significant number of replication strategies have been

proposed for data grid systems. Some works classified these strategies into static vs. dynamic or

centralised vs. decentralised or client vs. server initiated strategies. Very few works deal with a

replication strategy classification based on the role of these strategies when building a replica

management system. In this paper, we propose a new replication strategy classification based on

objective functions of these strategies. Also, each replication strategy is designed according to the

data grid topology for which it was proposed. We point out the impact of the topology on

replication performance although most of these strategies have been proposed for a hierarchical

grid topology. We also study the impact of some factors on performance of these strategies, e.g.

access pattern, bandwidth consumption and storage capacity.

Keywords: data grid systems; data replication; replication strategies; classification; objective

functions; performance.

Reference to this paper should be made as follows: Mokadem, R. and Hameurlain, A. (2015)

‘Data replication strategies with performance objective in data grid systems: a survey’,

Int. J. Grid and Utility Computing, Vol. 6, No. 1, pp.30–46.

Biographical notes: Riad Mokadem is currently an Associate Professor in Computer Science at

Paul Sabatier University, Toulouse, France, and a member of the IRIT Laboratory. His main

research interests are query optimisation in large-scale distributed environments, scalable,

distributed data structures and database performance.

Abdelkader Hameurlain is a Full Professor in Computer Science at Paul Sabatier University

(IRIT Laboratory) Toulouse, France. His current research interests are in query optimisation in

parallel and large-scale distributed environments, and mobile databases. He has been the general

chair of the International Conference on Database and Expert Systems Applications (DEXA’02).

He is co-editors in Chief of the international journal ‘Transactions on Large-Scale Data- and

Knowledge-Centered Systems’ (LNCS, Springer). He was guest editor of two special issues of

International Journal of Computer Systems Science and Engineering on ‘Mobile Databases’ and

‘Data Management in Grid and P2P Systems’.

1 Introduction

Today such as high-energy physics and bioinformatics

applications produce a huge volume of data that may be

accessed and shared at distributed nodes. This constitutes a

good challenge regarding the access and processing of data in

large-scale environments. In this context, data replication is

an important optimisation method that deals with the

generated problems. It consists of storing multiple copies of

data, called replicas, at multiple nodes (Bernstein et al.,

1987). Data replication has been commonly used in: (a)

Database Management Systems (DBMS) (Perez et al., 2010),

(b) parallel and distributed systems (Loukopoulos et al., 2005;

Benoit and Rehn-Sonigo, 2008), (c) mobile systems (Tu

et al., 2006) and (d) large-scale systems including P2P (Goel

and Buyya, 2006; Xhafa et al., 2012a) and data grid systems

(Ranganathan and Foster, 2001; Chervenak et al., 2002; Bell

et al., 2003a; Lamehamedi et al., 2003; Abawajy, 2004; Park

et al., 2004; Chang et al., 2006; Rahman et al., 2008; Rasool

et al., 2009; Sashi and Thanamani, 2011; Abdullah et al.,

2012; Mansouri and Dastghaibyfard, 2012; Devakirubai and

Kannammal, 2013). In DBMS and distributed systems,

replication designers pay attention to manage updates as well

as performance of read-only queries. Although P2P systems

are mostly designed for applications dealing with read-only

queries, several other research works deal with transactional

queries. In data grid systems, most of the works in the

literature deal with read-only queries. However, if the

application has a read-only nature, replication can greatly

improve the performance. But, if the application needs to

process update queries, the benefits of replication can be

neutralised by the overhead of maintaining consistency

among multiple replicas. In consequence, an important global

synchronisation with appropriate protocols is needed, i.e.

many nodes may communicate with each other. Such

protocols are generally not scalable. In consequence, if we

apply replication as a scaling technique, we generally need to

compromise on consistency (Van Steen and Pierre, 2010). In

this paper, we mainly focus on the scenario dealing with the

read-only queries, i.e. without any consistency managing, in

order to achieve performance in data grid systems. We defer

other issues to future work.

Data replication aims to keep the data close to the user

where the query originated. It constitutes a common

solution to (a) improve availability and reliability of data,

(b) reduce the bandwidth consumption and (c) achieve fault

tolerance by managing the departure/arrival of nodes in the

system. An ideal solution to improve data availability is to

replicate data in all nodes. Thus, data access cost will be

significantly reduced. However, this solution is not realistic

because of the storage and bandwidth constraints. Then,

replication strategies are needed to determine which data is

concerned by replication, when a replica should be created,

where to place replicas (replica placement), when to remove

replicas and how to locate the best replica (replica

selection).

A significant number of replication strategies have been

proposed in the literature. Most of them do not satisfy all the

requirements cited above simultaneously. Furthermore,

most of these strategies are designed for the hierarchical

data grid topology. Throughout this paper, we point out

advantages and disadvantages of all grid topologies

(hierarchical, graph, P2P and hybrid) in order to that data

replication can achieve performance. On the other hand,

most of works in the literature have classified replication

strategies according four aspects:

1 Static vs. dynamic replication strategies (Sashi and

Thanamani, 2011; Khanli et al., 2011; Amjad et al.,

2012). Although static strategies (Chervenak et al.,

2002; Tatebe et al., 2002; Bell et al., 2003a) have

advantages of having no overhead; the dynamic

strategies (Lamehamedi et al., 2003; Chang et al., 2006;

Rahman et al., 2008; Lee et al., 2011) are more suitable

for data grid. In fact, this type of replication ensures

that the benefits of replication will be continued even if

user’s behaviours as access pattern are changed, which

corresponds to the dynamic properties of data grids.

2 Centralised vs. decentralised strategies (Sashi and

Thanamani, 2011; Mansouri and Dastghaibyfard, 2012;

Amjad et al., 2012). This classification concerns mainly

the dynamic strategies that may be implemented either

in a centralised or decentralised manner. In the first

approach (Tang et al., 2005; Lei and Vrbsky, 2006;

Chang and Chang, 2008; Lin et al., 2008; Bsoul et al.,

2010), a replica central server is required to manage the

replication process which conducts to extensive access

latency and load on this server. On the other hand,

some synchronisation is involved in order to provide

better results in the decentralised approach (Ranganathan

and Foster, 2001; Lei et al., 2008; Sashi and Thanamani,

2010).

3 Server vs. client initiated replication strategies (Dogan,

2009; Van Steen and Pierre, 2010). This classification

relates to the origin of initiating replication. It can be

client initiated (also called pull based) or server

initiated (also called push based) replication. The server

corresponds to the node that decides to make a replica

and send it to other nodes when the client corresponds

to the node which requests the data.

4 Unconditional vs. conditional replication strategies

(Al Mistarihi and Yong, 2008). This classification

deals with the nature of replication initiating, i.e. the

replica-creation mechanism triggers according to some

condition or not.

To the best of our knowledge, very few papers (Goel and

Buyya, 2006) deal (partially) with a replication strategy

classification based on the role of these strategies. In this

paper, we propose a replication strategy classification in

data grid systems regarding the different objective functions

of these strategies. By using a given objective function, we

define the role of the replication strategy that addresses

separate issues when building a replica management system.

In this context, we distinguish replication strategies based

on (a) the popularity of data while exploiting temporal

locality (Ranganathan and Foster, 2001), geographical

locality (Nukarapu et al., 2011) and spatial locality (Khanli

et al., 2011), (b) the network congestion (Sashi and

Thanamani, 2011), (c) economic behaviours (Andronikou

et al., 2012) and (d) cost models (Lamehamedi et al., 2003;

Zhang et al., 2010). For each objective function, we

describe the most important replication strategies and their

main characteristics. A synthesis of the most important

replication strategies is presented in order to point out their

characteristics, e.g. the achieved function objective and their

capability to achieve performance. Access cost, bandwidth

consumption, access pattern and storage capacity are very

important factors that impact on performance of these

strategies. Some replication strategies deal with only a part

of these factors. Hence, optimising some factors, e.g. access

cost, and reducing the cost of replication may be conflicting

goals. As an example, a frequent transfer of data in order to

keep them close to the user can lead to strain on the

network’s resource. We enumerate existing trade-offs to

advantage one factor to another. The simulation analysis

permits us to enumerate the impact of some of these factors

on the replication strategy performance. The impact of the

data grid topology is also measured through a simulation

based on the total mean job execution time metric.

The rest of this paper is organised as follows: Section 2

introduces replication strategies and their roles when

replicating in data grid systems. Section 3 shows the impact

of grid topology on replication strategies. Section 4 presents

our replication strategy classification dealing with objective

functions. Section 5 points out the important factors when

data replication achieves performance. Section 6 presents

the cost analysis of replication strategies. Section 7 deals

with a simulation analysis that measures the impact of

some factors on performance. Section 8 deals with the

related work. Finally, Section 9 contains conclusion and

future work.

2 Replication strategies

Managing a huge amount of data, spread on a large-scale

network, constitutes an important challenge in data grid

environments. In this context, replicating data at multiple

nodes and then accessing them from the nearest node permit

an efficient data access without a large consumption of

bandwidth.

Replicating data in all nodes, which significantly reduce

data access cost, is not realistic since this solution generates

a large bandwidth consumption. Also, nodes have not

always the capacity to store all these data. Dealing with

these problems, distributing the replicas into data grid nodes

is done according to replication strategies which answer the

following questions:

Which replica is concerned by the creation/deletion?

(The concerned data).

 When to create/delete replicas?

 Where to place new replicas? (Replica placement).

 How to select the best replica among many replicas

available in the grid? (Replica selection).

Dealing with the above questions, there are four issues to be

addressed by any dynamic replication strategy in order to

achieve an optimised replication: (a) replica granularity that

decides at which granularity we replicate the data, (b)

replica creation/deletion, (c) replica placement which

consists in placing the replicas on the appropriate node and

(d) replica selection which is the process of choosing a

replica from among those spreading across the data grid. All

these issues that we describe in the next sub-sections should

be beneficial with respect to several aspects:

1 Availability of data: when a fail occurs in any node,

data replicated at another node can be used,

2 Reliability of data: an optimal number of replicas

increase the probability that the query processing will

be done completely. Hence, such a system is more

reliable,

3 Scalability: replication strategies improve the scalability

independently of the topology chosen for the data grid

that we discuss in the following section,

4 Performance: performance results from different factor

as the fact that data are close to the user (data locality),

the decreasing on data access latency and the bandwidth

consumption and,

5 Fault tolerance: some replication strategies deal with the

dynamic properties of nodes that can join/leave the

system at any moment.

2.1 Replica granularity

The granularity of a data replication corresponds to the unit of

data that may be replicated independently of other units of

data. Ideally, a replication strategy must adapt to any data

granularity. However, replicating for performance requires

deciding on data granularity since performance of replication

strategies differs when dealing with different data units. In the

literature, replication strategies are classified according to

three levels of data sub-division: (a) individual files (Kunszt

et al., 2005); (b) multiple files at the same time work, i.e.

granularity of data sets (Garcia-Carballeira et al., 2007); and

(c) smaller sub-divisions of files such as objects or fragments

in order to save the storage space (Van Steen and Pierre,

2010). However, most of replication strategies we cited in this

paper deal with the individual file granularity.

2.2 Replica placement

A naïve placement strategy may conduct to a system with

some overloaded nodes and other nodes underutilised. In

consequence, placing replicas in suitable nodes is preferable,

e.g. the workload among replicas is balanced (Liu and Wu,

2006). A strategic placement has the objective of finding the

optimal location for replicas, e.g. where the particular file has

been often accessed (Mansouri and Dastghaibyfard, 2012).

This improves the availability of data and speed up the data

access. Recall that most of replica placement algorithms try to

define the optimal number of replicas.

2.3 Replica selection

The process of selecting the best replica when different

nodes hold replicas is called the replica selection. It aims to

find the physical locations of multiple replicas from those

copies geographically spreading in a large-scale system.

Each grid node has its own capabilities and characteristics.

Hence, choosing the appropriate replica from many replicas

that have the required data is an important decision. This

process is based on some characteristics that influence the

response time as the data transfer time, the number of

requests, the storage access latency and the distance

between nodes (Sashi and Thanamani, 2010).

3 Impact of data grid topology on data

replication strategies

Nodes under a replica management system can be organised

into a variety of topologies. However, it has been proved

that scalability of a system is dependent upon the topology

on which this system is based. In consequence, a replication

strategy is designed according to the data grid topology for

which this strategy is proposed.

Most of replication strategies in the literature have been

proposed for the following topologies: hierarchical (e.g.

multi-tier), peer-to-peer, hybrid and general graph

topologies. In this section, we describe each data grid

topology and give advantages/disadvantages of each of

them, when a replication strategy is based on.

3.1 Hierarchical topology

This topology provides an efficient solution for sharing

data, computational and network resources. Nodes are

arranged in a tree-like hierarchy adopted in many scientific

projects to support large-scale distributed computing. The

multi-tier data grid is the most famous example of the

hierarchical data grid. It can contain three or more tiers in

the hierarchy. Each node belongs to a specific tier. The

MONARC project (Monarc, see http://monarc.web.cern.ch/

MONARC/) adopted a hierarchical network structure that

has five tiers: the tier 0 is the main data source in which raw

data are generated in CERN (Cern, see http://public.web.

cern.ch/public/en/spotlight/SpotlightGridFactsAndFiction-

en.html), the tier 1 contains the national centres, tier 2

represents the regional centres, tier 3 represents the work

groups and finally the tier 4 represents the desktops (Figure 1a).

Many works have exploited this topology when proposing

replication strategies (Perez et al., 2010; Ranganathan and

Foster, 2001; Tang et al., 2005; Liu and Wu, 2006;

Shorfuzzaman et al., 2010; Horri et al., 2008). The grid

hierarchy usually reflects the structure of organisations in

which a potentially large number of replicas are placed at

different levels. This explains that requests travel up towards

the root. This topology has several advantages. It is easier to

implement because of its simplicity. Also, it allows nodes to

access the resources in a common and efficient way.

Furthermore, the multi-tier structure enables the flexible and

scalable management for data sets and users. However, the

problem of this topology is the strict rules of a tree structure,

i.e. there is only one path available from a leaf to the root,

i.e. child (leaf) nodes can communicate only with their

direct parent. In consequence, this type of topology is

efficient only for data grids which are designed from

scratch. Hence, it fails to represent the grid if nodes are

randomly added to the system.

3.2 Federation topology

Most of papers in the literature refer to this topology by the

Peer-to-Peer (P2P) topology, which is also called single-tier

topology (Figure 1b). One example of a federated data grid

is the Bio Informatics Research Network (BIRN). Per

opposition to multi-tier topology, all peers in the P2P

topology operate independently within a peer group and

agree upon a common set of services. It can be represented

as a ring between the root nodes of multiple hierarchal

structures. On the other hand, a peer can be a member of

more than one group at a time and can join or leave a group

at any time. P2P systems overcome limitations of the tree

structure and offer flexibility in communication among

components. Many replication strategies have been

proposed under this topology (Ranganathan et al., 2002;

Abdullah et al., 2008; Xhafa et al., 2012b) in order to permit

a high availability and reliability of data while any replica

can synchronise with any other. However, the maintenance

of such system generates an important cost.

3.3 Hybrid topology

The hybrid topology integrates the characteristics of

hierarchical and federation topologies to get the benefits of

both of them. A hierarchical topology is also adopted but nodes

at the same level of a tree are connected to each other as shown

in Figure 1c. Then, data access among the same tier nodes is

allowed. This type of topology, also called sibling tree

topology, improves both the data availability and the reliability

of the P2P topology and allows for a scalable expansion of the

hierarchical topology. Many replication strategies have been

proposed under this topology (Rasool et al., 2009). A set of

replica management services was proposed by Lamehamedi

et al. (2003); while a balanced workload-based replicas

placement was proposed by Lin et al. (2008).

Figure 1 Data grid topologies: (a) hierarchical, (b) federation, (c) hybrid and (d) graph topologies (see online version for colours)

 (a) (b) (c) (d)

Group/ Institution

Router node Tier0

Tier1

Tier2

Tier3

Tier4

3.4 Arbitrary graph topology

A general arbitrary graph topology (Figure 1d) is a realistic

grid topology alternative in which any node can be

connected to any other node without any restrictions, i.e.

there is no central node designated as a root node. In

consequence, developing replication strategies in such

topology requires complex protocol since any replica can

synchronise with any number of replicas. This explains the

fact that only few replication strategy works consider a

general graph as a grid topology (Rahman et al., 2008; Lei

et al., 2008; Sashi and Thanamani, 2010; Bsoul et al., 2010;

Devakirubai and Kannammal, 2013).

3.5 Synthesis

When comparing these topologies, some of them provide

more flexibility than others. In a tree topology, every node

only accesses the replicas that are in a list of its parent and

child locations. In this topology, two types of placing

replicas are possible: (a) the first permits to a request to go

up and down the tree in order to search the nearest replica

(Kalpakis et al., 2001); and (b) the second permits to a

request to search a replica towards the root of the tree (Jia

et al., 2003). Hence, a replica placement service uses the

data grid topology to overlay replicas on the data grid which

improves the data access. However, the location of a replica

should be carefully considered when carrying out the

dynamic replication. In the P2P topology, each replica keeps

a list of the locations of its neighbours. Then, peers can

decide independently to produce replicas. Although that

there is no single point of failure, a decentralised decision

may lead to replicas creation of the same file, e.g. a peer

may have a partial vision. This motivates the introduction of

the hybrid model. In such model, the multi-tier topology

increases the availability of data and the P2P topology

improves scalability. It has been observed that there exists

no standard architecture for a data grid environment.

Although most of the work done follows a hierarchal

architecture, they have mentioned extending their work to

general graphs in the future. The reason is that a general

graph is more close to a real-grid environment. In this

context, results (Bsoul et al., 2010; Lei et al., 2008; Sashi

and Thanamani, 2010), dealing with the general graph

topology, are very promising since they were based on real-

grid scenarios. However, the frequently arrival/departure of

nodes to the system (dynamic property of data grid systems)

influences the replication performance in such topology. In

consequence, some works, such as Rahman et al. (2008),

proposed a replica maintenance algorithm to relocate

replicas to other nodes when a candidate node for holding

replicas leaves the system or when performance metrics are

degraded.

4 Objective function-based replication strategies

Determining data which are the object of the replication

should be based on the objective function of the replication

strategy. In this section, we propose a replication

strategy classification based on objective functions of these

strategies.

An objective function is a general method for evaluating

the system performance (Sivasubramanian et al., 2004). It

serves as a criterion to optimise a replication strategy.

Possible objective functions discussed here are: (a) exploit

different forms of data locality by considering the popularity

of data (Ranganathan and Foster, 2001), (b) advantage the

network level locality (Park et al., 2004; Sashi and

Thanamani, 2011), (c) maximise economic benefits (Bell

et al., 2003a) and (d) exploit a cost model in order to decide

a replication while minimising the replication cost

(Lamehamedi et al., 2003). Although many strategies are

based simultaneously on several objective functions with

different levels of inclusion, an objective function can be

favoured from the others in a given replication strategy.

A pioneering work was presented by Ranganathan and

Foster (2001), in which five (5) distinct replication

strategies have been proposed for multi-tier data grid. This

work has also included a comparison between these

strategies in the perspective of performance. Owing to the

success of this work in the literature, most of the proposed

replication strategies in the literature have compared their

results to those of the five strategies proposed by

Ranganathan and Foster (2001). This explains the several

proposed replication strategies cited in the next sub-section

and based on the first objective function, i.e. data locality.

4.1 Replication strategies based on data locality

Replication strategies based on data locality are adapted to

the user queries. They aim to maximise the data locality by

exploiting the popularity of data. Popularity of data for

replication was initially proposed by Gwertzman and Seltzer

(1995). It constitutes an important parameter that most of

replication strategies consider by replicating the most

requested data. It can be expressed by the number of

requests for this data, which is computed by data access

rate. In order to handle the fluctuation of data access rate,

some works (Lee et al., 2011) apply a periodical collection

of data access to determine its popularity, while other works

(Lei and Vrbsky, 2006) propose the using of access histories

of data to quickly calculate their popularity.

Works of Ranganathan and Foster (2001) are among the

first to exploit the popularity of data while replicating data.

In addition to the No replication strategy, used for

comparison with other strategies, Ranganathan and Foster

proposed five (5) replication strategies for multi-tier data

grid systems:

1 Plain caching: a replication is performed every request

without any condition,

2 Best client: it constitutes the most famous replication

strategy dealing with the popularity of data. Each node

records the requests history for its file. If the number of

requests for each file exceeds some threshold, a replica

is created in the node which has the largest number of

requests for this file. This node corresponds to the best

client for that file,

3 Cascading: if the number of accesses for a file exceeds

a threshold, a replica is created at the next level on the

path to the best client. This process continues through

lower levels until it reaches to the best client,

4 Caching and cascading: caching and cascading are

combined. The requested data is replicated locally in

the client node. The client caches data locally, and the

server periodically identifies the popular data and

propagates them down the hierarchy and,

5 Fast spread: the requested file is replicated at each

node on the path from the source to the best client.

When a client requests a file, a copy is stored at each

tier along the path. If the storage on any node is not

enough, it removes some file(s) to make room for new

replicas. This leads to a faster spread of data.

All these strategies aim to reduce both bandwidth

consumption and access latency. For this purpose, they

introduced three different types of locality (Ranganathan

and Foster, 2001), namely:

1 Temporal locality in which file accessed recently is

much possible to be requested again shortly.

2 Geographical locality in which file accessed recently by

a client is probably to be requested by adjacent client (the

grid hierarchal model usually reflects the geographical

locality).

3 Spatial locality in which the related files to recently

accessed file are likely to be requested in the near

future.

By applying different types of locality, replication strategies

are different in terms of when, where and how replicas

are created or deleted. Ranganathan and Foster (2001)

compared performance of the five strategies cited above in

the perspective of performance. Three different access

patterns were considered: (a) random access, (b) access with

temporal locality and (c) access with temporal and small

geographical locality. The results indicate that different

access patterns need different replication strategies. They

also conclude that a significant bandwidth consumption

reduction is obtained if the access patterns contain a

moderate amount of geographical locality. We describe

these access patterns and analyse the comparison results of

the five strategies under these access patterns in Section 5.

Although many replication strategies compared their

results to these strategies, there are some drawbacks. The

best client may not always be the best client, i.e. the client

that accesses a file for most of the time may not always keep

on accessing the same file. Also, these strategies are

simulated under ideal circumstances. For example, algorithms

of Ranganathan and Foster (2001) are based on the

assumption that the total system replica storage is large

enough to hold all the data replica copies. In the next sub-

sections, we describe how the most important replication

strategies exploit different types of data locality.

4.1.1 Replication strategies based on temporal and

geographical locality

Tang et al. (2005) proposed Simple Bottom-Up (SBU)

and Aggregate Bottom-Up (ABU) algorithms for multi-tier

data grid architecture. The general idea is to exploit the

geographical and temporal locality by placing replicas as

close as possible to the client on the basis of their popularity.

SBU algorithm replicates the file that exceeds a predefined

threshold. However, SBU does not well consider the

relationship between historical access records. In order to

address this problem, ABU is designed to aggregate the

historical records to the upper tier until it reaches the root.

Simulation results show that the using of ABU decrease both

average response time and average bandwidth cost comparing

to SBU and fast spread solutions especially when the

available storage size of the servers is very small. Wu et al.

(2008) interested in how to ensure a load balance among

replicas by proposing a placement algorithm that finds the

optimal locations for replicas. Authors consider the issue of a

geographical locality. Hence, a user may specify the

minimum distance it can allow from the nearest data server

in order to create the replica. Rasool et al. (2009) proposed

a Two-Way Replication (TWR) strategy for hybrid

architectures. The most popular data is identified and placed

to its proper host in a bottom-up manner. In this way, they are

closer to the clients. In the top-down manner, the less popular

files are identified and are placed to one tier below the root

node. In this way, they are close to the root. Shorfuzzaman

et al. (2010) proposed a dynamically create replica for

popular data in hierarchal data grid systems. The assumption

that popular files have more chances of access in the future is

adopted. The proposed Popularity-Based Replica Placement

(PBRP) algorithm exploits the geographical locality by

placing replicas as close as possible to clients in order to

decrease the data access time. Bsoul et al. (2010) proposed

the Enhance Fast Spread (EFS) replication strategy for

general graph grid architecture. It considers the number and

frequency of requests, size of replica and last time the replica

was requested while making the replication decision. The

simulation results show that EFS performs better than the

original fast spread. Nukarapu et al. (2011) proposed a data

replication strategy that has a provable theoretical performance

guarantee. The key point of this strategy is that when

several replicas are available, each node keeps track of

the geographical closest replica. The simulation results show

that this strategy significantly outperforms popular existing

replication strategy under various network parameters.

Finally, the Dynamic Hierarchical Replication (DHR)

(Mansouri and Dastghaibyfard, 2012) is also based on the

geographical locality. Replicas are stored in suitable nodes

instead of storing them in many nodes while taking into

account of workload capacity of each node.

4.1.2 Spatial locality

Most of the works mentioned above are concentrated on

temporal and geographical locality. They have neglected the

spatial locality. This is explained by the fact that replication

is usually done after the arrival of the requests which cause

a significant delay. In order to reduce this delay, the

replication must be done in advance. In this context, Chang

et al. (2006) addressed some problems of replication

strategies based on temporal locality and also focused on

data movement problems by predicting future file needs, i.e.

spatial locality. Through a predictive method, the job

execution time is reduced by prefetching files which are

likely to be requested in the future. As Madi and Hassan

(2008) claimed that the growth or decay of accesses is more

important factor than access number when determining the

popularity of files. In fact, suppose that a file accessed a lot

of times in the past and after that, it will not be frequently

accessed after a time t and the replica will still be created

although its popularity is based on the past access number.

Lei and Vrbsky (2006) also addressed this problem by

proposing the Last Access Largest Weight (LAWL)

algorithm for multi-tier data grid systems. In addition to

the temporal locality when determining the popularity of

files, different weights are given to files according their

ages which increase the importance of newer files. In

consequence, it gives a more precise metric to determine a

popular file for replication and the number of replicas.

However, the replica placement is done only in the cluster

level and not in a node level. Furthermore, some research

works (Khanli et al., 2011) classified it as a centralised

method because of the presence of a cluster header which

gets file access information from all other headers. Khanli

et al. (2011) extended the fast spread strategy, which was

proposed by Ranganathan and Foster (2001), by proposing

Predictive Hierarchal Fast Spread (PHFS) method designed

to decrease the latency of data access in hierarchal data grid

systems. It uses predictive techniques to predict the future

usage of files. Then, it pre-replicates them on a path from

source to client, i.e. the user who works in the same context

may be request files with high probability in future.

4.2 Replication strategies based on network

level locality

Most of the existing replication strategies try to maximise

the data locality in order to reduce data access time.

However, the storage capability of each node can be limited.

Only small part of data may be supported by data grid nodes

since very large amount of data can be produced by data

grid. In consequence, effect of data locality is reduced.

Some research works take benefit from other form of

locality, called ‘network level locality’. This type of locality

indicates that the requested file is located at the node which

has the broadest bandwidth to the node of the job execution.

In consequence, the network congestion is one of the

objective functions to be optimised. In this context, Park

et al. (2004) proposed a dynamic Bandwidth Hierarchy-

based Replication (BHR) strategy which benefits from

network level locality to reduce data access time by

avoiding network congestion in data grids. They divided the

nodes into several regions. Then, network bandwidth

between nodes within a region will be broader than between

nodes across regions. Since bandwidth within region would

be larger, BHR tries to maximise the number of required

data in the same region in order to fetch replica faster. In

this context, a regional popularity of files is considered.

However, the BHR strategy has good performance only

when the capacity of storage element is small. Other

research works (Horri et al., 2008) used the BHR algorithm

to address both scheduling and replication problems.

Authors affirm that the replica decision is made for long-

term optimisation by adopting this strategy. However, the

proposed algorithm produces good results especially when

the bandwidth hierarchy is clear. Later, Sashi and

Thanamani (2011) proposed a modified BHR algorithm to

overcome the limitations of the standard BHR algorithm. It

increases the data availability by replicating a file in the

node where the file has been accessed frequently. This

permits us to consider popularity of data in the regional

level. Hence, unnecessary replication is avoided and the

network is used more effectively. In consequence, less time

will be consumed in fetching the required file if this later is

presented in a local region. However, searching the best

node from all nodes constitutes the main weakness of

modified BHR algorithm. Also, data may not be always

present in the nearby locations with high bandwidth in data

grid environment.

4.3 Replication strategies based on

economic behaviours

Economic-based replication strategies try to improve

performance through exploiting the dynamism of

marketplace and their behaviours. The economic-based

replica management strategy was introduced by Sidell et al.

(1996) in the Mariposa system. It uses evaluation functions,

then decides whether to create local replica or not. It is

based on the using of the socio-economic concept ‘auction’

to select the best replica for a job by using files access

patterns. A Storage Broker (SB) participates in these

auctions by offering a price at which it will sell access to a

replica if it is present. Otherwise, it starts an auction to

replicate the requested file onto its storage if it determines

that this is economically feasible. Replication strategy of

Carman et al. (2002) is also based on the same principle.

Each node tries to buy a data item to create the replica at its

own node. The value of a file is calculated as the sum of the

future payment that will be received by a node. This permits

to generate revenue in future by selling them to other nodes.

Authors focused on replication optimisation in order to

reduce job turnaround time in the long term. They show a

significant improvement compared to traditional replication

strategies. Research work of Bell et al. (2003a) is similar to

Carman et al.’s (2002) with the difference of predicting

the costs and benefits through a reverse Vickrey auction

protocol. Cameron et al. (2004) applied an auction protocol

to select one replica among many. It associates a value with

each file using a prediction function. The auction protocol

replicates the file only if the potential replica has a higher

value than the lowest valued file currently. Lin et al.

(2006b) also proposed a replication strategy based on

economic behaviours. A replication broker is used to reduce

overheads of replication mechanisms in order to take into

account policies regarding data transfer. Later, Abdullah

et al. (2012) extended the reverse Vickrey auction protocol

that the optimisation agents use for dynamically selecting

the best replica of a requested file. Agents used a prediction

function for making replication decisions through historical

of file access patters. It considers both data locality and

network latencies. Finally, Andronikou et al. (2012)

presented a QoS-aware data replication mechanism strategy

for a system with the centralised architecture. It determines

the number of replicas required while considering the

infrastructural constraints like the workload balancing on all

nodes, bandwidth and the importance of data as well. This

later is directly connected to the maximisation of the

replication profit, i.e. reputation. This is done by the

reduction of the set of data replicas.

4.4 Replication strategies based on cost models

In addition to the estimation of data access gains, replication

strategies based on cost models deal with the estimation of

both replica creation and replica maintenance costs while

their calculation is also based on network latency,

bandwidth, replica size. Ranganathan et al. (2002) proposed

a replication strategy for P2P topology-based data grid

systems. Each peer is independent to take a replication

decision whenever data availability is improved. The peer

that maximises the difference between the total cost and

future benefit of replication implementation is the best

client. The advantage of this strategy is that there is no

single point of failure when the limit resides in the fact that

authors assumed an unlimited amount of storage which is no

realistic. Furthermore, this strategy does not consider the

network status and requires a minimum number of replicas.

Deelman et al. (2002) proposed a replication algorithm

based on a cost model for hierarchical tree data grid

systems. It uses a cost model to predict whether replicas are

worth creating. Simulation results found that it is preferable

that leaf client nodes run jobs and higher nodes contained

all the storage resources. Although this strategy is very

promising, the problem consists in the fact that the results

are compared only to the case when no replication was

performed. Using of a cost estimation model in replication

strategies was also well exploited by Lamehamedi et al.

(2003) for hybrid data grid topology. In order to decide

whether replication must be performed or not, the

improvement in data access gained by replication (benefit)

is compared to the cost of a replica creation and its

maintenance at run time. A cost function is used to rank the

files in the local storage. Then, a replica manager replicates

a new file only if it improves the data transfer cost.

Parameters which are considered before creating and

placing a replica are the access patterns, the storage

available at a given node and the cited above estimated

costs. Experiments show that the performance gains

increase with size of data. Significant improvement in

response time is observed and both data transfer costs and

bandwidth consumption are reduced. Later, Zhang et al.

(2010) construct a probabilistic model for the hierarchical

data grid to predict its optimal performance. It shows that

the proposed Optimal Replication Algorithm (ORA) is

better than three compared replication strategies (ABU,

SBU and fast spread).

4.5 Synthesis

Table 1 describes some features of most important dynamic

replication strategies we have cited in this paper.

Throughout this section, we try to compare the concerned

strategies regarding some important characteristics.

The grid topology, for which each strategy is developed,

is important and makes strategies different from each other.

Replication strategies in the literature have been proposed

for four (4) above mentioned grid topologies. However,

most of these strategies were developed for the hierarchical

grid topology. Although this topology has the advantage of

be easy to develop, it imposes some constraints. Only few

works deal with a graph topology although this later is the

most realistic topology. In this context, interesting results

were observed (Bsoul et al., 2010). Dynamic strategies may

be implemented either in a centralised or decentralised

manner. Advantages and disadvantages of them are given in

the related work section. We are based on the results of each

strategy to affirm their scalability (Bell et al., 2003a) or no

(Lee et al., 2011). It depends upon the topology in which the

system is based. Also, some replication strategies, (e.g.

Abdullah et al., 2012) do not consider the replication cost

consideration. It is also the case for the bandwidth

consumption (Rasool et al., 2009). This is done at the cost

of improved availability which is considered as the most

important objective of almost all replication strategies. On

the other hand, most of data replication strategies are

validated by simulation. The most commonly simulator used

is OptorSim (Bell et al., 2003b). Furthermore, validation of

most of them is done through comparison with results of

basic strategies such as the Least Recently Used (LRU), the

Least Frequently Used (LFU) (Rodriguez et al., 2001), and

the fast spread algorithms. The reason lies in the fact that

these algorithms are already implemented in OptorSim.

However, some replication strategies used their own

simulator such as DRepSim (Tang et al., 2005). In few other

works, theoretical validations are done through a

mathematical and probabilistic modelling of the problem

(Zhang et al., 2010). We have also chosen to consider the

storage space assumption considered by each strategy. We

observe that earlier strategies have considered an unlimited

storage capacity which is no realistic (Ranganathan et al.,

2002; Carman et al., 2002). However, some recent strategies

(Mansouri and Dastghaibyfard, 2012; Andronikou et al.,

2012) claim that it is not suitable to make the assumption

that many replicas are created as required. For this aim,

many algorithms have been proposed to find the optimal

number of replicas, which ensures an optimal use of the

storage space (Sashi and Thanamani, 2011).

Table 1 Features and classification of some replication strategies

Objective Function-based classification

C
en

tr
a
li

se
d

vs
.

D
ec

en
tr

a
li

se
d

G
ri

d
 t

o
p

o
lo

g
y

S
im

u
la

ti
o

n

S
to

ra
g

e

A
ss

u
m

p
ti

o
n

S
ca

la
b

il
it

y

C
o
st

C
o
n
si

d
er

a
ti

o
n

D
a

ta
 l

o
ca

li
ty

b
a
se

d

N
et

w
o

rk
 l

ev
el

lo
ca

li
ty

E
co

n
o
m

ic

b
eh

a
vi

o
u

r

M
o

d
el

 c
o

st

b
a
se

d

Casanova et al. (2000) X Hierarch. Yes Unlimited No No – – X –

Ranganathan and

Foster (2001)
X Hierarch. Yes Unlimited No No X – –

Ranganathan et al.

(2002)
X P2P Yes Unlimited No Yes X – –

Carman et al. (2002) X Hierarch. Yes Unlimited – Yes – – X –

Bell et al. (2003) X Hierarch. Yes Unlimited Yes Yes – – X –

Lamehamedi et al.

(2003)
X Hybrid Yes Limited Yes Yes – – – X

Park et al. (2004) X Hybrid Yes Limited No Yes – X – –

Cameron et al. (2004) X Hierarch. Yes Limited – Yes – – X –

Tang et al. (2005) X Hierarch. Yes Limited No Yes X – – –

Lin et al. (2006) X Hybrid No Limited No Yes X – – –

Chang et al. (2006) X Hierarch. No Limited No Yes X – – –

Rahman et al. (2008) X Graph Yes Unlimited Yes No – – – X

Wu et al. (2008) X Hierarch. Yes Unlimited No Yes X – – –

Rasool et al. (2009) X Hybrid Yes Limited No No X – – –

Shorfuzzaman et al.

(2010)
X Hierarch. Yes Limited No Yes X – – –

Zhang et al. (2010) X Hierarch. No Unlimited – Yes – – – X

Bsoul et al. (2010) X Graph Yes Limited No Yes X – – –

Sashi and Thanamani

(2011)
X Hierarch. Yes Limited No Yes – X – –

Nukarapu et al. (2011) X Hierarch. Yes Limited – Yes X – – –

Khanli et al. (2011) X Hierarch. Yes Limited No No X – – –

Lee et al. (2011) X Hierarch. Yes Unlimited No Yes X – – –

Abdullah et al. (2012) X P2P Yes Limited No No X – X –

Andronikou et al.

(2012)
X Hierarch. Yes Limited Yes Yes X – X –

Mansouri and

Dastghaibyfard (2012)
X Hierarch. Yes Limited Yes Yes – – – X

Regarding the objective function-based strategy classification,

most of the strategies cited in Table 1 are based on data

locality especially from 2005. This is explained by the

extension of the pioneering work of Ranganathan and Foster

(2001) in which most of the later proposed replication

strategies compared their results. Earlier strategies consider

the user queries through only the temporal and geographical

locality. Later, some strategies include spatial locality

by predicting future data needs which justify a replication

in advance. Also, most of works, as shown in Table 1,

ignore network latencies. However, this constitutes an

important parameter since data may not be always present in

the nearby locations with high bandwidth in data grid

environment. In this context, some network level locality-

based strategies were proposed (Park et al., 2004). In fact, a

data transfer save can be possible by placing replicas at

nodes with good bandwidth between it and nodes where

queries are executed, i.e. this avoid network congestions in a

data grid network. Results of replication strategies based on

cost models are also very promising. They evaluated

creation and maintenance costs of replicas before any

replication decision. However, only few strategies have

been proposed in this context (Lamehamedi et al., 2003;

Rahman et al., 2008). When analysing all these strategies, it

is clear that a given replication strategy may favour one

objective function over the other. However, once grouped

together, these objective functions better address the issues

of replication strategies. This is the case of some recent

replication strategies (Abdullah et al., 2012; Andronikou

et al., 2012) which favour both the data locality and the

economic behaviours.

5 Factors for high performance of data

replication strategies

In order to achieve performance while dealing with a data

replication process, we need to always ensure that the

benefit of a given strategy is higher than the cost of

replication (Van Steen and Pierre, 2010). Adopting one

strategy rather than another depends of several factors to

favourite in order to obtain optimal performance. Hence,

trade-offs exist between factors as the access latency, the

network state (e.g. bandwidth) and the storage cost in nodes.

In consequence, the cost of each replication strategy

depends on the decision to favour one factor over others. In

what follows, we enumerate the most important factors that

impact on performance of any replication strategy.

Optimal granularity: Determining the appropriate

granularity of the data to be replicated turns out to be crucial

when replicate data with objective of performance. Van Steen

and Pierre (2010) demonstrate that optimal granularity

depends on applications. For nodes storing static web pages,

for example, supporting a replication strategy on a per page

basis leads to higher scalability and better performance. Van

Steen and Pierre (2010) conclude that replicating for

performance requires differentiating replication strategies

for smaller data units.

Access latency: Reducing the access latency constitutes

an important factor for reducing the job execution time. This

is obtaining by sharing information between all nodes in

order to find out which data need to be replicated and where

to place the new replica (Lei and Vrbsky, 2006). Mansouri

and Dastghaibyfard (2012) also reduce access latency by

selecting the best replica when multiple nodes hold replicas.

The proposed algorithm is based on the response time that

can be determined by considering the data transfer time, the

storage access latency and the distance between nodes.

Bandwidth consumption: Some replication strategies do

not consider an optimal bandwidth consumption since the

principal aim is to improve the data availability. However,

this factor is very important to ensure performance. In fact,

a frequent transfer of data can lead to strain on the

network’s resource which can impact on performance of the

system. This motivates the proposition of replication

strategies based on network level we have cited above.

Balanced workload: Placing replicas in optimal locations

helps to optimise the workload of the system and then

minimise the job execution time. Rahman et al. (2008)

proposed a p-median-based dynamic replication which find p

replica placement that minimise distance between the

requesting node and the nodes holding replicas. Lin et al.

(2006a) focus on the optimal placement of replicas so that the

workload of replicas is balanced for the multi-tier architecture.

Access pattern: To prove the impact of the access

pattern on replication strategy performance, Ranganathan

and Foster (2001) evaluated the performance of five

replication strategies with three different access patterns

(random access pattern, data access with a small amount of

temporal locality and data access with small amount of

geographical and temporal locality). Simulation analysis

shows that fast spread algorithm performs the best under a

random access when cascading technique works better

under geographical and temporal locality. To generate

the data access pattern with dynamically changed file

access popularity on the system, Tang et al. (2005) and

Dogan (2009) randomly generate requests according to

uniform, geometric and Zipf distributions. In the uniform

distribution, the same number of replicas is created for

each object (e.g. file) independently of the request. The

geometric distribution is used to model the scenario that

some data files are requested more times than others. In Zipf

distributions, more replicas are created for data that are

frequently queried (the number of replicas is proportional to

their popularity). Zipf distribution (Breslau et al., 1999)

exists widely in the internet world. It means that user’s

access to file is coherent to time, which is very popular in

the file-sharing application of data grid. Dogan (2009)

evaluated the performance of eight (8) dynamic replication

strategies under different data grid settings. The simulation

results show that the file access pattern has great influence

on the real-time grid performance. Fast spread enhanced

was the best of the eight algorithms considered.

Storage capacity: Although a storage cost is becoming

low lately, replication strategies must assume a fixed

amount of storage to ensure realism. Replication performance

depends significantly on the size of storage available at

different nodes and the bandwidth between these nodes. In

consequence, there is a trade-off between storage

availability and network bandwidth availability (Amjad

et al., 2012). One solution consists of a well-designed

replica replacement algorithm (Zhao et al., 2010).

Optimal number of replica: Defining an optimal number of

replicas in order to avoid the unnecessary replication is an

important parameter when replication strategies achieve

performance. In fact, maintaining an increased number of

replicas can generate an overhead in the system. Lin et al.

(2008) focus on the optimal placement of replicas for the

hybrid architecture. It tries to maintain a balanced workload on

all nodes by proposing an algorithm to find the optimal number

of replicas. Then, another algorithm places replicas in optimal

locations if both the number of replicas and the maximum

allowed workload for each replica have been determined.

Almost replication strategies in the literature consider

that improving availability and reducing job execution time

constitute the principal aim of these strategies. Although

there is a trade-off between some factors, all these factors

should be taken into account simultaneously. Keeping data

close to the user, i.e. reducing access cost, should not be

done at the expense of network congestion. Also, many

works have concluded that a good replication strategy must

be based on an efficient replica placement algorithm with an

optimal number of replicas while the choice of nodes

holding these replicas should not be done at the expense of

the system load. The choice of access pattern constitutes

also an important factor that impacts on performance of any

replication strategy. Although we experiment with classical

replication strategies, we discuss in the performance

evaluation section why the choice of the access pattern is

important when the number of jobs is varied.

6 Cost analysis of data replication strategies

In this section, we analyse the cost of given replication

strategy. Pierre and Van Steen (2001) establish a general

cost function. Authors consider m performance metrics for

the deployed replication strategy s. Then, a cost ck(s) is

associated for each k-th metric. They also associate a weight

wk with the costs ck(s) which is dependent on s. The general

cost formula is as following:

1...
_cost

k kk m
Rep s w c s

Designed to minimise the total costs of replication, this formula

permits to measure and compare strategies. However, the

decision to assign a weigh for a strategy back to the

administrator. Concerning the metrics used to evaluate

performance in a replicas management system, we can classify

them into two types: (a) static metrics, e.g. geographical

distance, whose estimates do not vary with time per opposition;

(b) dynamic metrics, e.g. latency, number of router hops and

network usage. In this paper, most of replication strategies we

have cited are based on the following metrics:

1 The response time metric is related to the time the

replication takes for communication between peers. It is

generally referred by the latency metrics,

2 The spatial metric is an alternative to temporal metrics.

Many systems consider this metric, e.g. number of

network level hops. However, Sivasubramanian et al.

(2004) demonstrate that although spatial metrics are

easier to measure, they are fairly inaccurate as estimators

for latency,

3 The bandwidth metric which corresponds to the total

amount of consumed network resource,

4 The financial metric is mostly used in the economy-

based replication strategies. Some models mandate that

the number of replicas of an object is constrained by the

money paid by the object owner when other uses peak

consumed bandwidth as its pricing metric, and

5 The frequency metric, introduced by Tang et al. (2005).

It is defined as how many replications occur per data

access. This metric is also important since when there

exist many replicas in one server, the workloads of this

and its CPU utilisation are affected.

In summary, performance metrics are difficult to compare.

For example, one strategy can require low latencies but

consumes a lot of bandwidth when another strategy can save

network bandwidth at the cost of relatively poor response

times. Other works show that there is a trade-off between

faster response times and conserving network bandwidth.

Ranganathan and Foster (2001) show that if the priority is

achieving faster response times, cascading technique might

work better but when the priority is to obtain a reduction of

bandwidth consumption, fast spread technique is better.

7 Simulation analysis

This section starts with a brief description of the simulation

tool we have used. Then, we analyse the obtained

simulation results in order to measure the impact of

important factors on replication strategy performance.

7.1 Simulation tool and performance environment

In order to measure the impact of some factors on

replication strategy performance, we used OptorSim (Bell

et al., 2003b), a scalable, configurable and programmable

simulation tool. There are three options for replication

strategies in OptorSim: (a) no replication which never

replicates a file, i.e. data are taken from the master node; (b)

LRU and LFU algorithms; and (c) economic model-based

replication strategies in which nodes ‘buy’ and ‘sell’ files

using an auction protocol.

In the LRU algorithm, a requested node always

replicates the required data and caches it. Then, if the local

storage is full, the oldest replica is deleted to free the

storage. However, if the oldest replica size is less than the

new replica, the second oldest file is deleted. The LFU

strategy performs as the LRU strategy with the difference

that it deletes the replica which has a less demand from the

local storage even if the replica is newly stored. Concerning

the economic-based strategy, there are two types in

OptorSim: (a) the binomial economic model based and (b)

Zipf economic model based. Several configuration files

determine the comportment of OptorSim. In addition of

these strategies already implemented in OptorSim for data

grid system, we have also simulated the BHR algorithm

(Park et al., 2004). Throughout these experiments, we deal

with a simulated data grid composed of Computing Element

(CE) and Storage Element (SE). Users submit jobs to the

system. Then, a Resource Brocker (RB) controls scheduling

of jobs to CE nodes according to existing scheduling

algorithms (random, shortest queue, access cost, queue

access cost). Each node handles its file content with replica

manager which, with Replica Optimiser (RO), contains the

replication strategies that decide the creation and deletion of

replicas. Before starting these experiments, we have

initialised several configuration parameters: (a) the general

parameters file, e.g. the total numbers of jobs to run, the

access pattern choice and the replication strategy are

concerned, (b) the grid configuration file, e.g. the network

topology, (c) the job configuration file, e.g. the files needed

by each job, and (d) the bandwidth configuration file, e.g.

the background network traffic. Table 2 describes the

principal parameters we have used in this simulation.

Table 2 Configuration parameters

Parameters Value

Number of peers 13

Number of jobs 100

Number of file accessed per job 10

Size of a single data file 1 Gb

Maximum bandwidth between nodes 100 Mb/s

On the other hand, five access patterns exist in OptorSim:

(a) sequential, i.e. files are selected at the order stated in the

job configuration file, (b) random, i.e. the access follows a

random distribution, (c) random walk unitary in which files

are accessed using a unitary random walk, (d) random walk

Gaussian, i.e. files are requested in a Gaussian distribution

and (e) random walk Zipf, in which successive files are

selected from a Zipf distribution, i.e. some elements often

occur when others occur rarely. Since most of research

works show that the distribution of requested web pages

generally follows a Zipf distribution (Breslau et al., 1999),

we have used the random Zipf access to determine the order

in which the files are requested by jobs.

7.2 Simulation results

The first two experiments are based on the following metrics:

the mean job execution time and the effective network usage.

Then, the mean job execution time is measured when varying

the available storage size in a third experiment.

7.2.1 Mean job execution time while varying

the grid topology

Throughout these experiments, we have evaluated four

replication strategies (LFU, LRU, economic behaviours

based and BHR) by varying the grid topology when fixing

simultaneously: (a) the storage capacity of all nodes, (b) the

number of data files and (c) the bandwidth capacity. We

have also varied the grid configuration file. For this aim, we

have extended the simple grid configuration already

presented in OptorSim2.1 (simple_grid.conf file) in order to

have the three configurations, i.e. hierarchical, hybrid and

graph topologies, as shown in Figure 2. There are four

routers (Figure 2a and 2b) and five routers (Figure 2c) that

are used to forward requests to other nodes. Jobs are

processed in the nodes that have both CE and SE elements.

There is a main master node where all data are produced

initially. This node has the most important capacity of

storage (100 GB) in order to hold all files which are

distributed to other nodes (50 GB for each of them).

In the curves of Figure 3, the main execution time

corresponds to the total time required to execute all jobs

divided by the number of jobs completed (Cameron et al.,

2004). We have deliberately chosen to not represent the

job execution time when any replication strategy (no

replication) is applied. This is because of the problem of

scale in these figures. These times correspond to 6105, 6004

and 8200 ms when we experiment with hierarchical, hybrid

and graph topologies, respectively, which constitute the

most important times when compared to the four algorithms

cited above. The BHR algorithm has the shortest mean job

execution time in the three curves. This is due to the fact

that it locates files and stores them in the most frequently

accessed node. When the LRU strategy requires 1545 file

accesses to execute all jobs in the hierarchical topology

experiment, the BHR algorithm requires only 785 accesses

for the same experiment. This is also due to the fact that the

minimum distance between the requester node and replicas

decreases the job execution time. This explains why a job

execution time save is observed with the hybrid topology.

Figure 2 Data grid topology: (a) hierarchical, (b) hybrid and (c) graph topologies

 (a) (b) (c)

CE & SE node

SE node

Main master node

Figure 3 Job execution times for (a) hierarchical, (b) hybrid and (c) graph topologies topologies (see online version for colours)

0

200

400

600

800

1000

1200

LRU LFU Economic

behaviours

BHR Repl,

Strategy

Job Execution

Time (ms)

0

200

400

600

800

1000

1200

1400

LRU LFU Economic

behaviours

BHR Repl.

Strategy

Job exec. Time

(ms)

860

880

900

920

940

960

980

1000

1020

LRU LFU Economic

behaviours

BHR Repl.

Strategy

Job Exec.

Time (ms)

(a) (b) (c)

Unsurprisingly, the hybrid data grid topology generates the

less important job execution times. It profits from the

advantages of both hierarchical and P2P topologies. On the

other hand, the most important job execution times were

observed in experiments when any node is connected to any

other without any restrictions of a tree topology. This

corresponds to the graph topology in which many

synchronisations between nodes are required. Recall curves

shown in Figure 3 are obtained when a few files are

requested frequently, i.e. Zipf access pattern. When a

random access pattern is used, we have observed that LFU

and LRU strategies have shorter job execution time.

7.2.2 Effective network usage while varying the

number of jobs

Cameron et al. (2004) define the Effective Network Usage

(ENU) as the ratio of files transferred to files requested. Its

value ranges from 0 to 1 and corresponds to:

ENU = (Nremote file access + Nfile replication)/Nlocal file accesses

where Nremote_file_access is the time required such as a CE reads

a file from an SE on a different node, Nfile_replication is the

number of replication and Nlocal file accesses is the time required

such as CE reads data from an SE on the same node.

Cameron et al. (2004) claim, for a hierarchical topology,

that a lower value of ENU indicates that the replication

strategy is better. In these experiments, we also deal with

the ENU and focus only on the hierarchical topology. In

Figure 4, the ENU value is measured for the LRU, Zipf

economic and BHR strategies with varying the number of

submitted job. We also interest on the case without any

replication strategy. While we have no replication strategy,

the network usage consumption is maximum. The best ENU

value is obtained with the LRU strategy. This is due to the

fact that replicas are available in all nodes which do not

require a network bandwidth to transfer a file from one node

to another. BHR strategy presents better results than Zipf

economic strategy when experiment with only 10 and 100

jobs. However, Zipf economic profits from the better using

of access histories when the number of submitted jobs

increased. With the increased number of jobs, using of these

access histories decrease the network usage since replication

strategies are based on them while deciding to replicate

a file.

Figure 4 Network usage (see online version for colours)

0

0,2

0,4

0,6

0,8

1

1,2

10 100 1000 Number of Jobs

Network Usage

No Repl.

LRU

Zipf Economic

BHR

7.2.3 Impact of the storage size on the job

execution time

We have also measured the impact of the storage size on the

total job execution time (Figure 5). We have observed that

when the storage space is enough, all replication strategies

have almost the same performance. As the storage size

increases, then, the execution time decreases. In fact, the

LRU strategy requires the greatest storage size since it

replicates always a request that is made when the Zipf

economic strategy requires less storage size. However, the

BHR method has the lowest storage size requirements since

one replica is presented in each region. Then, the storage is

done only in some nodes.

Figure 5 Impact of the storage size on execution times

topologies (see online version for colours)

0

5000

10000

15000

20000

25000

10 20 40 60 80 Storage Size (GB)

Job Execution

Time (s)

LRU

Zipf economic

BHR

8 Related work

Most of related works classified replication strategies

according to one of the four following aspects: (a) static vs.

dynamic, (b) centralised vs. decentralised, (c) client vs.

server initiated replication and (d) unconditional vs.

conditional replication.

Regarding the first classification, replica nodes and the

number of replicas are chosen statically in advance in the

static replication strategy (Chervenak et al., 2002; Tatebe

et al., 2002; Bell et al., 2003a). No more replicas are created

or migrated after that even if the system changes

significantly. Their locations are predetermined, i.e. a

replica is persistent until it is deleted by a user or its

duration is expired. This type of strategy is suitable when

the resource conditions are stable for a long time. Cibej

et al. (2005) study the complexity of data replication

strategies in data grid systems. They show that this problem

is NP-hard. Regarding the advantages of such strategies,

they have no overhead of dynamic algorithms and faster job

scheduling. However, user behaviour’ as access pattern and

network condition are varying over time. In consequence,

these strategies will not adapt these situations. Thus impacts

on the data access efficiency and system performance are

affected. Dynamic strategies (Lamehamedi et al., 2003;

Chang et al., 2006; Rahman et al., 2008; Mansouri and

Dastghaibyfard, 2012) overcome these problems. They

allow the system to automatically manage replicas

following changing system parameters and its decision

depends on different factors as the user access pattern,

storage availability and network bandwidth. In consequence,

replicas can be created on new nodes and can be deleted

from others. As data grid characteristics are changeable,

dynamic replication is more appropriate for data grid. This

explains that most of the replication strategies proposed for

data grids are dynamic.

Regarding the second classification, a single entity is

responsible for deciding on the strategy to adopt, e.g. the

placement of replicas, in the centralised process. Several

centralised replication strategies have been proposed for

different data grid architectures. In the work of Casanova

et al. (2000), the popular data are determined by analysing a

central data access history in hierarchical data grid systems.

This can conduct to a bottleneck especially if there is more

than the average load in the network. Ranganathan and

Foster (2001) proposed several decentralised replication

strategies for hierarchical data grid systems. Another

strategy was proposed by Ranganathan et al. (2002) in order

to automatically create replicas for a generic decentralised

peer-to-peer network, and maintain replica availability with

some probabilistic measures. Tang et al. (2005) study the

effect of replication schemes and grid-scheduling heuristics

on turnaround time. A replication decision is made only at a

central dynamic replication scheduler that collects the

average number of file accesses in the data access history

and clients access pattern. The replication decision (Rasool

et al., 2009) is also done in a centralised way for hybrid data

grid systems. It is based on a Grid Replication Scheduler

(GRS) that consults a certain replica catalogue which

administers all the information about the replicas. The most

important benefit of a decentralised decision is that there is

no single point of failure. Furthermore, a decision does not

rely on a central monitoring scheme. The disadvantage is

that nodes can make decisions based on partial information,

which may lead to unnecessary replication. Other limitation

consists in the overhead generated by the invocation of the

replica placement service again and again.

Replication strategies can also be classified (Van Steen

and Pierre, 2010) into server-initiated vs. Client-initiated

replication. Server-initiated replication strategies also called

‘push based’ (Tang et al., 2005; Rahman et al., 2008;

Ranganathan et al., 2002) correspond to most of the

replication strategies cited in this paper and are used to

enhance performance. The replication decision made by a

server can be motivated by observing some factors as access

patterns of the user. It can also depend on the number of

requests in order to determine the optimal placement to

replicate data, e.g. closer to a potential user. In the client-

initiated replication also called ‘pull based’ or ‘client-side

caching’ or caching (Dilley et al., 2002) replicas are created

as a result of client requests, independently of any

replication strategy, in order to improve access time. Unlike

server-initiated replication, which is planned on advance,

the caching happens on demand, i.e. caching is a decision

made by the client of a resource and not by the owner of a

resource. Before passing data to the client, the required data

are stored locally in a cache for future use (Nukarapu et al.,

2011). Whenever data are requested again, it can be fetched

from the cache locally. In fact, caching is viewed as a form

of replication (Madi and Hassan, 2008). A good survey on

web caching can be found in the work of Rodriguez et al.

(2001).

Finally, some works (e.g. Al Mistarihi and Yong, 2008)

classified the replication strategies into conditional and

unconditional. The unconditional replication consists of

performing a replication at every request, i.e. the node that

requests a file always stores a copy locally. The plain caching

strategy (Ranganathan and Foster, 2001) is an example of

unconditional replication strategy. In this context, two

algorithms were emerged: (a) the LRU and (b) the LFU

algorithms. However, this type of strategy would make data

frequently replicated, which generate unnecessary replication,

not suitable in dynamic data grid. Unlike unconditional

replication, a conditional replication strategy triggers a

creation of replicas according to some conditions such as a

popularity threshold. Several replication strategies have been

proposed in this context in order to achieve one or several

objective functions that we have cited in this paper.

9 Conclusion

Replication strategies have been widely studied in the last

decade. The purpose of this paper is to provide a state-of–

the-art review concerning the various replication strategies that

achieve performance objectives. In consequence, we have

focused only on the read-only query scenario. Most related

work classified replication strategies into static vs. dynamic

or centralised vs. decentralised methods. Other works

also classified replication strategies into client vs. server-

initiated replication or unconditional vs. conditional

replication. In this paper, we propose a new replication

strategy classification according to the achieved objective

function. We distinguish replication strategies based on: (a)

popularity of data while exploiting temporal, geographical

and spatial data locality; (b) network level locality; (c)

economic behaviours; and (d) cost models. After describing

the principal methods for each class, it has been observed

that a strategy that promotes only one objective function is

not efficient. In consequence, a good replication strategy

should include simultaneously several objective functions.

On the other hand, although no standard architecture for

data grids exists, most replication strategies were developed

for the hierarchical data grid topology. However, strict

constraints of the tree structure lead us to say that the

general graph model is more realistic. In this context,

we have cited some replication strategies that provide

interesting results. Future proposals should be oriented

towards this direction. We are also interested in the different

factors that impact on replication strategies performance.

We conclude that a good replication strategy must

simultaneously consider: (a) the reduction of access time,

i.e. promotes data locality; (b) the reduction of the bandwidth

consumption; (c) the storage resources availability; (d) a

balanced workload between replicas; and (e) a strategic

placement algorithm including an optimal number of

replicas. Finding a good balance between them is a good

challenge. In order to evaluate their proposed replication

strategies, earlier works have based their results in a

simulation under the assumed available unlimited amount of

storage. However, we believe that a network bandwidth and

storage capacity in a data grid may be limited when

experiment a new replication strategy. In consequence, the

data replication problem is more challenging under the

assumption of limited storage resources. In the simulation

analysis section, we have measured the impact of some

factors that influence performance, e.g. storage availability,

and the trade-off between them. We have also measured the

impact of the data grid topology on performance of some

existing replication strategies. Three different data grid

topologies are tested. Best results are obtained with the

hybrid data grid topology while the most important job

execution times were observed with a graph topology. We

also conclude that there are not a lot of comparative studies

between replication strategies since each of them, in

most cases, promotes the above factors in a separate way.

Furthermore, validations of most of these strategies are done

through comparison with results of basic strategies such

as LFU, LRU and fast spread. The reason lies in the fact

that these algorithms are already implemented in

existing simulators such as OptorSim. Hence, we believe

that comparison with the various other better existing

strategies will be required. This can be included in our

future work. We also plan to combine replication strategies

with scheduling techniques in order to achieve better

performance. Another important issue we intend to study is

to include the dynamic properties of data grid such that

nodes can join or leave the system at each moment. In

consequence, replica placement and replica selection

algorithms should take into account the dynamic property of

data grid environments.

References

Abawajy, J.H. (2004) ‘Placement of file replicas in data grid

environments’, Proceeding of International Conference

(ICCS’04), Vol. 3038, pp.66–73.

Abdullah, A., Othman, M., Ibrahim, H., Sulaiman, M.N. and

Othman, A.T. (2008) ‘Decentralized replication strategies for

P2P based scientific data grid’, International Symposium on

Information Technology (TSim’08), Vol. 3, pp.1–8.

Abdullah, A., Latip, R., Azraei, W.M. and Mustapha, W. (2012)

‘Evaluation of an economy-based file replication strategy for

Malaysian research and education network (MYREN) data grid

model’, Computer and Information Science, Vol. 5, No. 1.

Al Mistarihi, H.E. and Yong, C. (2008) ‘Replica management in

data grid’, Proceeding of International Journal of Computer

Science and Network Security, Vol. 8, pp.22–32.

Amjad, T., Sher, M. and Daud, A. (2012) ‘A survey of dynamic

replication strategies for improving data availability in data

grids’, Future Generation Computer Systems, Vol. 28,

pp.337–349.

Andronikou, V., Mamouras, K., Tserpes, K., Kyriazis, D. and

Varvarigou, T. (2012) ‘Dynamic QoS-aware data replication

in grid environments based on data “importance”’, Future

Generation Computer Systems, No. 28, pp.544–553.

Benoit, A. and Rehn-Sonigo, V. (2008) ‘Replica placement and access

policies in tree networks’, IEEE Transactions on Parallel and

Distributed Systems, Vol. 19, No. 12, pp.1614–1627.

Bell, W.H., Cameron, D., Carvajal-Schiaffino, R., Millar, A.,

Stockinger, K. and Zini, F. (2003a) ‘Evaluation of an economy-

based file replication strategy for a data grid’, Cluster

Proceeding of the 3rd IEEE/ACM International Symposium on

Computing and the Grid (CCGrid), pp.661–668.

Bell, W.H., Cameron, D., Millar, A., Capozza, L., Stockinger, K. and

Zini, F. (2003b) ‘Optorsim: a grid simulator for studying dynamic

data replication strategies’, Proceeding of International Journal

of High Performance Computing Applications, Vol. 17, No. 4.

Bernstein, P.A., Hadzilacos, V. and Goodman, N. (1987)

Concurrency Control and Recovery in Database Systems,

Addison-Wesley Publishers, MA, USA.

Breslau, L., Cao, P., Fan, L., POhillips, G. and Shenker, S. (1999)

‘Web caching and Zipf distribution: evidence and

implications’, Proceedings of the International Conference on

IEEE INFOCOMM, New York.

Bsoul, M., Al-Khasawneh, A., Eddien Abdallah, E. And Kilani, Y.

(2010) ‘Enhanced fast spread replication strategy for data

grid’, International Journal of Network and Computer

Applications, Vol. 24, No. 2, pp.575–580.

Cameron, D.G., Carvajal-Schiaffino, R., Millar, A.P., Nicholson,

C., Stockinger, K. and Zini, F. (2004) ‘OptorSim: a grid

simulator for replica optimisation’, UK e-Science all Hands

Conference, Vol. 31.

Carman, M., Zini, F., Serafini, L. and Stockinger, K. (2002)

‘Toward an economy-based optimization of file access and

replication on data grid’, Proceedings of the 2nd International

Symposium on Cluster Computing and the Grid, pp.340.

Casanova, H., Obertelli, G., Berman, F. and Wolski, R. (2000)

‘The AppLeS parameter sweep template: user-level

middleware for the grid’, Proceeding of the ACM/IEEE

Conference in Super Computing, Denver, pp.60.

Chang, R.S., Huang, N.Y. and Chang, J.S. (2006) ‘A predictive

algorithm for replication optimization in data grid’,

Proceeding of ICS 2006, Taiyuan, Taiwan, pp.199–204.

Chang, R.S. and Chang, H.P. (2008) ‘A dynamic data replication

strategy using access weights in data grids’, The Journal of

Supercomputing, Vol. 45, No. 3, pp.277–295.

Chervenak, A., Deelman, E., Foster, I., Guy, L., Hoschek, W.,

Iamnitchi, A., Kesselman, C., Kunst, P., Ripeanu, M.,

Schwartzkopf, B, Stockinger, H., Stockinger, K. and Tierney, B.

(2002) ‘Giggle: a framework for constructing scalable replica

location services’, Supercomputing.

Cibej, U., Slivnik, B. and Robic, B. (2005) ‘The complexity

of static data replication in data grids’, Parallel Computing,

Vol. 31, pp.8–9, pp.900–912.

Deelman, E., Lamehamedi, H., Szymanski, B. and Zujun, S.

(2002) ‘Data replication strategies in grid environments’,

Proceedings of 5th International Conference on Algorithms

and Architecture for Parallel Processing, ICA3PP’2002,

IEEE Computer Science Press, Beijing, China, pp.378–383.

Devakirubai, N. and Kannammal, A. (2013) ‘Optimal replica

placement in graph based data grids’, The International Journal

of Engineering and Science (IJES), Vol. 2, No. 3, pp.95–103.

Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R. and

Weihl, B. (2002) ‘Globally distributed content delivery’,

IEEE Internet Computing, Vol. 6, No. 5, pp.50–58.

Dogan, A. (2009) ‘A study on performance of dynamic file

replication algorithms for real-time file access in data grids’,

Future Generation Computer System, Vol. 25, pp.829–839.

Garcia-Carballeira, F., Carretero, J., Calderon, A., Garcia, J.D. and

Sanchez, L.M. (2007) ‘A global and parallel file systems for

grids’, Future Generation Computer Systems, Vol. 23, No. 1,

pp.116–122.

Goel, S. and Buyya, R. (2006) ‘Data replication strategies in wide

area distributed systems’, Enterprise Service Computing:

From Concept to Deployment, pp.211–241.

Gwertzman, J.S. and Seltzer, M. (1995) ‘The case of geographical

push-caching’, Proceedings of International Workshop on

Hot topics in Operating Systems (HotOS-V), pp.51–55.

Horri, A., Sepahvand, R. and Dastghaibyfard, G. (2008) ‘A

hierarchical scheduling and replication strategy’, Proceedings

of International Journal of Computer Science and Network

Security, 8 (August).

Jia, X., Li, D., Hu, X-D., Wu, W. and Du, D-Z. (2003) ‘Placement

of web-server proxies with consideration of read and update

operations on the internet’, Computer Journal, Vol. 46, No. 4,

pp.378–390.

Kalpakis, K., Dasgupta, K. and Wolfson, O. (2001) ‘Optimal

placement of replicas in trees with read, write, and storage

costs’, IEEE Transactions on Parallel Distributed Systems,

Vol. 12, No. 6, pp.628–637.

Khanli, L.M., Isazadeh, A. and Shishavanc, T.N. (2011) ‘PHFS: a

dynamic replication method, to decrease access latency in

multi-tier data grid’, Future Generation Computer Systems,

pp.233–244.

Kunszt, P., Laure, E., Stockinger, H. and Stockinger, K. (2005)

‘File-based replica management’, Future Generation Computer

Systems, Vol. 22, No. 1, pp.115–123.

Lamehamedi, H., Shentu, Z., Szymanski, B. and Deelman, E.

(2003) ‘Simulation of dynamic data replication strategies in

data grids’,

Lee, M.C., Leu, F.Y. and Chen, Y. (2011) ‘PFRF: an adaptive data

replication algorithm base on star topology data grids’, Future

Generation Computer Systems (2011).

Lei, M. and Vrbsky, S. (2006) ‘A data replication strategy to

increase availability in data grids’, Proceedings of International

Conference in Grid Computing and Applications, Las Vegas,

NV, pp.221–227.

Lei, M., Vrbsky, S.V. and Hong, X. (2008) ‘An on-line replication

strategy to increase availability in data grids’, Future

Generation Computer Systems, Vol. 24, No. 2, pp.85–98.

Lin, Y.F., Liu, P. and Wu, J.J. (2006a) ‘Optimal placement of replicas

with locality assurance’, Proceedings of the International

Conference on Parallel and Distributed Computing.

Lin, Y.F., Wu, J.J. and Liu, P. (2008) ‘A list-based strategy for

optimal replica placement in data grid systems’, 37th

International Conference on Parallel Processing, pp.198–205.

Lin, H., Abawajy, J.H. and Buyya, R. (2006b) ‘Economy-based

data replication broker’, Proceedings of the 2nd IEEE

International Conference on e-Science and Grid Computing,

Amsterdam, the Netherlands.

Liu, P. and Wu, J.J. (2006) ‘Optimal replica placement strategy for

hierarchical data grid systems’, Proceedings of the 6th IEEE

International Symposium on Cluster Computing and the Grid

(CCGRID’06), pp.420–423.

Loukopoulos, T., Lampsas, P. and Ahmad, I. (2005) ‘Continuous

replica placement schemes in distributed systems’, Proceedings

of 19th International Conference on Supercomputing, pp.284–292.

Madi, M.K. and Hassan, S. (2008) ‘Dynamic replication algorithm in

data grid: survey’, Proceedings of International Conference on

Network Applications, Protocols and Services, Malaysia.

Mansouri, N. and Dastghaibyfard, G.H. (2012) ‘A dynamic replica

management strategy in data grid’, Journal of Network and

Computer Applications, Vol. 35, No. 4, pp.1297–1303.

Nukarapu, D.T., Tang, B., Wang, L. and Lu, S. (2011) ‘Data

replication in data intensive scientific applications with

performance guarantee’, Proceedings of IEEE Transactions

on Parallel and Distributed Systems, Vol. 22, pp.1299–306.

Park, S.M., Kim, J.H., Ko, Y.B. and Yoon, W.S. (2004) ‘Dynamic

data grid replication strategy based on internet hierarchy’,

Grid and Cooperative Computing, pp.838–846.

Perez, J.M., Garcia-Carballeira, F., Carretero, J., Calderon, A. and

Fernandez, J. (2010) ‘Branch replication scheme: a new

model for data replication in large scale data grids’, Future

Generation Computer Systems, Vol. 26, No. 1, pp.12–20.

Pierre, G. and Van Steen, M. (2001) ‘Globule: a platform for self-

replicating web documents’, Proceedings of the International

Conference on Protocol for Multimedia Systems, Enschede,

the Netherlands, pp.1–11.

Rahman, R.M., Barker, K. and Alhajj, R. (2008) ‘Replica

placement strategies in data grid’, Journal of Grid

Computing, Vol. 6, No. 1, pp.103–123.

Ranganathan, K. and Foster, I. (2001) ‘Identifying dynamic

replication strategies for a high performance data grid’,

International Workshop on Grid Computing.

Ranganathan, K., Iamnitchi, A. and Foster, I. (2002) ‘Improving

data availability through dynamic model-driven replication in

large peer-to-peer communities’, Cluster Computing and the

Grid (CCGrid), pp.376.

Rodriguez, P., Spanner, C. and Biersack, E. (2001) ‘Analysis of

web caching architecture: hierarchical and distributed caching’,

IEEE/ ACM Transaction on Networking, Vol. 21, 4 (Aug.),

pp.404–418.

Rasool, Q., Li, J. and Zhang, S. (2009) ‘Replica placement in

multi-tier data grid’, 8th IEEE International Conference on

Dependable, Autonomic and Secure Computing, pp.103–108.

Sashi, K. and Thanamani, A.S. (2010) ‘A new dynamic replication

algorithm for European data grid’, Proceedings of the 3rd

Annual ACM Bangalore Conference, pp.17.

Sashi, K. and Thanamani, A.S. (2011) ‘Dynamic replication in a

data grid using a modified BHR region based algorithm’,

Future Generation Computer Systems, Vol. 27, No. 2,

pp.202–210.

Shorfuzzaman, M., Graham, P. and Eskicioglu, R. (2010) ‘Adaptive

popularity driven replica placement in hierarchical data grids’,

Journal of Super Computers, Vol. 51, pp.374–392.

Sidell, J., Aoki, P., Barr, S., Sah, A., Staelin, C., Stonebraker, M.

and Yu, A. (1996) ‘Data replication in mariposa’,

Proceedings of 17th International Conference on Data

Engineering, New Orleans, USA, pp.485–494.

Sivasubramanian, S., Szymaniak, M., Pierre, G. and Van Steen, M.

(2004) ‘Replication for web hosting systems’, ACM

Computer Survey, Vol. 36, No. 3, pp.1–44.

Tang, M., Lee, B.S., Yeo, C.K. and Tang, X. (2005) ‘Dynamic

replication algorithms for the multi-tier data grid’, Future

Generation Computer Systems, Vol. 21, No. 5, pp.775–790.

Tatebe, O., Morita, Y., Matsuoka, S., Soda, N. and Sekiguchi, S.

(2002) ‘Grid data farm architecture for Petascale data

intensive computing’, CCGrid, pp.102.

Tu, M., Li, P., Xiao, L., Yen, I-L. and Bastani, F.B. (2006)

‘Replica placement algorithms for mobile transaction

systems’, IEEE Transactions on Knowledge and Data

Engineering, Vol. 18, No. 7, pp.954–970.

Van Steen, M. and Pierre, G. (2010) ‘Replicating for performance:

case studies’, in Charron-Bost, B., Pedone, F. and Schiper, A.

(Eds): Replication, Theory and Practice, Vol. 5959, Springer,

Berlin, pp.73–89.

Wu, J.J., Lin, Y.F. and Liu, P. (2008) ‘Optimal replica placement in

hierarchical data grids with locality assurance’, Journal of Parallel

and Distributed Computing, Vol. 68, No. 12, pp.1517–1538.

Xhafa, F., Potlog, A-D., Spaho, E., Pop, F., Cristea, V. and Barolli,

L. (2012a) ‘Evaluation of intra-group optimistic data

replication in P2P groupware systems’, in Fox, G.C. and

Moreau, L. (Eds): Concurrency and Computation: Practice

and Experience, John Wiley & Sons, Ltd.

Xhafa, F., Kolici, V., Potlog, A., Spaho, E., Barolli, L. and

Takizawa, M. (2012b) ‘Data replication in P2P collaborative

systems’, Proceedings of the 7th International Conference

on P2P, Parallel, Grid, Cloud and Internet Computing

(3PGCIC), pp.49–57.

Zhang, J., Lee, B.S., Tang, X. and Yeo, C.K. (2010) ‘A model to

predict the optimal performance of the hierarchical data grid’,

Future Generation Computer Systems, Vol. 26, No. 1, pp.1–11.

Zhao, W., Xu, X., Wang, Z., Zhang, Y. and He, S. (2010) ‘A

dynamic optimal replication strategy in data grid

environment’, Proceedings of International Conference on

Internet Technology and Applications, pp.1–4.

