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CRITICAL REGULARITY ISSUES FOR THE COMPRESSIBLE

NAVIER–STOKES SYSTEM IN BOUNDED DOMAINS

RAPHAËL DANCHIN AND PATRICK TOLKSDORF

Abstract. We are concerned with the barotropic compressible Navier–Stokes system in a
bounded domain of Rd (with d ≥ 2). In a critical regularity setting, we establish local well-
posedness for large data with no vacuum and global well-posedness for small perturbations of a
stable constant equilibrium state.

Our results rely on new maximal regularity estimates - of independent interest - for the
semigroup of the Lamé operator, and of the linearized compressible Navier–Stokes equations.

1. Introduction

We are concerned with the following barotropic compressible Navier–Stokes system in a C∞
bounded domain Ω of Rd, d ≥ 2:

(1.1)


∂tρ+ div(ρu) = 0 in R+ × Ω,

∂t(ρu) + div(ρu⊗ u)− 2 div(µD(u))−∇(λ div u) +∇P = 0 in R+ × Ω,

u = 0 on R+ × ∂Ω,

(ρ, u)|t=0 = (ρ0, u0) in Ω.

The unknowns are the (scalar nonnegative) density ρ = ρ(t, x) and the vector-field u = u(t, x).
The notation D(u) stands for the symmetric part of the Jacobian matrix of u. The viscosity
coefficients λ and µ are smooth functions of ρ satisfying µ > 0 and λ + 2µ > 0. We shall often
assume (with no loss of generality) that the average value of the density on Ω, a conserved
quantity, is equal to 1.

The mathematical study of the Cauchy problem (or initial boundary value problem) for the
compressible Navier–Stokes system has been initiated sixty years ago with the pioneering works
by J. Serrin [32] and J. Nash [31] who established the local-in-time existence and uniqueness of
classical solutions. In the case Ω = R3, the global existence of strong solutions with Sobolev
regularity has been first proved by A. Matsumura and T. Nishida [25], for small perturbations
of a constant state (ρ, u) = (ρ̄, 0) under the stability condition P ′(ρ̄) > 0. The proof was based
on subtle energy estimates that enabled the authors to pinpoint some L2-in-time integrability
for both the density and the velocity, as well as algebraic time decay estimates.

With completely different methods based on parabolic maximal regularity in the framework
of Lebesgue spaces, local existence has been established by V. Solonnikov [33] for general data
with no vacuum (see also the more recent work by the first author [8] where critical regularity is
almost achieved) as well as global existence for small perturbations of (ρ̄, 0) (see [29], and [21]).

In the present paper, we want to recover the classical results of strong solutions for (1.1) in
the bounded domain case within a critical regularity setting, that is, in functional spaces that
are invariant by the following rescaling for all ` > 0:

(1.2)
(
ρ0(x), u0(x)

)
;
(
ρ0(`x), `u0(`x)

)
and

(
ρ(t, x), u(t, x)

)
;
(
ρ(`2t, `x), `u(`2t, `x)

)
·
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Observe that the above rescaling leaves the whole system invariant, up to a change of the pressure
term (provided the fluid domain is dilated accordingly, of course). As first noticed by H. Fujita
and T. Kato in [17] for the incompressible Navier–Stokes equations, working in scaling invariant
spaces is the key to getting optimal well-posedness results.

Our main goal here is to prove the following type of statements:

• local well-posedness for general data having critical regularity and such that ρ0 > 0;
• if, in addition, P ′(1) > 0, global well-posedness for data (ρ0, u0) that are small pertur-

bations of (1, 0) (for some norm having the invariance of the first part of (1.2)).

When the fluid domain is the whole space, a number of results in that spirit have been established,
and the critical norms are always built upon homogeneous Besov spaces with last index equal
to 1. More precisely, it has been first observed in [7] that one can take any data such that ρ0− 1

is small in Ḃ
d/2−1
2,1 (Rd) ∩ Ḃ

d/2
2,1 (Rd), and u0 is small in Ḃ

d/2−1
2,1 (Rd). Later works (see, e.g., [5], [6])

pointed out that it is actually enough to assume the high frequencies of the data to be in the

larger space Ḃ
d/p
p,1 (Rd)× Ḃ

d/p−1
p,1 (Rd) for some p in the range

(
2,min(4, 2d

d−2)
)
·

Here we aim at extending those results to the physically relevant case where the fluid domain
is bounded and the velocity vanishes at the boundary. Compared to works in the whole space,
the expected difficulty is that one can no longer use techniques based on the Fourier transform to
investigate (1.1) (in particular, global results of [7] were based on a decomposition into low and
high frequencies of the solution). Whether one can adapt those techniques to the domain case
is unclear. In the present paper, we focus on the bounded domain case which is expected to be
easier than the unbounded domain case since, somehow, low frequencies do not exist (therefore,
prescribing different regularity for low and high frequencies is irrelevant).

Since the linearized compressible Navier–Stokes system may be associated to an analytic
semigroup in suitable functional spaces, using maximal Lq-regularity seems to be an acceptable
substitute to Fourier analysis. However, as already pointed out in previous works (see, e.g., [8]),
reaching critical regularity within the classical theory would require maximal L1-regularity, which
is false in the setting of Lebesgue or Sobolev spaces for instance.

For the reader’s convenience, let us briefly recall what maximal regularity is. Let X be a
Banach space and −A : D(A) ⊂ X → X, the generator of a bounded analytic semigroup
(T (t))t≥0 on X. Consider for f ∈ Lq(R+;X), 1 ≤ q ≤ ∞, the abstract Cauchy problem{

u′(t) +Au(t) = f(t) (t > 0),

u(0) = 0.

By virtue of [4, Prop. 3.1.16] the unique mild solution to this problem is given by the variation
of constants formula

u(t) =

ˆ t

0
T (t− τ)f(τ) dτ (t > 0).

We say that A has maximal Lq-regularity if, for every f ∈ Lq(R+;X), it holds for almost every
t > 0 that u(t) ∈ D(A), and Au ∈ Lq(R+;X). Notice that in this case also u′ ∈ Lq(R+;X)
and that the closed graph theorem implies the existence of a constant C > 0 such that for all
f ∈ Lq(R+;X) it holds

‖u′, Au‖Lq(R+;X) ≤ C‖f‖Lq(R+;X).

See the monographs of Denk, Hieber, and Prüss [13] and of Kunstmann and Weis [23] for further
information. Our aim here is to adapt an argument of real interpolation that originates from
Da Prato-Grisvard’s work in [12] so as to reach the endpoint q = 1 that turns out to be the key
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to proving global-in-time results in critical regularity framework (in this respect, see also our
recent paper [11]).

We perform the analysis first for the semigroup associated to the Lamé operator (namely
the linearization of the velocity equation if neglecting the pressure term), so as to get a local
well-posedness result for general data with critical regularity, then for the linearization of the
whole system (1.1) about (ρ, u) = (1, 0) to obtain a global result.

Back to the nonlinear system, one cannot just push all nonlinear terms to the right-hand side
and bound them according to Duhamel’s formula, though. The troublemaker is the convection
term in the density equation, namely u ·∇ρ, that causes a loss of one derivative (this reflects the
fact that the system under consideration is partly hyperbolic). The way to overcome the difficulty
is well-known: it is called Lagrangian coordinates. Indeed, if rewriting (1.1) in Lagrangian
coordinates, then one just has to consider the evolution equation for the velocity which is of
parabolic type. Therefore, not only the loss of derivative may be avoided, but also the solution
may be obtained (either locally for large data, or globally for small data) by means of the
contraction mapping argument in Banach spaces.

Let us now come to the main results of the paper.

Theorem 1.1. Assume that Ω is a smooth bounded domain of Rd (d ≥ 2) and let p be in

(d − 1, 2d). Then, for all initial densities ρ0 ∈ B
d/p
p,1 (Ω), positive and bounded away from zero,

and all u0 ∈ B
d/p−1
p,1 (Ω;Rd), System (1.1) admits a unique solution (ρ, u) on some nontrivial time

interval [0, T ], such that (ρ, u) ∈ Cb([0, T ]; B
d/p
p,1 (Ω)× B

d/p−1
p,1 (Ω;Rd)) and

(ρ, u) ∈W1,1(R+; B
d/p
p,1 (Ω)× B

d/p−1
p,1 (Ω;Rd)) ∩ L1(R+; B

d/p
p,1 (Ω)× B

d/p+1
p,1 (Ω;Rd))·

Furthermore, inf(t,x)∈[0,T ]×Ω ρ(t, x) > 0 and the average of ρ is time independent.

Proving a global result for small perturbations of a stable constant state is based on maximal
regularity estimates for the linearized compressible Navier–Stokes system (where µ′ = λ+ µ):

(1.3)


∂ta+ div u = f in R+ × Ω,

∂tu− µ∆u− µ′∇ div u+∇a = g in R+ × Ω,

u = 0 on R+ × ∂Ω,

(a, u)|t=0 = (a0, u0) in Ω.

The following statement extends the work by P.B. Mucha and W. Zaja̧czkowski [29] to the
endpoint case where the time Lebesgue exponent is equal to 1, and also provides exponential
decay for the solutions of the system.

Theorem 1.2. Take initial data (a0, u0) in Bs+1
p,1 (Ω) × Bs

p,1(Ω;Rd) and source terms (f, g) in

L1(R+; Bs+1
p,1 (Ω)× Bs

p,1(Ω;Rd)) with (s, p) satisfying

1 < p <∞ and max

(
1

p
,
d

p
− d

2

)
− 1 < s <

1

p
·

Assume also that the average of a0 and of f(t) (for a.e. t > 0) is zero. Then, System (1.3) has
a unique global solution (a, u) in the space

Esp := W1,1(R+; Bs+1
p,1 (Ω)× Bs

p,1(Ω;Rd)) ∩ L1(R+; Bs+1
p,1 (Ω)× Bs+2

p,1 (Ω;Rd))·(1.4)
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Additionally, there exist two positive constants c and C depending only on p, Ω, µ, and µ′ such
that if ect(f, g) ∈ L1(R+; Bs+1

p,1 (Ω)× Bs
p,1(Ω;Rd)), then

(1.5) ‖ect(a, u)‖Esp ≤ C
(
‖(a0, u0)‖Bs+1

p,1 ×Bsp,1
+ ‖ect(f, g)‖L1(R+;Bs+1

p,1 ×Bsp,1)

)
·

After recasting System (1.1) in Lagrangian coordinates, combining the above result with
nonlinear estimates allows to get the following global well-posedness result for critical regularity:

Theorem 1.3. Let Ω, p, and d be as in Theorem 1.1 and assume in addition that P ′(1) >

0. Let ρ0 ∈ B
d/p
p,1 (Ω) with average 1 and u0 ∈ B

d/p−1
p,1 (Ω;Rd). There exists a constant α =

α(λ, µ, p, d, P,Ω) > 0 such that if a0 := ρ0 − 1 and u0 satisfy

(1.6) ‖a0‖Bd/pp,1

+ ‖u0‖Bd/p−1
p,1

≤ α,

then System (1.1) admits a unique global solution (ρ, u) with (a, u) := (ρ− 1, u) in the maximal

regularity space Ep := E
d/p−1
p . In addition, there exists c > 0 depending only on the parameters

of the system, on p, and on Ω such that (a, u) fulfills:

‖ect(a, u)‖Ep ≤ C
(
‖a0‖Bd/pp,1

+ ‖u0‖Bd/p−1
p,1

)
·

The rest of the paper unfolds as follows. The next two sections are dedicated to the “linear
study” namely proving maximal regularity results first for the Lamé operator, and next for the
linearized compressible Navier–Stokes system. In Section 5, we prove our main global existence
result. In Section 6, we establish local existence results with no smallness condition on the
velocity, first in the easy case where the initial density is close to a constant and, next, assuming
only that the density is bounded away from zero. Some technical results are recalled/proved in
Appendix.

Acknowledgement. The authors have been partially supported by ANR-15-CE40-0011.

2. Some background from semigroup theory

We use this section to introduce the basic functional analytic notions and arguments that are
crucial for the theory that is developed afterwards.

Let X denote a Banach space over the complex field. For θ ∈ (0, π) define the sector Sθ in
the complex plane

Sθ := {z ∈ C \ {0} : |arg(z)| < θ},

and set S0 := (0,∞).

The standard definition of (bounded) analytic semigroups reads:

Definition 2.1. A family (T (z))z∈Sθ∪{0} ⊂ L(X), θ ∈ (0, π/2], is called an analytic semigroup
of angle θ if

(1) T (0) = Id and T (z + w) = T (z)T (w) for all z, w ∈ Sθ;
(2) the map z 7→ T (z) is analytic in Sθ;
(3) limSϑ3z→0 T (z)x = x for all x ∈ X and all 0 < ϑ < θ.

If in addition

(4) ‖T (z)‖L(X) is bounded in Sϑ for all 0 < ϑ < θ,

the family (T (z))z∈Sθ∪{0} is called a bounded analytic semigroup.
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To any analytic semigroup of some angle θ ∈ (0, π/2], one can attach a unique operator
A : D(A) ⊂ X → X defined by

D(A) :=
{
x ∈ X : lim

t→0

1

t
(T (t)x− x) exists

}
and, for x ∈ D(A),

Ax := − lim
t→0

1

t
(T (t)x− x).

The operator −A is called the generator of (T (z))z∈Sθ∪{0}.

Combining (1) and (2) one readily sees that the range of T (z) is contained in D(A) for any
z ∈ Sθ and that the function u : [0,∞) → X given by u(t) := T (t)x solves the abstract Cauchy
problem {

u′(t) +Au(t) = 0 t > 0,

u(0) = x.
(2.1)

From the PDE perspective, one can wonder if, whenever A : D(A) ⊂ X → X is a given linear
operator, −A is the generator of an analytic semigroup. At this point, we need to recall the
notion of a sectorial operator.

Definition 2.2. A linear operator B : D(B) ⊂ X → X is called sectorial of angle ω for some
ω ∈ [0, π) if its spectrum satisfies σ(B) ⊂ Sω and if for all ω < ω′ < π there exists C > 0 such
that

‖λ(λ−B)−1‖L(X) ≤ C (λ ∈ C \ Sω′).

The following characterization theorem for analytic semigroups is classical [15, Thm. II.4.6].

Theorem 2.3. Let A : D(A) ⊂ X → X be a linear operator. Then −A is the generator of an
analytic semigroup if and only if A is densely defined and there exists z ∈ C such that z + A is
sectorial of some angle ω ∈ [0, π/2). Moreover, −A generates a bounded analytic semigroup if
and only if additionally one can choose z = 0, i.e., A itself is sectorial of angle ω ∈ [0, π/2).

Remark 2.4. The condition that z + A is sectorial of angle ω ∈ [0, π/2) is equivalent to the
fact that there exists R > 0 such that σ(−A) ⊂ Sω ∪B(0, R) and such that

‖λ(λ+A)−1‖L(X) ≤ C (λ ∈ C \ [Sω′ ∪B(0, R)]).

Remark 2.5. If −A generates a bounded analytic semigroup and if 0 ∈ ρ(A), then the corre-
sponding semigroup is exponentially decaying. Indeed, as A is sectorial of angle ω ∈ [0, π/2) and
as the resolvent set is open, one finds that

inf
λ∈σ(A)

Re(λ) > 0.

Thus, there exists ε > 0 and ω′ ∈ [0, π/2) such that A− ε is sectorial of angle ω′ which implies
that the semigroup generated by ε− A is bounded. This in turn implies the exponential decay
of the semigroup generated by −A.

To solve nonlinear equations, it is helpful to consider (2.1) for a homogeneous initial value but
for an inhomogeneous right-hand side of the first equation, i.e.,{

u′(t) +Au(t) = f(t) t ∈ (0, T ),

u(0) = 0,
(2.2)
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where 0 < T ≤ ∞ and f ∈ Lq(0, T ;X), 1 ≤ q ≤ ∞. As recalled in the introduction, a densely
defined operator A : D(A) ⊂ X → X is said to have maximal Lq-regularity if there exists a
constant C > 0 such that for all f ∈ Lq(0, T ;X), System (2.2) has a unique solution u that
satisfies u(t) ∈ D(A) for almost all t ∈ (0, T ), is almost everywhere differentiable and such that

‖u′, Au‖Lq(0,T ;X) ≤ C‖f‖Lq(0,T ;X).

It is classical, see, e.g., Dore [14, Cor. 4.4], that the maximal Lq-regularity of A implies that
−A generates an analytic semigroup. Characterizing when a given operator admits maximal Lq-
regularity is often a difficult issue, which involves questions on the geometry of Banach spaces
and operator-valued multiplier theorems, see [13, 23]. However, if one is willing to change the
underlying Banach space into a real interpolation space between X and D(A), then the ques-
tion of maximal Lq-regularity simplifies tremendously. It is a classical result of Da Prato and
Grisvard [12], that is described below.

To state the result, we need to introduce the definition of a part of an operator onto another
space.

Definition 2.6. Let X and Y be Banach spaces and C : D(C) ⊂ X → X be a linear operator.
The part of C in Y is the operator given by

D(C) := {y ∈ D(C) ∩ Y : Cy ∈ Y }, Cy := Cy.

Let in the following B denote the time derivative operator on (0, T ), with 0 < T ≤ ∞, i.e.,

B : {u ∈W1,q((0, T );X) : u(0) = 0} ⊂ Lq(0, T ;X)→ Lq(0, T ;X), u 7→ u′.

It is well-known, see, e.g., [19, Sec. 8.4-8.6], that B is sectorial of angle π/2.
Furthermore, let A be a densely defined and sectorial operator of angle ω ∈ [0, π/2), i.e., −A

is the generator of a bounded analytic semigroup. We lift the operator A to the time-dependent
space by defining

A↑ : D(A↑) := Lq(0, T ;D(A)) ⊂ Lq(0, T ;X)→ Lq(0, T ;X), [A↑u](t) := Au(t).

As the operator A does not explicitly depend on time, the resolvents of A↑ and B commute, i.e.,
it holds

(λ−A↑)−1(µ−B)−1 = (µ−B)−1(λ−A↑)−1 (λ ∈ ρ(A), µ ∈ ρ(B)).

In this situation, the theorem of Da Prato and Grisvard may be formulated as follows, see [12,
Thm. 3.11, Lem. 3.5]:

Theorem 2.7. Let θ ∈ (0, 1) and 1 ≤ q ≤ ∞. With the notation above, the part of the operator

C := A↑ +B with domain D(C) := D(A↑) ∩ D(B)

in the real interpolation space(
Lq(0, T ;X),D(A↑)

)
θ,q

= Lq(0, T ; (X,D(A))θ,q)

is sectorial of angle π/2. Furthermore, there exists M > 0 such that for all λ > 0 and y ∈
Lq(0, T ; (X,D(A))θ,q) it holds that A↑(λ+A↑ +B)−1y ∈ Lq(0, T ; (X,D(A))θ,q) and B(λ+A↑ +
B)−1y ∈ Lq(0, T ; (X,D(A))θ,q) and that

‖A↑(λ+A↑ +B)−1y‖Lq(0,T ;(X,D(A))θ,q) + ‖B(λ+A↑ +B)−1y‖Lq(0,T ;(X,D(A))θ,q)

≤M‖y‖Lq(0,T ;(X,D(A))θ,q).
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The application of this theorem to the situation of maximal regularity is as follows. By
construction, the solution operator to (2.2) is given by

(A↑ +B)−1,

so that the question of whether A has maximal Lq-regularity is about whether A↑+B is invertible
and whether

A↑(A↑ +B)−1 and B(A↑ +B)−1

are bounded. We present how to derive these properties by means of the theorem of Da Prato
and Grisvard, for operators A that are additionally invertible. Notice that the invertibility of
A implies the invertibility of A↑. By the argument in Remark 2.5, there exists ε > 0 such that
A↑ − ε is sectorial of angle less than π/2 as well. Applying Theorem 2.7 to C := (A↑ − ε) + B
shows that there exists K > 0 such that

‖B(A↑ +B)−1‖L(Lq(0,T ;(X,D(A))θ,q)) = ‖B(ε+ C)−1‖L(Lq(0,T ;(X,D(A))θ,q)) ≤ K

and

‖A↑(A↑ +B)−1‖L(Lq(0,T ;(X,D(A))θ,q)) + ‖(A↑ +B)−1‖L(Lq(0,T ;(X,D(A))θ,q))

≤ ‖(A↑ − ε)(ε+ C)−1‖L(Lq(0,T ;(X,D(A))θ,q)) + (1 + ε)‖(ε+ C)−1‖L(Lq(0,T ;(X,D(A))θ,q))

≤ K.

This shows that there exists a constant K > 0 such that whenever f ∈ Lq(0, T ; (X,D(A))θ,q),
the equation (2.2) has a unique solution u satisfying

‖u, u′, Au‖Lq(0,T ;(X,D(A))θ,q) ≤ K‖f‖Lq(0,T ;(X,D(A))θ,q).(2.3)

In later sections, we will in particular be interested in the case q = 1.

We conclude this section, by shortly discussing how to extend this theory to include inho-
mogeneous initial values in (2.2) if q = 1. We have to investigate under which conditions on
x the function t 7→ AT (t)x lies in L1(0, T ; (X,D(A))θ,1). Now, we use that the real interpola-
tion space (X,D(A))θ,q can be characterized by means of the semigroup (T (t))t≥0. Indeed, e.g.,
by [19, Thm. 6.2.9] it holds (in the special case 1 ≤ q <∞)(

X,D(A)
)
θ,q

=
{
x ∈ X : [x]qθ,q :=

ˆ ∞
0
‖t1−θAT (t)x‖qX

dt

t
<∞

}
=: DA(θ, q)(2.4)

and the norms

‖x‖(X,D(A))θ,q and ‖x‖X + [x]θ,q =: ‖x‖DA(θ,q)

are equivalent. A similar result holds for q = ∞ with the obvious changes in the definition of
[x]θ,q. In our case q = 1, we directly find by the exponential decay and the analyticity of the
semigroup (i.e., we use that ‖eεssAT (s)‖L(X) is uniformly bounded with respect to s > 0 for
some ε > 0) that

ˆ T

0
‖AT (s)x‖X ds ≤

ˆ 1

0
sθ‖s1−θAT (s)x‖X

ds

s
+

ˆ ∞
1
‖sAT (s)x‖X

ds

s

≤
ˆ 1

0
‖s1−θAT (s)x‖X

ds

s
+M

ˆ ∞
1

e−εs ds ‖x‖X

≤M ′‖x‖DA(θ,1).
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Moreover, using the analyticity of the semigroup again, followed by occasional applications of
Fubini’s theorem and the linear substitution rule yields for some constant M > 0 thatˆ T

0

ˆ ∞
0
‖t1−θAT (t)AT (s)x‖X

dt

t
ds ≤M

ˆ ∞
0

ˆ ∞
0

t1−θ

s+ t
‖AT (1

2(s+ t))x‖X
dt

t
ds

= M

ˆ ∞
0

ˆ ∞
t

t1−θ

τ
‖AT (1

2τ)x‖X dτ
dt

t

= M

ˆ ∞
0

ˆ τ

0
t−θ dt ‖AT (1

2τ)x‖X
dτ

τ

=
M

1− θ

ˆ ∞
0
‖τ1−θAT (1

2τ)x‖X
dτ

τ

=
M21−θ

1− θ
‖x‖DA(θ,1).

Thus, for all x ∈ (X,D(A))θ,1, we find that

‖s 7→ AT (s)x‖L1(0,T ;DA(θ,1)) ≤M‖x‖DA(θ,1).

We formulate the results of this discussion as a corollary of the theorem of Da Prato and
Grisvard.

Corollary 2.8. Let X be a Banach space and let −A be the generator of a bounded analytic semi-
group on X with 0 ∈ ρ(A). Let θ ∈ (0, 1) and 0 < T ≤ ∞. Then for all f ∈ L1(0, T ; (X,D(A))θ,1)
and for all x ∈ (X,D(A))θ,1 the equation{

u′(t) +Au(t) = f(t) t ∈ (0, T ),

u(0) = x

has a unique solution in the space

W1,1((0, T ); (X,D(A))θ,1) ∩ L1(0, T ;D(A))

satisfying

‖u, u′, Au‖L1(0,T ;(X,D(A))θ,1) ≤ K
(
‖x‖(X,D(A))θ,1 + ‖f‖L1(0,T ;(X,D(A))θ,1)

)
.

Here, A denotes the part of A on (X,D(A))θ,1.

3. Study of the Lamé operator

This section is dedicated to the study of the linearization of the velocity equation of Sys-
tem (1.1), when neglecting the pressure. We shall first establish various regularity results for
the Lamé operator L given by

(3.1) L = −µ∆− z∇ div,

then look at the properties of the associated semigroup, with particular attention to the maximal
Lq-regularity on Besov spaces Bs

p,q(Ω;Cd) up to the limit value q = 1. This is done by employing

Amann’s technique of inter- and extrapolation spaces. Throughout the section, Ω ⊂ Rd, d ≥ 1,
is a smooth bounded domain. The Lebesgue exponent p is supposed to satisfy 1 < p < ∞, the
microlocal parameter q satisfies 1 ≤ q ≤ ∞, and we assume that the real number s is such that

−1 +
1

p
< s <

1

p
·(3.2)

Recall that (3.2) ensures that elements of Bs
p,q(Ω;Cd) have no trace at the boundary.
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As a start, let us record the standard L2-theory of the Lamé operator, following the exposition
in [27]. Let Du denote the Jacobian matrix of a vector field u, and let ∇u denote its transpose.
Define the curl of u by

curlu :=
1√
2

(∇u−Du).

Let µ > 0 and z ∈ C and define the sesquilinear form

a :


W1,2

0 (Ω;Cd)×W1,2
0 (Ω;Cd) −→ C,

(u, v) 7−→ µ

ˆ
Ω

curlu · curl v dx+ (µ+ z)

ˆ
Ω

div udiv v dx,
(3.3)

where the matrix product is understood component-wise. As the complex parameter z is not
standard in usual considerations of the Lamé system, we give more details in the subsequent
discussion. Under the supplementary condition that µ + Re(z) > 0, the sesquilinear form a is
bounded and coercive, cf. [27, Lem. 3.1]. Then, define the Lamé operator on L2 by

D(L2) :=
{
u ∈W1,2

0 (Ω;Cd) : ∃f ∈ L2(Ω;Cd) s.t. a(u, v) = 〈f, v〉L2 for all v ∈W1,2
0 (Ω;Cd)

}
L2u := f (u ∈ D(L2)).

With this definition, L2 embodies (3.1) in the sense of distributions. Notice that

C∞c (Ω;Cd) ⊂ D(L2) ⊂W1,2
0 (Ω;Cd),

hence L2 is densely defined. Moreover, L2 is closed and, according to the Lax-Milgram theorem,
invertible.

Following [24, Thm. 4.16 and Thm. 4.18] and using a covering argument, it is easy to obtain
the following regularity result for L2 (with the convention W0,2(Ω;Cd) = L2(Ω;Cd)).
Proposition 3.1. Let µ > 0 and z ∈ C with µ + Re(z) > 0. Let k ∈ N0 and Ω be a bounded
domain with smooth boundary. Then, there exists a constant C > 0 such that for all f ∈
Wk,2(Ω;Cd) and u given by u = L−1

2 f, it holds

‖u‖Wk+2,2(Ω;Cd) ≤ C‖f‖Wk,2(Ω;Cd).

Having some L2-mapping properties of the Lamé operator at our disposal, we focus now on
the Lp-theory. If 2 < p <∞, then we define the Lamé operator on Lp(Ω;Cd), denoted by Lp, to

be the part of L2 in Lp(Ω;Cd). Note that Lp is a closed operator and that C∞c (Ω;Cd) is included
in D(Lp).

For 1 < p < 2, define Lp to be the closure of L2 in Lp(Ω;Cd) whenever L2 is closable in this

space. That L2 is indeed closable in Lp(Ω;Cd) is deduced by the following argument: Since L2 is
closed and densely defined, its L2-adjoint L∗2 is well-defined, densely defined, and closed. Clearly,
this operator is the realization of (3.1) with z replaced by its complex conjugate z. Now, the
fact that L2 is closable in Lp(Ω;Cd) stems from the following lemma1 that can be proved by
basic annihilator relations and is partly presented in [35, Lem. 2.8].

1We use the following notation and convention: the antidual space of a Banach space X (i.e., the space of all
antilinear mappings X → C) is denoted by X ′. The adjoint of a densely defined operator A is denoted by A′.
In the particular situation where X = Lp(Ω;Cd) and A : D(A) ⊂ Lp(Ω;Cd) → Lp(Ω;Cd) is densely defined, the
adjoint operator A′ is an operator A′ : D(A′) ⊂ Lp(Ω;Cd)′ → Lp(Ω;Cd)′. The corresponding adjoint operator on

Lp
′
(Ω;Cd) (where p′ stands for the Hölder conjugate exponent of p) is denoted by A∗. Thus, if Φ denotes the

canonical isomorphism Lp
′
(Ω;Cd)→ Lp

′
(Ω;Cd)′, then A∗ is given by

A∗ := Φ−1A′Φ with domain D(A∗) := {u ∈ Lp
′
(Ω;Cd) : Φu ∈ D(A′)}.(3.4)
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Lemma 3.2. Let 1 < p < 2. Then D(L2) is dense in Lp(Ω;Cd). Moreover, L2 is closable in

Lp(Ω;Cd) if and only if the part (L∗2)p′ of L∗2 in Lp
′
(Ω;Cd) is densely defined. In this case, it

holds L∗p = (L∗2)p′ and (L∗2)∗p′ = Lp.

Having the Lp-realization of L2 at hand, we turn to the regularity theory of Lp for 1 < p <∞.
The counterpart of Proposition 3.1 (that is proved in Appendix) reads:

Proposition 3.3. Let µ > 0 and z ∈ C with µ + Re(z) > 0. Let k ∈ N0 and Ω be a bounded
domain with smooth boundary. For all 1 < p <∞ it holds 0 ∈ ρ(Lp) and D(Lkp) is continuously

embedded into W2k,p(Ω;Cd). Moreover, in the case 2 ≤ p < ∞ there exists a constant C > 0
such that for all f ∈Wk,p(Ω;Cd) and u given by u = L−1

p f it holds

‖u‖Wk+2,p(Ω;Cd) ≤ C‖f‖Wk,p(Ω;Cd).(3.5)

In the case 1 < p < 2 there exists a constant C > 0 such that for all f ∈ D(Lkp) it holds

‖u‖W2k+2,p(Ω;Cd) ≤ C‖f‖W2k,p(Ω;Cd).(3.6)

In particular, for any 1 < p <∞, we have

(3.7) D(Lp) = W2,p(Ω;Cd) ∩W1,p
0 (Ω;Cd).

We aim at proving that −Lp generates a bounded analytic semigroup on a wide family of Besov
spaces. Our starting point is the following proposition, which is a consequence of [27, Thm. 1.3]
and [8, App. A].

Proposition 3.4. Let µ, µ′ ∈ R with µ > 0 and µ + µ′ > 0, 1 < p < ∞, and Lp be the Lamé
operator with coefficients µ and z = µ′. Then, −Lp generates a bounded analytic semigroup on

Lp(Ω;Cd).

We want to prove a similar result but at the scale of a ‘negative’ regularity space that may
be regarded as W−2,p. To proceed, we need to introduce the following canonical isomorphism
(where the dependency on r is omitted for notational simplicity):

(3.8) Φ : Lr
′
(Ω;Cd)→ Lr(Ω;Cd)′, Φf :=

[
g 7→

ˆ
Ω
f · g dx

]
·

Recall that (L∗2)p′ is the Lamé operator with z replaced by z on Lp
′
(Ω;Cd). Since D((L∗2)p′) is a

closed subspace of W2,p′(Ω;Cd), the domain D((L∗2)p′) is a Banach space when endowed with the

W2,p′-norm and (L∗2)p′ ∈ Isom(D((L∗2)p′),L
p′(Ω;Cd)). Denote the dual operator from Lp

′
(Ω;Cd)′

onto D((L∗2)p′)
′ by a ◦, i.e.,

L̃p := (L∗2)◦p′ ∈ Isom(Lp
′
(Ω;Cd)′,D((L∗2)p′)

′)

and define the extrapolation Lp of Lp on the ground space X−1
p := D((L∗2)p′)

′ to be

(3.9) Lp : D(Lp) ⊂ X−1
p → X−1

p , Lpu := L̃pu with D(Lp) := Lp
′
(Ω;Cd)′.

Observe that L̃p is defined as the adjoint of the bounded operator (L∗2)p′ : D((L∗2)p′)→ Lp
′
(Ω;Cd).

This should be distinguished from the adjoint operator (L∗2)′p′ : D((L∗2)′p′) ⊂ Lp
′
(Ω;Cd)′ →

Lp
′
(Ω;Cd)′, where (L∗2)p′ is regarded as a closed and densely defined operator on Lp

′
(Ω;Cd). The

links between all these definitions are clarified in Appendix (see Lemma A.3).
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The previous lemma allows us to define an extrapolation Lp of the operator Lp to the larger
ground space X−1

p := D((L∗2)p′)
′, which can be regarded as a W−2,p-space. In particular,

Lemma A.3 (3) allows us to write2

Lp = TLpT
−1,

where T := L̃pΦ is an isomorphism from Lp(Ω;Cd) onto X−1
p . This will enable us to transport

all kinds of functional analytic properties from Lp to Lp. Finally, Lemma A.3 (5) allows us to

recover Lp (modulo the canonical isomorphism Φ) from Lp as its part on Lp
′
(Ω;Cd)′, so that

Lp can indeed be regarded as an extrapolation of Lp. This eventually leads to the following
proposition.

Proposition 3.5. Let µ, µ′ ∈ R with µ > 0 and µ + µ′ > 0, 1 < p < ∞, and Lp be the
Lamé operator with coefficients µ and z = µ′ on X−1

p . Then, −Lp generates a bounded analytic

semigroup on X−1
p .

Having a bounded analytic semigroup on various function spaces at our disposal, we want to
deduce the maximal Lq-regularity of the Lamé operator on suitable intermediate spaces. For
this purpose, we briefly introduce the setting of Da Prato and Grisvard established in [12].

For 1 < p <∞, define the spaces

Xk
p := ΦD(Lkp) (k ∈ N0).

Endow Xk
p with the norm

‖u‖Xk
p

:= ‖LkpΦ−1u‖Lp(Ω;Cd) (u ∈ Xk
p ).

Observe that, by construction, all spaces Xk
p (including X−1

p ) are complete.

For −1 < s < 1, 0 < t < 2, and 1 ≤ q ≤ ∞ define the following intermediate spaces via real
interpolation:

Xs
p,q :=

(
X−1
p , X1

p

)
(s+1)/2,q

and Y t
p,q :=

(
X0
p , X

2
p

)
t/2,q

.

Note that for all of the parameters above, the following continuous inclusions hold

Xs
p,q ↪→ X−1

p and Y t
p,q ↪→ X0

p = D(Lp).(3.10)

For some combinations of the parameters, the spaces Xs
p,q and Y t

p,q are calculated as follows. To
formulate the proposition, introduce, for 1 < p <∞, 1 ≤ q ≤ ∞, and s ∈ R, the space

Bs
p,q,D(Ω;Cd) :=

{
{f ∈ Bs

p,q(Ω;Cd) : f |∂Ω = 0}, if s > 1/p

Bs
p,q(Ω;Cd), if s < 1/p.

Here, elements in the Besov space Bs
p,q(Ω;Cd) are defined to be restrictions to Ω of elements in

Bs
p,q(Rd;Cd) and the norm of Bs

p,q(Ω;Cd) is given by the corresponding quotient norm. Further-
more, if Ω is smooth enough, e.g., Lipschitz regular, then the following interpolation identity
holds (see more details in [37, Thm. 2.13]):(

Bs0
p,q0(Ω;Cd),Bs1

p,q1(Ω;Cd)
)
θ,q

= Bs
p,q(Ω;Cd),

where

θ ∈ (0, 1), s0 6= s1 ∈ R, s = (1− θ)s0 + θs1, p ∈ (1,∞), and q0, q1, q ∈ [1,∞].

2We endow the product of two operators A and B with its maximal domain of definition, i.e., D(AB) := {u ∈
D(B) : Bu ∈ D(A)}.
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Proposition 3.6. Let 1 < p < ∞ and 1 ≤ q ≤ ∞. Then, for −1/p′ < 2s < 2 with 2s 6= 1/p it
holds up to the identification by the isomorphism Φ that

Xs
p,q = B2s

p,q,D(Ω;Cd).

Furthermore, for 0 < s < 1 with 2s 6= 1/p it holds

Y s
p,q = B2s

p,q,D(Ω;Cd).

In the case 2s = 1/p, it holds that

Xs
p,q ↪→ B2s

p,q(Ω;Cd) and Y s
p,q ↪→ B2s

p,q(Ω;Cd).

Proof. First, we consider the spaces Y s
p,q. Notice that by [19, Prop. 6.6.7] and the sectoriality of

Lp on Lp(Ω;Cd) it holds for 0 < s < 1

Y s
p,q =

(
X0
p , X

2
p

)
s/2,q

=
(
X0
p , X

1
p

)
s,q
.

Since, by definition of the spaces, Φ is an isomorphism

Φ : Lp(Ω;Cd)→ X0
p and Φ : D(Lp)→ X1

p ,

it holds by virtue of [2, Thm. 5.2] whenever 2s 6= 1/p with equivalent norms that

Y s
p,q =

(
X0
p , X

1
p

)
s,q

= Φ
(
Lp(Ω;Cd),D(Lp)

)
s,q

= ΦB2s
p,q,D(Ω;Cd).

If 2s = 1/p, then D(Lp) ⊂W2,p(Ω;Cd) implies that

Y
1
2p
p,q =

(
X0
p , X

1
p

)
1
2p
,q
⊂ Φ

(
Lp(Ω;Cd),W2,p(Ω;Cd)

)
1
2p
,q

= ΦB
1
p
p,q(Ω;Cd).

We turn to study the spaces Xs
p,q. As we already calculated (X0

p , X
1
p )θ,q for θ ∈ (0, 1), we

concentrate first on (X−1
p , X0

p )θ,q and the case 1 < q <∞. By the definitions of the spaces and
the duality theorem [36, Sec. 1.11.2], we find(

X−1
p , X0

p

)
θ,q

=
(
Lp
′
(Ω;Cd),D((L∗2)p′)

)′
1−θ,q′ = B

2(1−θ)
p′,q′,D(Ω;Cd)′ = B

−2(1−θ)
p,q,D (Ω;Cd).

Notice that the following interpolation identities hold true, see [2, Thm. 5.2],(
X0
p , X

1
p

)
θ,q

= ΦB2θ
p,q(Ω;Cd) (2θ < 1/p)

and (
Lp
′
(Ω;Cd),D((L∗2)p′)

)
1−θ,q′ = B

2(1−θ)
p′,q′ (Ω;Cd) (2(1− θ) < 1/p′).

In particular, [36, Sec. 4.8.2] implies that

B
2(1−θ)
p′,q′ (Ω;Cd)′ = B−2(1−θ)

p,q (Ω;Cd) (2(1− θ) < 1/p′).

Since {Bs
p,q(Ω;Cd)}−1/p′<s<1/p forms an interpolation family with respect to the real interpo-

lation method [36, Sec. 4.3.1], we find by [38] (see also [20]) and [2, Thm. 5.2] modulo an
identification with the canonical isomorphism Φ that

Xs
p,q = B2s

p,q,D(Ω;Cd) (−1/p′ < 2s < 2 with 2s 6= 1/p).

The condition q = 1 or q =∞ can now be added by the reiteration theorem. �
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Having the scale Xs
p,q of intermediate spaces at hand, we realize the Lamé operator Lp,q,s on

Xs
p,q as the part of Lp on this space, namely

D(Lp,q,s) := {u ∈ D(Lp) ∩Xs
p,q : Lpu ∈ Xs

p,q}.

In Lemma A.4, it is shown that, for all 1 < p < ∞, 1 ≤ q ≤ ∞, and −1 < s < 1 it holds with
equivalent norms

(3.11) D(Lp,q,s) = Y s+1
p,q .

In general, if an operator generates a bounded analytic semigroup, its part onto a subspace
need not generate a semigroup. However, as we already know that the domain of Lp,q,s is Y s+1

p,q ,
this delivers right mapping properties of the resolvent of Lp,q,s.

Proposition 3.7. For all 1 < p < ∞, 1 ≤ q ≤ ∞, and −1 < s < 1 the operator −Lp,q,s with
coefficients µ and z = µ′ generates a bounded analytic semigroup on Xs

p,q with 0 ∈ ρ(Lp).

Proof. According to Lemma A.3, T := L̃pΦ is an isomorphism between Lp(Ω;Cd) and X−1
p , and

Lp = TLpT
−1. Hence ρ(Lp) = ρ(Lp). Furthermore, because −Lp generates a bounded analytic

semigroup, cf. Proposition 3.4, there exists some θ ∈ (π/2, π) and C > 0 such that

Sθ ⊂ ρ(−Lp) and ‖λΦ(λ+ Lp)
−1Φ−1‖L(X0

p) ≤ C for all λ ∈ Sθ.

Notice that Lemma A.3 (5) implies that (λ+Lp)−1|X0
p

= Φ(λ+Lp)
−1Φ−1. Thus, since T : X0

p →
X−1
p is an isomorphism, it holds

‖λ(λ+ Lp)−1‖L(X−1
p ) = ‖λTΦ−1(Φ(λ+ Lp)

−1Φ−1)ΦT−1‖L(X−1
p )

≤ C‖λΦ(λ+ Lp)
−1Φ−1‖L(X0

p) ≤ C.

Then, by real interpolation we derive that for all 1 < p <∞, 1 ≤ q ≤ ∞, and −1 < s < 0 there
exists C > 0 such that for all λ ∈ Sθ it holds

‖λ(λ+ Lp)−1|Xs
p,q
‖L(Xs

p,q)
≤ C.(3.12)

Finally, we prove that ρ(Lp) ⊂ ρ(Lp,q,s) and that (λ + Lp)−1|Xs
p,q

= (λ + Lp,q,s)
−1 holds for

λ ∈ ρ(−Lp).
Let λ ∈ ρ(−Lp). Clearly λ + Lp,q,s inherits the injectivity of λ + Lp. For the surjectivity,

let f ∈ Xs
p,q. Since λ ∈ ρ(−Lp), there exists u ∈ D(Lp) = X0

p such that (λ + Lp)u = f. Since

X0
p ↪→ Xs

p,q, the definition of the part of an operator now implies that u ∈ D(Lp,q,s) and that
(λ + Lp,q,s)u = f. Consequently, this together with (3.12) implies that −Lp,q,s generates a
bounded analytic semigroup on Xs

p,q.
In the case 0 < s < 1 this follows immediately by the characterization in (2.4) and the fact

that −Lp generates a bounded analytic semigroup on Lp(Ω;Cd), see Proposition 3.4.
The final case s = 0 follows by interpolation. �

Putting together all the previous results, it is now possible to state maximal Lq-regularity for
the Lamé operator in Besov spaces, including the case q = 1.

Theorem 3.8. Let µ, µ′ ∈ R with µ > 0 and µ + µ′ > 0, 1 < p < ∞, 1 ≤ q ≤ ∞, −1 < s < 1,
and Lp,q,s be the Lamé operator with coefficients µ and z = µ′ on Xs

p,q. Then, Lp,q,s has maximal

Lq-regularity on the time interval R+. In particular, if L↑p,q,s denotes the lifted operator to
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Lq(R+;Xs
p,q) (as in Section 2), then there exists a constant C > 0 such that the sum operator

d
dt + L↑p,q,s satisfies for all K > 0 and for all f ∈ Lq(R+;Xs

p,q)

‖∇2( d
dt +K + L↑p,q,s)

−1f‖
Lq(R+;B2s

p,q(Ω;Cd3 ))
≤ C‖f‖Lq(R+;Xs

p,q)
.(3.13)

Proof. Fix 1 < p <∞ and 1 ≤ q ≤ ∞. By virtue of Proposition 3.7 we know for all −1 < s0 < 1
that

−Lp,q,s0 generates a bounded analytic semigroup on Xs0
p,q with 0 ∈ ρ(Lp,q,s0).

Now, for s ∈ (s0,min{s0 + 1, 1}) the discussion below Theorem 2.7 that leads to (2.3), reveals
that the part of Lp,q,s0 in Xs

p,q has maximal Lq-regularity on the time interval R+. Since the
part of Lp,q,s0 in Xs

p,q is the operator Lp,q,s by Lemma A.4, this readily proves the first part of
the theorem.

The estimate (3.13) follows by the boundedness of ∇2L−1
p,q,s from Xs

p,q into B2s
p,q(Ω;C3) which

is established by combining Lemma A.4 with Proposition 3.6. The estimate is then concluded
by an application Theorem 2.7. �

Corollary 3.9. Let 0 < T ≤ ∞. Let 1 < p < ∞ and −1 + 1/p < s < 1/p. For any u0 in
Bs
p,1(Ω;Rd) and f ∈ L1(0, T ; Bs

p,1(Ω;Rd)), system
∂tu− µ∆u− µ′∇ div u = f in (0, T )× Ω,

u|∂Ω = 0 on (0, T )× ∂Ω,

u|t=0 = u0 in (0, T )× Ω,

((L))

admits a unique solution u ∈ Cb([0, T ]; Bs
p,1(Ω;Rd)) with

u ∈W1,1(0, T ; Bs
p,1(Ω;Rd)) ∩ L1(0, T ; Bs+2

p,1 (Ω;Rd))

and there exists a constant C > 0 depending only on p, s, µ′/µ, and Ω such that

(3.14) sup
t∈[0,T ]

‖u(t)‖Bsp,1 +

ˆ T

0

(
‖∂tu‖Bsp,1 + µ‖u‖Bs+2

p,1

)
dt ≤ C

(
‖u0‖Bsp,1 +

ˆ T

0
‖f‖Bsp,1 dt

)
·

Furthermore, C may be chosen uniformly with respect to µ′/µ whenever µ∗ ≤ µ′/µ ≤ µ∗ for
some constants µ∗ and µ∗ such that −1 < µ∗ < µ∗.

Proof. Performing the time rescaling

u(t, x) = ũ(µt, x) and f(t, x) = µf̃(µt, x)

reduces the proof to the case µ = 1. So we assume µ = 1 in what follows.

Now, if u0 = 0, then the result is a mere reformulation of Theorem 3.8 with q = 1. Indeed,
from it, we get the maximal L1-regularity for Lp,1,s, then using (3.11) and Proposition 3.6 gives
the desired bound for ‖u‖Bs+2

p,1
. The initial value u0 can be added by virtue of Corollary 2.8, and

the bound on ‖u(t)‖Bsp,1 follows from the bound on ∂tu and the fundamental theorem of calculus.

Let us finally prove that if µ = 1 (with no loss of generality) and −1 < µ∗ ≤ µ′ ≤ µ∗, then
the constant C in (3.14) may be chosen independently of µ′. Argue by contradiction, assuming
that there exists a sequence (µ′n)n∈N in [µ∗, µ

∗] and a sequence (u0,n, fn)n∈N such that

‖u0,n‖Bsp,1 +

ˆ ∞
0
‖fn‖Bsp,1dt = 1
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and the solution un of (L) with coefficients µ = 1 and µ′ = µ′n, and data (u0,n, fn) satisfies

(3.15)

ˆ ∞
0

(
‖∂tun‖Bsp,1 + ‖un‖Bs+2

p,1

)
dt ≥ n.

Up to subsequence, we have µ′n → µ̄′ ∈ [µ∗, µ
∗]. We observe that

∂tun −∆un − µ̄′∇ div un = fn + (µ′n − µ̄′)∇ div un.

Hence applying Inequality (3.14) with coefficients 1 and µ̄′, we get some constant C such thatˆ ∞
0

(
‖∂tun‖Bsp,1 +‖un‖Bs+2

p,1

)
dt ≤ C

(
‖u0,n‖Bsp,1 +

ˆ ∞
0

(
‖fn‖Bsp,1 + |µ′n − µ̄′|‖∇ div un‖Bsp,1

)
dt

)
·

Given the definition of the data, we deduce (changing C if need be) thatˆ ∞
0

(
‖∂tun‖Bsp,1 + ‖un‖Bs+2

p,1

)
dt ≤ C

(
1 + |µ′n − µ̄′|

ˆ ∞
0
‖un‖Bs+2

p,1
dt

)
·

For n large enough, the resulting inequality stands in contradiction with (3.15). �

4. The linearized compressible Navier–Stokes system

In this section, we are concerned with the full linearized compressible Navier–Stokes system, in
the case where the pressure function P satisfies P ′(1) > 0. We strive for a maximal Lq-regularity
result up to q = 1 on the whole time interval R+. The difficulty compared to the previous section
is that we have to take into consideration the coupling between the density equation which is of
hyperbolic type and the velocity equation which is of parabolic type.

As a first, let us observe that the following change of time scale and velocity:

(4.1) (ρ, u)(t, x) ; (ρ̃, cũ)(ct, x) with c :=
√
P ′(1)

reduces the study to the case P ′(1) = 1, so that the linearization of the compressible Navier–
Stokes system about (ρ, u) = (1, 0) coincides with (1.3).

Throughout this section, we assume that 1 < p <∞ and that −1/p′ < s < 1/p. If 2 ≤ p <∞,
then we let 1 ≤ q <∞ and if 1 < p < 2, then we assume additionally that3

s >
d

p
− d

2
− 1 or s ≥ d

p
− d

2
− 1 and 1 ≤ q ≤ 2.

Notice that these assumptions guarantee that functions in the space Bs
p,q(Ω;Cd) admit a well-

defined trace and, owing to the boundedness of Ω, that

Bs
p,q(Ω;Cd) ↪→W−1,2(Ω;Cd) and Bs+1

p,q (Ω) ↪→ L2(Ω).(4.2)

To define the second-order operator involved in (1.3) in the context of the spaces Bs
p,q(Ω;Cd),

we set

X sp,q := [Bs+1
p,q (Ω) ∩ Lp0(Ω)]× Bs

p,q(Ω;Cd)

D(Ap,q,s) := [Bs+1
p,q (Ω) ∩ Lp0(Ω)]× Bs+2

p,q,D(Ω;Cd),

where Lp0(Ω) denotes the space of Lp-functions which are average free.

3Hence we must have p > 2(d− 1)/(d + 2) owing to s < 1/p.
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Recall that Lp,q,s denotes the Lamé operator on Bs
p,q(Ω;Cd). Then, we put

Ap,q,s : D(Ap,q,s) ⊂ X sp,q → X sp,q,
(
a
u

)
7→
(

div u
Lp,q,su+∇a

)
·(4.3)

The rest of the section is devoted to proving the following result which implies Theorem 1.2.

Theorem 4.1. Let p, q, and s be chosen as above. Then −Ap,q,s generates an exponentially
stable analytic semigroup on X sp,q, and Ap,q,s has maximal Lq-regularity on the time interval R+.

Proof. The main steps are as follows. First, we show that for each 0 < T < ∞, the operator
Ap,q,s has maximal Lq-regularity on the interval (0, T ) (which, in light of [14, Thm. 4.3], implies
that operator −Ap,q,s generates an analytic semigroup on X sp,q). Next, we prove that 0 is in the
resolvent set of −Ap,q,s. In the third step – the core of the proof – we establish that the whole
right complex half-plane is in ρ(−Ap,q,s). By standard arguments, putting all those informations
together allows to conclude the proof (last step).

First step: local-in-time maximal regularity. We want to show that, for each 0 < T < ∞, the
operator Ap,q,s has maximal Lq-regularity on the interval (0, T ). To proceed, we introduce, for
some K > 0 that will be chosen later on, the auxiliary problem

(4.4)
(

d
dt +K

)(
ã
ũ

)
+Ap,q,s

(
ã
ũ

)
=

(
f̃
g̃

)
for (f̃ , g̃) ∈ Lq(R+;X sp,q), supplemented with null initial data.

Clearly, (ã, ũ) satisfies (4.4) if and only if (a, u)(t) := eKt(ã, ũ)(t) is a solution of

(4.5) d
dt

(
a
u

)
+Ap,q,s

(
a
u

)
=

(
f
g

)
with null initial data and (f, g)(t) := eKt(f̃ , g̃)(t).

The operator d
dt +K with domain W1,q

0 (R+; Bs
p,q(Ω;Cd)) is invertible on Lq(R+; Bs

p,q(Ω;Cd)),
with inverse given by (

d
dt +K

)−1
f̃ : t 7→

ˆ t

0
e−K(t−τ)f̃(τ) dτ.

Furthermore, it holds

(4.6)
∥∥( d

dt +K
)−1

f̃
∥∥

Lq(R+;Bsp,q(Ω;Cd))
≤ K−1‖f̃‖Lq(R+;Bsp,q(Ω;Cd)).

By abuse of notation, we will keep the same notation d
dt + K to designate the time derivative

plus K on Lq(R+; Bs+1
p,q (Ω) ∩ Lp0(Ω)). To solve the parabolic problem (4.4), define

ã := ( d
dt +K)−1(f̃ − div ũ),

where ũ is the unknown to be determined. Plugging this choice into the momentum equation
delivers (

d
dt +K

)
ũ+ Lp,q,sũ−

(
d
dt +K

)−1∇ div ũ = g̃ −
(

d
dt +K

)−1∇f̃ =: G.

Notice that G is a function in Lq(R+; Bs
p,q(Ω;Cd)). To compute ũ, introduce the new function

ṽ := ( d
dt +K + Lp,q,s)ũ. Then,(

d
dt +K

)
ũ+ Lp,q,sũ−

(
d
dt +K

)−1∇ div ũ = ṽ −
(

d
dt +K

)−1∇ div(( d
dt +K + Lp,q,s)

−1ṽ).
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Notice that by virtue of (4.6), Theorem 3.8 and Lemma A.4(
d
dt +K

)−1∇ div( d
dt +K + Lp,q,s)

−1 : Lq(R+; Bs
p,q(Ω;Cd))→ Lq(R+; Bs

p,q(Ω;Cd))

is bounded and that there exists C > 0 (independent of K) such that∥∥( d
dt +K

)−1∇ div( d
dt +K + Lp,q,s)

−1‖L(Lq(R+;Bsp,q(Ω;Cd))) ≤ CK−1.

Thus, if taking K > C, then one may conclude that the operator

Id−( d
dt +K)−1∇ div( d

dt +K + Lp,q,s)
−1 : Lq(R+; Bs

p,q(Ω;Cd))→ Lq(R+; Bs
p,q(Ω;Cd))

is invertible by a Neumann series argument. This allows to express ṽ in terms of G, and to
eventually get

ũ =
(

d
dt +K + Lp,q,s

)−1[
Id−

(
d
dt +K

)−1∇ div( d
dt +K + Lp,q,s)

−1
]−1

G.

Then, reverting to the original parabolic problem (4.5), one can conclude the maximal Lq-
regularity of Ap,q,s on each interval (0, T ), with constant CeKT .

Second step: showing that 0 ∈ ρ(Ap,q,s). To show surjectivity of Ap,q,s, we have to solve for all
(f, g) ∈ X sp,q, the system 

div u = f in Ω

Lp,q,su+∇a = g in Ω

u = 0 on ∂Ω.

(4.7)

Take v ∈ Bs+2
p,q,D(Ω;Cd) such that div v = f . The existence of v is guaranteed by interpolating

the higher-order estimates in [22, Prop. 2.10].

By considering u = v + w and h = g − Lp,q,sv, the problem is thus reduced to
divw = 0 in Ω

Lp,q,sw +∇a = h in Ω

w = 0 on ∂Ω.

Of course, since divw = 0, we have Lp,q,sw = −µ∆w, and we thus have only to consider the

Stokes system with homogeneous boundary condition and source term in Bs
p,q(Ω;Cd), which is

standard and can also be derived by interpolating the result in [22, Prop. 2.10]. Finally, injectivity
of Ap,q,s is an obvious consequence of the corresponding property for the Stokes system.

Third step: showing that C×+ := {z ∈ C \ {0} : Re(z) ≥ 0} is a subset of ρ(−Ap,q,s). Given
(f, g) ∈ X sp,q and λ ∈ C, the resolvent problem for the operator −Ap,q,s reads:

λa+ div u = f in Ω

λu+ Lp,q,su+∇a = g in Ω

u = 0 on ∂Ω.

(4.8)

As a first, we are going to show the result for a closed extension of Ap,q,s on L2
0(Ω)×W−1,2(Ω;Cd).

To this end, set

X := L2
0(Ω)×W−1,2(Ω;Cd) and D(A) := L2

0(Ω)×W1,2
0 (Ω;Cd).

With a denoting the sesquilinear form defined in (3.3), define A : D(A) ⊂ X → X by

A :

(
a
u

)
7→
(

div u

W1,2
0 (Ω;Cd) 3 v 7→ a(u, v)− 〈a,div v〉L2

)
·
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To investigate the resolvent problem for A in the case λ 6= 0, we eliminate a in the second
equation of (4.8), getting

a = λ−1(f − div u) and λu+ Lp,q,su− λ−1∇ div u = g − λ−1∇f.

To determine u, it is thus natural to consider the following sesquilinear form:

aλ :


W1,2

0 (Ω;Cd)×W1,2
0 (Ω;Cd) −→ C,

(u, v) 7−→ λ

ˆ
Ω
u · v dx+ µ

ˆ
Ω

curlu · curl v dx+ (µ+ µ′ + λ−1)

ˆ
Ω

div udiv v dx.

For all λ ∈ C×+, aλ is bounded on the Hilbert space W1,2
0 (Ω;Cd), and Reλ ≥ 0 implies that

Re

(
λ

ˆ
Ω
|u|2 dx+ λ−1

ˆ
Ω
|div u|2 dx

)
≥ 0 (u ∈W1,2

0 (Ω;Cd)).

Consequently, employing [27, Lem. 3.1] and
√

2|z+α| ≥ |z|+α whenever α ≥ 0 and z ∈ C with
Re(z) ≥ 0, we deduce that there exists c > 0 such that

Re(aλ(u, u)) ≥ c
{ˆ

Ω
|∇u|2 dx+ Re

(
λ

ˆ
Ω
|u|2 dx+ λ−1

ˆ
Ω
|div u|2 dx

)}
·(4.9)

Omitting the second term on the right-hand side of (4.9) and employing Poincaré’s inequality
yields a constant C > 0 such that

Re(aλ(u, u)) ≥ C‖u‖2
W1,2

0 (Ω;Cd)
(u ∈W1,2

0 (Ω;Cd), λ ∈ C×+).(4.10)

An application Lax–Milgram’s theorem then yields the following lemma.

Lemma 4.2. Let λ ∈ C×+. For every G ∈ W−1,2(Ω;Cd) there exists a unique u ∈ W1,2
0 (Ω;Cd)

such that

aλ(u, v) = 〈v,G〉
W1,2

0 ,W−1,2 (v ∈W1,2
0 (Ω;Cd)).

Furthermore, there exists C > 0 such that

‖u‖
W1,2

0 (Ω;Cd)
≤ C‖G‖W−1,2(Ω;Cd) (G ∈W−1,2(Ω;Cd)).

The previous lemma opens the way to prove that C×+ ⊂ ρ(−A). Indeed, let u ∈ W1,2
0 (Ω;Cd)

be the unique function provided by Lemma 4.2 that satisfies

aλ(u, v) = 〈v,G〉
W1,2

0 ,W−1,2 (v ∈W1,2
0 (Ω;Cd)), with G := g − λ−1∇f.(4.11)

Then, remembering a := λ−1(f − div u) ∈ L2
0(Ω), relation (4.11) turns into

〈v, g〉
W1,2

0 ,W−1,2 + λ−1

ˆ
Ω
f div v dx

= λ

ˆ
Ω
u · v dx+ µ

ˆ
Ω

curlu · curl v dx+ (µ+ µ′ + λ−1)

ˆ
Ω

div udiv v dx

= λ

ˆ
Ω
u · v dx+ µ

ˆ
Ω

curlu · curl v dx+ (µ+ µ′)

ˆ
Ω

div udiv v dx

+ λ−1

ˆ
Ω
f div v dx−

ˆ
Ω
a div v dx.

Consequently, λu− µ∆u− µ′∇ div u+∇a = g holds in the sense of distributions.
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To show that a and u are unique, let (f, g) ≡ (0, 0). Eliminating a by the relation λa = −div u

yields that u ∈W1,2
0 (Ω;Cd) must satisfy

aλ(u, u) = 0.

By virtue of (4.10) this implies that u = 0 what in turn implies that a = 0.

To conclude the proof of λ ∈ ρ(−A), it suffices to show the closedness of λ + A. For this
purpose, assume that (aj , uj) ∈ D(A) converges in X to some element (a, u) and that there
exists (f, g) ∈ X such that

λaj + div uj =: fj → f in L2
0(Ω) and

λuj − µ∆uj − µ′∇ div uj +∇aj =: gj → g in W−1,2(Ω;Cd).

Eliminating again aj in the second equation, testing the respective equations for uj and u` by
uj − u`, j, ` ∈ N, and taking differences of the resulting equations yields

|aλ(uj − u`, uj − u`)| ≤ ‖gj − g`‖W−1,2(Ω;Cd)‖uj − u`‖W1,2
0 (Ω;Cd)

+ |λ−1|‖fj − f`‖L2(Ω)‖div uj − div u`‖L2(Ω).

By virtue of (4.10) and Young’s inequality one obtains a constant C > 0 independent of j and
` such that

‖uj − u`‖W1,2
0 (Ω;Cd)

≤ C
(
‖gj − g`‖W−1,2(Ω;Cd) + ‖fj − f`‖L2(Ω)

)
·

Consequently, u ∈W1,2
0 (Ω;Cd). It follows that (a, u) ∈ D(A) and that (a, u) satisfies the equation

(λ+A)(a, u) = (f, g). This completes the proof of

(4.12) C×+ ⊂ ρ(−A).

It is now easy to show the injectivity of λ+Ap,q,s for λ ∈ C×+. Indeed, since X sp,q ⊂ X (cf. (4.2))
the operator A is an extension of Ap,q,s. In particular, it holds D(Ap,q,s) ⊂ D(A). Thus,
(λ+Ap,q,s)(a, u) = 0 implies that (λ+A)(a, u) = 0 and (4.12) in turn implies that (a, u) = 0.

Let us finally show that the range of λ+ Ap,q,s is X sp,q for all λ ∈ C×+. Thus, let (f, g) ∈ X sp,q.
Since X sp,q ⊂ X , (4.12) implies that there exists (a, u) ∈ D(A) with

(λ+A)

(
a
u

)
=

(
f
g

)
that is to say,

a = λ−1(f − div u) and − µ∆u− (λ−1 + µ′)∇ div u = g − λ−1∇f − λu =: h.(4.13)

Here, the second equation is fulfilled in W−1,2(Ω;Cd). To prove the surjectivity of λ + Ap,q,s it

suffices to show (a, u) ∈ D(Ap,q,s), which follows once we derive u ∈ Bs+2
p,q,D(Ω;Cd).

For this purpose, notice that by assumption it holds

µ+ Re(µ′ + λ−1) = µ+ µ′ + Re(λ)|λ|−2 > 0.

Thus, the operator

Lλ := −µ∆− (µ′ + λ−1)∇ div (λ ∈ C×+),

belongs to the class of operators that was studied in the previous section. Notice that u ∈
W1,2

0 (Ω;Cd) implies that u ∈ Bs
r0,q(Ω;Cd) for all 1 < r0 < ∞ with 1/r0 > (s − 1)/d + 1/2. If

1/p > (s− 1)/d+ 1/2, then one can take r0 = p so that the right-hand side h defined in (4.13)
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lies in Bs
p,q(Ω;Cd). Then, by Lemma A.4 and Proposition 3.6, it follows that u ∈ Bs+2

p,q,D(Ω;Cd),
and we are done.

If 1/p ≤ (s − 1)/d + 1/2, then any r0 that satisfies the inequality above satisfies 1/p < 1/r0.
Moreover, it is possible to choose r0 large enough such that s > −1 + 1/r0, so that Lemma A.4
together with Proposition 3.6 guarantees that u ∈ Bs+2

r0,q,D
(Ω;Cd). Then, by Sobolev embedding,

h lies in a better space, which in turn implies that u lies in a better space. Iterating this process
delivers eventually u ∈ Bs+2

p,q,D(Ω;Cd).

Last step: proving the global-in-time maximal regularity. Step 1 tells us that the operator Ap,q,s
has maximal Lq-regularity on finite time intervals, and generates an analytic semigroup. Hence,
by virtue of Remark 2.4 there exists ϑ ∈ (π/2, π) and λ0 > 0 such that [B(0, λ0)c ∩ Sϑ] ⊂
ρ(−Ap,q,s), and C > 0 such that for all λ ∈ [B(0, λ0)c ∩ Sϑ], it holds

‖λ(λ+Ap,q,s)
−1‖L(X sp,q) ≤ C.(4.14)

Moreover, by virtue of the second step and of the openness of the resolvent set, there exists ε > 0
such that B(0, ε) ⊂ ρ(−Ap,q,s). Since

Dε,λ := C×+ ∩ [B(0, λ0) \B(0, ε/2)]

is compact and since C×+ ⊂ ρ(−Ap,q,s), there exists C > 0 such that Inequality (4.14) holds on
Dε,λ. Now, because the resolvent set is open and the boundary of Dε,λ along the imaginary axis
is compact, one can eventually find some θ ∈ (π/2, ϑ) such that Sθ ⊂ ρ(−Ap,q,s) and there exists
C > 0 such that (4.14) holds for all λ ∈ Sθ, see also Figure 1. It follows that −Ap,q,s generates
a bounded analytic semigroup. Moreover, since 0 ∈ ρ(Ap,q,s) this semigroup is exponentially
stable. Finally, [14, Thm. 5.2] implies that Ap,q,s has maximal Lq-regularity on R+. �

For completeness, let us end the section proving Theorem 1.2. As a start, we apply Theo-
rem 4.1 with q = 1 and notice that the last step of the proof ensures the existence of some c > 0
depending only on µ, µ′ and Ω so that{

z ∈ C : Re(z) ≥ −c
}
⊂ ρ(−Ap,1,s).

This implies that Ap,1,s + c
2 has maximal L1-regularity. This yields Inequality (1.5). Of course,

Theorem 4.1 directly yields that (a, u) is in Ep.
To add non-zero initial data (a0, u0) ∈ X sp,1 in problem (1.3) we cannot simply employ Corol-

lary 2.8. The reason is that we would need to choose a ground space X tp,1 for some t slightly

smaller than s. Then we would need to calculate the real interpolation space (X tp,1,D(Ap,1,t))θ,1.

However, as the first components of X tp,1 and D(Ap,1,t) are the same, the result of the real inter-
polation in this first component will be the very same space and thus we will not reach initial
data in X sp,1.

To circumvent this problem, consider the caloric extension(
ac(t)
uc(t)

)
:=

(
et∆Na0

et∆Du0

)
·

Here, ∆N denotes the Neumann Laplacian on Bs+1
p,1 (Ω) ∩ Lp0(Ω) and ∆D denotes the Dirichlet

Laplacian on Bs
p,1(Ω;Cd). Notice that both operators are invertible and that ∆N generates a

bounded analytic semigroup on Lp0(Ω) while ∆D generates a bounded analytic semigroup on
W−1,p(Ω;Cd). An application of Corollary 2.8 yields the existence of a constant C > 0 such that

‖∂tac, ac,∇2ac‖L1(R+;Bs+1
p,1 ) + ‖∂tuc, uc,∇2uc‖L1(R+;Bsp,1) ≤ C‖(a0, u0)‖X sp,1 .
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Dε,λ

B(0, λ0)

B(0, ε)

θ

Figure 1. The ball B(0, λ0) and half of the ball B(0, ε) are depicted. The gray
region visualizes the set Dε,λ. Due to the openness of the resolvent set (which is
indicated by the dashed region), the spectrum must keep some distance to Dε,λ.
One sees, that in this constellation one can find a sector Sθ with θ ∈ (π/2, ϑ) that
is contained in the resolvent set.

Notice that this together with the boundedness of the gradient operator between Bs+1
p,1 (Ω) and

Bs
p,1(Ω;Cd) implies that

‖∇ac‖L1(R+;Bsp,1) ≤ C‖ac‖L1(R+;Bs+1
p,1 ).

Now, let (b, v) ∈ Ep with (b(0), v(0)) = (0, 0) solve

∂t

(
b
v

)
+Ap,1,s

(
b
v

)
= −∂t

(
ac
uc

)
−Ap,1,s

(
ac
uc

)
∈ L1(R+;X sp,1).

Then, for a := b + ac and u := v + uc one has (a, u) ∈ Ep and (a, u) solve (1.3) with f and g
being zero and non-zero initial data. �

5. Global well-posedness for the compressible Navier–Stokes system

The fastest way to solve System (1.1) in the critical regularity setting is to recast it in La-
grangian coordinates. To this end, let X be the flow associated to u, that is the solution to

(5.1) X(t, y) = y +

ˆ t

0
u(τ,X(τ, y)) dτ.

The ‘Lagrangian’ density and velocity are defined by

(5.2) ρ̄(t, y) := ρ(t,X(t, y)) and ū(t, y) := u(t,X(t, y)).
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With this notation, relation (5.1) becomes

(5.3) Xū(t, y) := X(t, y) = y +

ˆ t

0
ū(τ, y) dτ,

and thus

(5.4) DXū(t, y) = Id +

ˆ t

0
Dū(τ, y) dτ.

The main interest of Lagrangian coordinates is that, whenever DXū(t, y) is invertible, the density
is entirely determined by Xū and ρ0 through the relation

(5.5) ρ̄(t, y)Jū(t, y) = ρ0(y) with Jū(t, y) := det(DXū(t, y)).

Furthermore, one can write

Aū(t, y) := (DXū(t, y))−1 = J−1
ū (t, y) adj(DXū(t, y))

where adj(DXū) (the adjugate matrix) stands for the transpose of the comatrix of DXū(t, y).
Define the ‘twisted’ deformation tensor and divergence operator by

DA(z) :=
1

2

(
Dz ·A+ TA · ∇z

)
and divA z := TA : ∇z = Dz : A,

(
A ∈ Rd × Rd

)
·

As shown in, e.g., [9], in terms of the unknowns ā := ρ̄− 1 and ū, System (1.1) translates into

(5.6)



Jū∂tā+ (1 + ā)Dū : adj(DXū) = 0 in R+ × Ω,

ρ0∂tū− 2 div
(
µ(1 + ā) adj(DXū) ·DAū(ū)

)
−∇

(
λ(1 + ā) divAū ū

)
+ Tadj(DXū) · ∇(P (1 + ā)) = 0 in R+ × Ω,

ū = 0 on R+ × ∂Ω,

(ā, ū)|t=0 = (a0, u0) in Ω.

As pointed out in the Appendix of [9] (for Rd but the proof in the bounded domain case is
similar), in our functional framework, there exists ε > 0 such that whenever

(5.7)

ˆ T

0
‖∇u‖

B
d/p
p,1 (Ω)

dt ≤ ε,

the Eulerian and Lagrangian formulations of the compressible Navier–Stokes equations are equiv-
alent on [0, T ].

The present section aims at proving a global existence result for small (a0, u0) in the case
P ′(1) > 0. Note that, after rescaling the time and velocity according to (4.1), System (5.6) may
be rewritten exactly as (4.5) with

f := (1− Jū)∂tā+Dū : (Id− adj(DXū))− āDū : adj(DXū),

g := −a0∂tū+ 2 div
(
µ̃(ā) adj(DXū) ·DAū(ū)− µ̄D(ū)

)
+∇

(
(λ̃(ā) divAū ū− λ̄ div ū)

)
+ (1−Π(ā))∇ā+ Π(ā)(Id− adj(DXū)) · ∇ā.

Above, we denoted µ̃(z) := µ(1+z), λ̃(z) := λ(1+z), Π(z) := P ′(1+z), µ̄ := µ(1) and λ̄ := λ(1).

In the critical regularity setting, if we restrict ourselves to small perturbations of (0, 0), then
one can expect f and g (that contain only at least quadratic terms) to be even smaller. Hence,
it looks reasonable to get a global existence result for (5.6) by taking advantage of our estimates
for the linearized system. From the linear theory, we have the constraint d/p − 1 < 1/p (that
is p > d − 1) and, when handling the nonlinear terms, the additional conditions p < 2d and
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d ≥ 2 will pop up. In the end, we will obtain the following result, that is the counterpart of
Theorem 1.3, in Lagrangian coordinates. Recall that Ep was defined by

Ep = W1,1(R+; B
d/p
p,1 (Ω)× B

d/p−1
p,1 (Ω;Rd)) ∩ L1(R+; B

d/p
p,1 (Ω)× B

d/p+1
p,1 (Ω;Rd))·

Proposition 5.1. Let the assumptions of Theorem 1.3 be in force. Then, System (5.6) admits
a unique global solution (ā, ū) in the maximal regularity space Ep, and there exist two positive
constants c and C depending only on the parameters of the system, on p, and on Ω, such that

‖ect(ā, ū)‖Ep ≤ C
(
‖a0‖Bd/pp,1

+ ‖u0‖Bd/p−1
p,1

)
·(5.8)

Proof. Throughout, we use the short notation A for Ap,1,d/p−1. The proof of existence is based
on the fixed point theorem in the space Ecp defined by

Ecp :=
{

(a, u) : R+ × Ω→ R× Rd s.t. (etca, etcu) ∈ Ep
}

for the map Φ : (b̄, v̄) 7→ (ā, ū), where (ā, ū) stands for the solution in Ecp to the linear system

(5.9) d
dt

(
ā
ū

)
+ A

(
ā
ū

)
=

(
f̄
ḡ

)
supplemented with initial data (a0, u0) and

f̄ := (1− Jv̄)∂tb̄+Dv̄ : (Id− adj(DXv̄))− b̄Dv̄ : adj(DXv̄),

ḡ := −a0∂tv̄ + 2 div
(
µ̃(b̄) adj(DXv̄) ·DAv̄(v̄)− µ̄D(v̄)

)
+∇

(
(λ̃(b̄) divAv̄ v̄ − λ̄ div v̄)

)
+ (1−Π(b̄))∇b̄+ Π(b̄)(Id− adj(DXv̄)) · ∇b̄.

We claim that there exists some R ∈ (0, 1) such that, whenever (b̄, v̄) belongs to the closed ball
B̄Ecp(0, R) := {(b, v) ∈ Ecp : ‖(b, v)‖Ecp ≤ R}, System (5.9) admits a solution in B̄Ecp(0, R). Now,

from Theorem 4.1, we gather that there exists some c > 0 depending only on Ω, p, µ and µ′ such
that

(5.10) ‖(ā, ū)‖Ecp . ‖(a0, u0)‖X d/p−1
p,1

+ ‖ect(f̄ , ḡ)‖
L1(R+;X d/p−1

p,1 )
.

Hence our problem reduces to proving suitable estimates for f̄ and ḡ. To this end, we need the
following two results proved in Appendix:

Proposition 5.2. The numerical product is continuous from Bs
p,1(Ω)×B

d/p
p,1 (Ω) to Bs

p,1(Ω) when-

ever −min(d/p, d/p′) < s ≤ d/p.

Proposition 5.3. Let K : R → R be a smooth function vanishing at 0, and p ∈ [1,∞). Then,

there exists C > 0 such that for all functions z belonging to B
d/p
p,1 (Ω), the function K(z) belongs

to B
d/p
p,1 (Ω) and satisfies

‖K(z)‖
B
d/p
p,1 (Ω)

≤ C(1 + ‖z‖
B
d/p
p,1 (Ω)

)k‖z‖
B
d/p
p,1 (Ω)

with k := dd/pe.

Furthermore (without assuming K(0) = 0), for all pairs (z1, z2) of functions in B
d/p
p,1 (Ω), we have

‖K(z2)−K(z1)‖
B
d/p
p,1 (Ω)

≤ C(1 + ‖z1‖Bd/pp,1 (Ω)
+ ‖z2‖Bd/pp,1 (Ω)

)k‖z2 − z1‖Bd/pp,1 (Ω)
with k := dd/pe.

For notational simplicity, we omit from now on the dependency on Ω in the norms. Assume
that R has been chosen so small as

(5.11) ‖Dv̄‖
L1(R+;B

d/p
p,1 )
≤ ε� 1.
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In particular, owing to the embedding

(5.12) B
d/p
p,1 (Ω) ↪→ L∞(Ω),

the range of b̄ is included in a small neighborhood of 0 and the functions µ̃, λ̃, and Π may thus
be extended smoothly to the whole R without changing the value of ḡ. This allows to apply
Proposition 5.3 whenever it is needed.

Now, decompose f̄ into

f̄ = (1− Jv̄)∂tb̄+Dv̄ : (Id− adj(DXv̄))− b̄ Dv̄ : adj(DXv̄)

= f̄1 + f̄2 + f̄3.

Proposition 5.2 ensures that the space B
d/p
p,1 is stable under products. Hence

‖f̄1‖
B
d/p
p,1

. ‖1− Jv̄‖Bd/pp,1

‖∂tb̄‖Bd/pp,1

,

‖f̄2‖
B
d/p
p,1

. ‖Dv̄‖
B
d/p
p,1

‖ Id− adj(DXv̄)‖Bd/pp,1

,

‖f̄3‖
B
d/p
p,1

. ‖b̄‖
B
d/p
p,1

‖Dv̄‖
B
d/p
p,1

(
1 + ‖ Id− adj(DXv̄)‖Bd/pp,1

)
·

In order to bound the right-hand sides (as well as the terms in ḡ below), we will use repeatedly
the following inequality that is based on Neumann expansion arguments, (5.11) and on the fact

that B
d/p
p,1 is stable under products (see details in the Appendix of [9] for the Rd situation):

(5.13) sup
t≥0

(
‖1− Jv̄(t)‖Bd/pp,1

+ ‖Av̄(t)− Id ‖
B
d/p
p,1

+ ‖ adj(DXv̄(t))− Id ‖
B
d/p
p,1

)
. ‖Dv̄‖

L1(R+;B
d/p
p,1 )

.

In the end, we get

(5.14) ‖ectf̄‖
L1(R+;B

d/p
p,1 )
.
(
‖ect∂tb̄‖L1(R+;B

d/p
p,1 )

+ (1 + ‖Dv̄‖
L∞(R+;B

d/p
p,1 )

)‖ectb̄‖
L∞(R+;B

d/p
p,1 )

+ ‖ectDv̄‖
L1(R+;B

d/p
p,1 )

)
‖Dv̄‖

L1(R+;B
d/p
p,1 )

.

Next, we have to bound in L1(R+; B
d/p−1
p,1 ) the five terms constituting ḡ, namely

ḡ1 := −a0∂tv̄, ḡ2 := 2 div
(
µ̃(b̄) adj(DXv̄) ·DAv̄(v̄)− µ̄D(v̄)

)
,

ḡ3 := ∇
(
(λ̃(b̄) divAv̄ v̄ − λ̄ div v̄)

)
, ḡ4 := (1−Π(b̄))∇b̄,

ḡ5 := Π(b̄)(Id− adj(DXv̄)) · ∇b̄.

For ḡ1, a direct application of Proposition 5.2 yields, provided p < 2d and d ≥ 2,

(5.15) ‖ectḡ1‖
L1(R+;B

d/p−1
p,1 )

. ‖a0‖Bd/pp,1

‖ect∂tv̄‖L1(R+;B
d/p−1
p,1 )

.

Similarly, combining Propositions 5.2 and 5.3 yields

‖ectḡ4‖
L1(R+;B

d/p−1
p,1 )

. ‖ectb̄‖
L∞(R+;B

d/p
p,1 )
‖∇b̄‖

L1(R+;B
d/p−1
p,1 )

and since (argue by extension)

(5.16) ∇ : Bs+1
p,1 (Ω)→ Bs

p,1(Ω) is a bounded operator,

one can conclude that

(5.17) ‖ectḡ4‖
L1(R+;B

d/p−1
p,1 )

. ‖ectb̄‖
L∞(R+;B

d/p
p,1 )
‖b̄‖

L1(R+;B
d/p
p,1 )

.
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To handle ḡ2, we use the decomposition

ḡ2 = 2 div
(

(µ̃(b̄)− µ̄) adj(DXv̄) ·DAv̄(v̄) + µ̄(adj(DXv̄)− Id) ·DAv̄(v̄) + µ̄(DAv̄(v̄)−D(v̄))
)
·

From the definition of DAv̄ , (5.11) and (5.13), we gather that

‖ect(DAv̄(v̄)−D(v̄))‖
L1(R+;B

d/p
p,1 )
. ‖ectDv̄‖

L1(R+;B
d/p
p,1 )
‖Dv̄‖

L1(R+;B
d/p
p,1 )

.

Hence, combining with Propositions 5.2 and 5.3, (5.13) and (5.16), as (5.11) is fulfilled, we get

(5.18) ‖ectḡ2‖
L1(R+;B

d/p−1
p,1 )

.
(
1 + ‖b̄‖

L∞(R+;B
d/p
p,1 )

)
‖ectDv̄‖

L1(R+;B
d/p
p,1 )
‖Dv̄‖

L1(R+;B
d/p
p,1 )

.

Bounding ḡ3 is exactly the same. Finally, we have

ḡ5 =
(
1 + (Π(b̄)− 1)

)
(Id− adj(DXv̄)) · ∇b̄

and thus, combining Propositions 5.2 and 5.3 with (5.16), one ends up with

(5.19) ‖ectḡ5‖
L1(R+;B

d/p−1
p,1 )

.
(
1 + ‖b̄‖

L∞(R+;B
d/p
p,1 )

)
‖Dv̄‖

L1(R+;B
d/p
p,1 )
‖ectb̄‖

L1(R+;B
d/p
p,1 )

.

Recall that the embedding W1,1(R+; B
d/p
p,1 ) ↪→ L∞(R+; B

d/p
p,1 ) allows to control the L∞-norms of

quantities involving b̄ by their norm in Ep. Now, plugging Inequalities (5.14), (5.15), (5.17),
(5.18), and (5.19) in (5.10) and using the definition of the norm in Ep yields

‖ect(ā, ū)‖Ep ≤ C
(
‖(a0, u0)‖X d/p−1

p,1

+ (1 + ‖(b̄, v̄)‖Ep)‖(b̄, v̄)‖Ep‖ect(b̄, v̄)‖Ep
)
·

Remembering (1.6) and (b̄, v̄) ∈ B̄Ecp(0, R) with R ∈ (0, 1), one thus gets up to a change of C,

‖(ā, ū)‖Ecp ≤ C(α+R2).

Therefore, choosing R = 2Cα and assuming that 4Cα ≤ 1, one can conclude that (ā, ū) ∈
B̄Ecp(0, R).

To complete the proof of existence of a fixed point for Φ, it is only a matter of exhibiting its
properties of contraction. So let us consider (b̄i, v̄i) ∈ B̄Ecp(0, R) and (āi, ūi) := Φ(b̄i, v̄i), i = 1, 2.

Denote (f̄i, ḡi), i = 1, 2 the right-hand sides of System (5.9) corresponding to (b̄i, v̄i). Then, from
Theorem 1.2, we gather

(5.20) ‖(δa, δu)‖Ecp . ‖e
ct(δf, δg)‖

L1(R+;X d/p−1
p,1 )

,

where δa := ā2 − ā1, δu := ū2 − ū1, δf := f̄2 − f̄1, and δg := ḡ2 − ḡ1.

Let us use the short notation divi := divvi and so on and also introduce δb := b̄2 − b̄1 and
δv := v̄2 − v̄1. We see that

δf1 = (1− J1)∂tδb+ (J1 − J2)∂tb̄2,

δf2 = Dv̄1 :
(
adj(DX1)− adj(DX2)

)
+Dδv : (Id− adj(DX2)),

δf3 = b̄1
(
Dv̄1 : (adj(DX1)− adj(DX2))−Dδv : adj(DX2)

)
− δbDv̄2 : adj(DX2).

Since we have

A2(t)−A1(t) =
∞∑
k=1

(−1)k
k−1∑
j=0

(ˆ t

0
Dv̄2 dτ

)j(ˆ t

0
Dδv dτ

)(ˆ t

0
Dv̄1 dτ

)k−1−j
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and similar identities4 for J2(t) − J1(t) and adj(DX2(t)) − adj(DX1(t)), we get thanks to the

stability of B
d/p
p,1 under multiplication and to (5.11) (remember that R is small) that for all t ≥ 0,

(5.21) ‖A2(t)−A1(t)‖
B
d/p
p,1

+ ‖ adj(DX2(t))− adj(DX1(t))‖
B
d/p
p,1

+ ‖J±1
2 (t)− J±1

1 (t)‖
B
d/p
p,1

. ‖Dδv‖
L1(R+;B

d/p
p,1 )

.

Hence, using once more the stability of B
d/p
p,1 under multiplication eventually yields

(5.22) ‖ectδf‖
L1(R+;B

d/p
p,1 )
.
(
‖Dv̄1‖L1(R+;B

d/p
p,1 )

+ ‖Dv̄2‖L1(R+;B
d/p
p,1 )

+ ‖∂tb̄2‖L1(R+;B
d/p
p,1 )

+ ‖b̄1‖L∞(R+;B
d/p
p,1 )

)
·
(
‖ectDδv‖

L1(R+;B
d/p
p,1 )

+ ‖ect∂tδb‖L1(R+;B
d/p
p,1 )

)
.

We compute:

δg1 := −a0∂tδv,

δg2 := 2 div
(

(µ̃(b̄2)− µ̃(b̄1)) adj(DX2) ·DA2(v̄2)

+ µ̃(b̄1)
((

adj(DX1)− Id
)
·
(
DA2(v̄2)−DA1(v̄1)

)
+
(
adj(DX2)− adj(DX1)

)
·DA2(v2)

)
+ (µ̃(b̄1)− µ̄)

(
DA2(v̄2)−DA1(v̄1)

)
+ µ̄

(
DA2(v̄2)−DA1(v̄1)−D(δv)

))
,

δg3 := ∇
((
λ̃(b̄2)− λ̃(b̄1)

)
divA2 v̄2 +

(
λ̃(b̄1)− λ̄

)((
divA2 v̄2 − divA2 v̄1

)
+
(
divA2 v̄1 − divA1 v̄1

))
+ λ̄
(
divA2 v̄2 − divA1 v̄1 − div δv

))
,

δg4 := (1−Π(b̄1))∇δb+
(
Π(b̄1)−Π(b̄2)

)
∇b̄2,

δg5 := Π(b̄1)(Id− adj(DX1)) · ∇δb+ Π(b̄1)(adj(DX1)− adj(DX2)) · ∇b̄2
+ (Π(b̄2)−Π(b̄1))(Id− adj(DX2)) · ∇b̄2.

It is straightforward that

(5.23) ‖ectδg1‖
B
d/p−1
p,1

≤ C‖a0‖Bd/pp,1

‖ect∂tδv‖Bd/p−1
p,1

.

Next, from Propositions 5.2 and 5.3, (5.16) and Inequality (5.21), we easily get for i = 2, 3, 4, 5,

‖ectδgi‖
L1(R+;B

d/p−1
p,1 )

.
(
‖b̄2,∇v̄1,∇v̄2‖L1(R+;B

d/p
p,1 )

+ ‖b̄1‖L∞(R+;B
d/p
p,1 )

)
‖ectδb‖

L1(R+;B
d/p
p,1 )

+
(
‖b̄1, b̄2,∇v̄1,∇v̄2‖L1(R+;B

d/p
p,1 )

+ ‖b̄1‖L∞(R+;B
d/p
p,1 )

)
‖ectδb‖

L∞(R+;B
d/p
p,1 )

+
(
‖b̄1, b̄2,∇v̄1,∇v̄2‖L1(R+;B

d/p
p,1 )

+ ‖b̄1‖L∞(R+;B
d/p
p,1 )

)
‖ect∇δv‖

L1(R+;B
d/p
p,1 )

.

Note again, that the embedding W1,1(R+; B
d/p
p,1 ) ↪→ L∞(R+; B

d/p
p,1 ) allows to control the L∞-norms

of quantities involving b̄1 or b̄2 by their norm in Ep. Altogether, we conclude that

‖(δa, δu)‖Ecp ≤ C(R+ α)‖(δb, δv)‖Ecp .

Since we chose R of order α, we see that, indeed, the map Φ is contracting provided α is small
enough. Then, Banach fixed point theorem ensures that Φ admits a fixed point in B̄Ecp(0, R).

Hence, we have a solution for (5.6) with the desired property.

4More details may be found in the appendix of [9].
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In order to prove the uniqueness, consider two solutions (ā1, ū1) and (ā2, ū2) in Ecp of (5.6)
supplemented with the same data (ρ0, u0). Then, we have (āi, ūi) = Φ((āi, ūi)), i = 1, 2, and one
can repeat the previous computation on any interval [0, T ] such that

max

(ˆ T

0
‖∇ū1‖Bd/pp,1

dt,

ˆ T

0
‖∇ū2‖Bd/pp,1

dt

)
≤ ε� 1.

On such an interval, we obtain (with obvious notation)

‖(δa, δu)‖Ep(T ) ≤ C
(
‖(ā1, ū1)‖Ep(T ) + ‖(δa, δu)‖Ep(T )

)
‖(δa, δu)‖Ep(T ).

Since the function t 7→ ‖(δa, δu)‖Ep(t) is continuous and vanishes at 0 and because one can
assume with no loss of generality that (ā1, ū1) is the small solution constructed just above, we
get uniqueness on [0, T ]. Then, using a standard bootstrap argument yields uniqueness for all
time. �

6. Local existence for general data with no vacuum

For achieving the local well-posedness of the compressible Navier–Stokes equations, there is
no need to take the linear coupling of the density and velocity equations into consideration, and
the sign of P ′ does not matter. Actually, in the Lagrangian formulation (5.6), it is enough to
solve the velocity equation, since Jūρ̄ = ρ0 and Jū may be computed from ū. The pressure may
be seen as a source term, and combining Corollary 3.9 with s = d/p− 1 and q = 1, with suitable
nonlinear estimates allows to solve (5.6) locally in the critical regularity setting.

Clearly, a basic perturbative method relying on our reference linear system with constant
coefficients is bound to fail if the density variations are too large. However, since, in our functional
setting, ρ0 has to be uniformly continuous in Ω, one can expect that difficulty to be challengeable
if using a suitable localization argument.

Here, for expository purpose, we first present the proof of the local well-posedness in the easier
case where ρ0 is close to some positive constant. Then, we explain what has to be modified to
tackle the general case where one just assumes that it is bounded away from 0.

6.1. The case of small variations of density. Our goal here is to establish the following
result that implies Theorem 1.1 in the case of small density variations.

Proposition 6.1. Let the assumptions of Theorem 1.1 be in force, and assume in addition that,
for a small enough α > 0, we have

(6.1) ‖a0‖Bd/pp,1 (Ω)
≤ α.

Then, System (5.6) admits a unique solution (ā, ū) on some interval [0, T ], such that 1 + ā :=
J−1
ū ρ0 is bounded away from zero on [0, T ]× Ω and

(ā, ū) ∈W1,1(0, T ; B
d/p
p,1 (Ω)× B

d/p−1
p,1 (Ω;Rd)) ∩ L1(0, T ; B

d/p
p,1 (Ω)× B

d/p−1
p,1 (Ω;Rd)).

Proof. Throughout, we use the short notation L for Lp,1,d/p−1. Since the variations of density
are small, one can look at the velocity equation as follows:

∂tū+ Lū = −a0∂tū+ 2 div
(
µ̃(ā) adj(DXū) ·DAū(ū)− µ̄D(ū)

)
+∇

(
(λ̃(ā) divAū ū− λ̄div ū)

)
− T adj(DXū) · ∇(P (1 + ā))

with ā given by

ā = J−1
ū ρ0 − 1 = (J−1

ū − 1)(1 + a0) + a0.
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To proceed, we introduce for T > 0, the space

Fp(T ) := W1,1(0, T ; B
d/p−1
p,1 (Ω;Rd)) ∩ L1(0, T ; B

d/p−1
p,1 (Ω;Rd))·

We consider the map Ψ : v̄ 7→ ū where ū is the solution to

∂tū+ Lū = h̄ in (0, T )× Ω and u|t=0 = u0 in Ω,

with h̄ = h̄1 + h̄2 + h̄3 + h̄4 and

h̄1 := −a0∂tv̄, h̄2 := 2 div
(
µ̃(b̄) adj(DXv̄) ·DAv̄(v̄)− µ̄D(v̄)

)
h̄3 := ∇

(
(λ̃(b̄) divAv̄ v̄ − λ̄ div v̄)

)
, h̄4 := −T adj(DXv̄) · ∇(P (1 + b̄))·

Above, the function b̄ is defined by

(6.2) b̄ = J−1
v̄ ρ0 − 1 = (J−1

v̄ − 1)(1 + a0) + a0.

We claim that there exists α > 0 in (6.1) such that for small enough R, T > 0, the function Ψ is
a self-map on B̄Fp(T )(uL, R), where uL := e−tLu0. To justify our claim, we set ṽ := v̄ − uL and
look for ū under the form ū := uL + ũ with ũ satisfying

∂tũ+ Lũ = h̄ in (0, T )× Ω and ũ|t=0 = 0 in Ω.

Consequently, Corollary 3.9 yields some C > 0 independent of T > 0 such that

(6.3) ‖ũ‖Fp(T ) ≤ C‖h̄‖L1(0,T ;B
d/p−1
p,1 )

and ‖uL‖Fp(T ) ≤ C‖u0‖Bd/p−1
p,1

.

By Lebesgue’s dominated convergence theorem, ‖∇uL‖L1(0,T ;B
d/p
p,1 )

converges to 0 as T → 0.

Hence, for any R > 0, one can find T > 0 so that

(6.4)

ˆ T

0
‖∇uL‖Bd/pp,1

dt ≤ R

2
·

Next, we have to bound h̄1 to h̄4 in L1(0, T ; B
d/p−1
p,1 ). We shall use repeatedly Proposition 5.2

with s ∈ {d/p, d/p− 1} and Proposition 5.3, as well as the local-in-time version of (5.13). First,
it is obvious that

‖h̄1‖
L1(0,T ;B

d/p−1
p,1 )

. ‖a0‖Bd/pp,1

‖∂tv̄‖L1(0,T ;B
d/p−1
p,1 )

. αR.

In order to bound the next terms, we shall use the fact that, owing to the decomposition of b̄
in (6.2), the product and composition results in Proposition 5.2 and 5.3, and the local-in-time
version of (5.13), we have for all smooth functions k vanishing at 0 and t ∈ [0, T ],

‖k(b̄(t))‖
B
d/p
p,1

. ‖b̄(t)‖
B
d/p
p,1

. ‖a0‖Bd/pp,1

+ (1 + ‖a0‖Bd/pp,1

)‖J−1
v̄ (t)− 1‖

B
d/p
p,1

. ‖a0‖Bd/pp,1

+ (1 + ‖a0‖Bd/pp,1

)

ˆ t

0
‖∇v̄‖

B
d/p
p,1

dτ

. α+R.

To bound h̄2, we use the decomposition

µ̃(b̄) adj(DXv̄) ·DAv̄(v̄)− µ̄D(v̄) = (µ̃(b̄)− µ̄) adj(DXv̄) ·DAv̄(v̄)

+µ̄(adj(DXv̄)− Id) ·DAv̄(v̄) + µ̄(DAv̄(v̄)−D(v̄)).
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Hence, using the aforementioned results and also (5.16), we find that for all t ∈ [0, T ],

‖h̄2‖
B
d/p−1
p,1

. ‖b̄‖
B
d/p
p,1

‖ adj(DXv̄) ·DAv̄(v̄)‖
B
d/p
p,1

+‖(adj(DXv̄)− Id) ·DAv̄(v̄)‖
B
d/p
p,1

+ ‖DAv̄(v̄)−D(v̄)‖
B
d/p
p,1

,

whence we have

‖h̄2‖
L1(0,T ;B

d/p−1
p,1 )

. ‖b̄‖
L∞(0,T ;B

d/p
p,1 )
‖∇v̄‖

L1(0,T ;B
d/p
p,1 )

+ ‖∇v̄‖2
L1(0,T ;B

d/p
p,1 )

. R (α+R).

Bounding h̄3 is clearly the same. Finally, to handle h̄4 (that is, the pressure term), we assume
with no loss of generality that P (1) = 0, and use the decomposition

h̄4 = (Id−T adj(DXv̄)) · ∇(P (1 + b̄))−∇(P (1 + b̄)).

Hence

‖h̄4‖
L1(0,T ;B

d/p−1
p,1 )

.
(
1 + ‖ Id−T adj(DXv̄)‖L∞(0,T ;B

d/p
p,1 )

)
‖P (1 + b̄)‖

L1(0,T ;B
d/p
p,1 )

.
(
1 + ‖∇v̄‖

L1(0,T ;B
d/p
p,1 )

)
‖b̄‖

L1(0,T ;B
d/p
p,1 )

. T (α+R).

Reverting to (6.3), we end up with

‖ũ‖Fp(T ) ≤ C(α+R)(T +R).

Consequently, if one takes R = α and assumes, in addition to (6.4), that T ≤ α, we obtain

‖ũ‖Fp(T ) ≤ 4Cα2.

One can thus conclude that Ψ is a self-map on B̄Fp(T )(uL, R) provided 8Cα ≤ 1.

To complete the proof of existence of a fixed point for Ψ, one has to exhibit its properties of
contraction. Consider v̄i ∈ B̄Fp(T )(uL, R) and ūi := Ψv̄i, i = 1, 2, with R and T as above. Then,
according to Corollary 3.9, we have

‖δu‖Fp(T ) . ‖δh‖L1(0,T ;B
d/p−1
p,1 )

,

where δu := ū2− ū1, and so on. We see that δu fulfills (where δg2 and δg3 have been defined just
above (5.23)):

(6.5) ∂tδu+ Lδu = −a0∂tδv + δh2 + δh3

− T adj(DX1) · ∇(P (1 + b̄2)− P (1 + b̄1))− T(adj(DX2)− adj(DX1)) · ∇(P (1 + b̄2)).

Then, one has to perform always the same type of computations as just above and in the previous
section. The details are omitted. One ends up with

‖δu‖Fp(T ) ≤ CR‖δv‖Fp(T ),

which, provided CR < 1, allows to complete the proof of a fixed point for Ψ, and thus of a
solution for (5.6), in the desired regularity space.

Proving uniqueness is similar as for the global existence theorem, except that we now use (6.5)
with v̄ = ū instead of the full system for (ā, ū). In particular, there is no need to assume that
the velocity of one of the solutions is small. Again, the details are left to the reader. �
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6.2. The case of large variations of density. This part is devoted to the proof of Theorem 1.1
in full generality. The main issue is to adapt Corollary 3.9 to the following system:

(6.6)


ρ∂tu− 2 div(µD(u))−∇(λdiv u) = f in (0, T )× Ω,

u|∂Ω = 0 on (0, T )× ∂Ω,

u|t=0 = u0 in Ω,

where ρ = ρ(x), λ = λ(x), and µ = µ(x) are given functions in B
d/p
p,1 (Ω), such that

(6.7) inf
x∈Ω

ρ(x) > 0, inf
x∈Ω

µ(x) > 0, and inf
x∈Ω

(λ+ 2µ)(x) > 0.

Proposition 6.2. Let T > 0. Let 1 < p < ∞ and −1 + 1/p < s < 1/p with s ≤ d/p − 1. Take
u0 in Bs

p,1(Ω;Rd) and f in L1(0, T ; Bs
p,1(Ω;Rd)). Assuming (6.7), System (6.6) admits a unique

solution u ∈ Cb([0, T ]; Bs
p,1(Ω;Rd)) in the space

u ∈W1,1(0, T ; Bs
p,1(Ω;Rd)) ∩ L1(0, T ; Bs+2

p,1 (Ω;Rd))

and there exists a constant C > 0 depending only on ρ, λ, µ, p, s and Ω, such that

(6.8) sup
t∈[0,T ]

‖u(t)‖Bsp,1 +

ˆ T

0

(
‖∂tu‖Bsp,1 + ‖u‖Bs+2

p,1

)
dt ≤ C

(
‖u0‖Bsp,1 +

ˆ T

0
‖f‖Bsp,1 dt

)
·

Proof. The key idea is that the embedding B
d/p
p,1 (Ω) ↪→ C(Ω) implies that the coefficients of

System (6.6) are uniformly continuous on Ω, hence have small variations on small balls, so that
one can take advantage of Corollary 3.9, after localization of the system.

To start with, as in [8], we introduce a covering (Bk)1≤k≤K of Ω by balls of radius δ ∈ (0, 1)
and center xk ∈ Ω, with finite multiplicity (independent of δ), and a partition of unity (φk)1≤k≤K
of smooth functions on Rd such that:

•
∑K

k=1 φk ≡ 1 in Ω;

• ‖∇αφk‖L∞(Rd) ≤ Cαδ−α, α ∈ N;

• the support of φk is included in Bk.

This covering may be constructed from a smooth function θ supported in the unit ball, such that∑
k∈Zd

θ(x− k) = 1 on Rd.

It is just a matter of setting φk(x) := θ(δ−1(x − δk)) with xk = δk, then relabelling the family
(φk), keeping only indices for which Suppφk ∩Ω is nonempty. Clearly, combining the bounds of
∇αφk with the fact that Suppφk ⊂ Bk ensures that

‖∇αφk‖Lp(Rd) ≤ C ′αδ
d
p
−α
, α ∈ N

and thus, by interpolation,

(6.9) ‖φk‖Bd/pp,1 (Rd)
≤ C and ‖∇φk‖Bd/pp,1 (Rd)

≤ Cδ−1.

We also need another two families (φ̌k)1≤k≤K and (φ̃k)1≤k≤K such that φ̌k ≡ 1 on the support

of φk and φ̃k ≡ 1 on the support of φ̌k, with φ̌k and φ̃k supported in slightly larger balls than

φk, and such that ‖∇αφ̌k‖L∞ ≤ Cαδ−α and ‖∇αφ̃k‖L∞ ≤ Cαδ−α hold.
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Let ρk := ρ(xk), uk := uφk, fk = ρkf, λk = λ(xk), and µk = µ(xk). Then, we observe that uk
satisfies:

(6.10)


ρk∂tuk − µk∆uk − (λk + µk)∇ div uk = Fk in (0, T )× Ω,

uk|∂Ω = 0 on (0, T )× ∂Ω,

uk|t=0 = u0,k in Ω,

with uk,0 := u0φk and

Fk := fk + (ρk − ρ)∂tuk + 2 div
(
φk(µ− µk)D(u)

)
+∇

(
φk(λ− λk) div u

)
−2µD(u) · ∇φk − λ div u∇φk − µk div

(
u⊗∇φk +∇φk ⊗ u

)
− λk∇(u · ∇φk).

Therefore, in light of Corollary 3.9 and denoting µ̃k := µk/ρk, we have for all t ∈ [0, T ],

(6.11) ‖uk(t)‖Bsp,1 +

ˆ t

0

(
‖∂tuk‖Bsp,1 + µ̃k‖uk‖Bs+2

p,1

)
dτ ≤ C

(
‖uk(0)‖Bsp,1 + ρ−1

k

ˆ t

0
‖Fk‖Bsp,1 dτ

)
·

Note that our ellipticity condition (6.7) ensures that the constant C is independent of k.

Throughout, we fix some ε > 0 and take δ so that for all k ∈ {1, · · · ,K},

(6.12) max
(
‖1− ρ/ρk‖L∞(Bk), µ

−1
k ‖µ− µk‖L∞(Bk), µ

−1
k ‖λ− λk‖L∞(Bk)

)
≤ ε.

Actually, as we have to perform estimates in Besov spaces, we need a stronger property, namely

(6.13) max
(
‖φ̃k(1− ρ/ρk)‖Bd/pp,1 (Ω)

, µ−1
k ‖φ̃k(µ− µk)‖Bd/pp,1 (Ω)

, µ−1
k ‖φ̃k(λ− λk)‖Bd/pp,1 (Ω)

)
≤ ε,

which is proved at the end of the Appendix

Let us now estimate all the terms of Fk. We have thanks to Proposition 5.2 and (6.13),

‖(ρk − ρ)∂tuk‖Bsp,1(Ω) ≤ C‖φ̃k(ρk − ρ)‖
B
d/p
p,1 (Ω)

‖∂tuk‖Bsp,1(Ω)

≤ Cερk‖∂tuk‖Bsp,1(Ω),

and, using also (6.9), with the notation ũk := φ̃ku,

‖ div
(
φk(µ− µk)D(u)

)
‖Bsp,1(Ω) . ‖φ̃k(µ− µk)‖Bd/pp,1 (Ω)

‖φk∇u‖Bs+1
p,1 (Ω)

≤ Cεµk
(
‖∇(φku)‖Bs+1

p,1 (Ω) + ‖∇φk ⊗ φ̃ku‖Bs+1
p,1 (Ω)

)
≤ Cεµk

(
‖uk‖Bs+2

p,1 (Ω) + δ−1‖ũk‖Bs+1
p,1 (Ω)

)
·

The next term may be estimated in the same way. In order to estimate the term µD(u) · ∇φk,
let us set ǔk := φ̌ku. Applying Proposition 5.2 and (6.9) yields

‖µD(u) · ∇φk‖Bsp,1(Ω) . ‖µ‖Bd/pp,1 (Ω)
‖D(u) · ∇φk‖Bsp,1(Ω)

. ‖µ‖
B
d/p
p,1 (Ω)

‖∇φk‖Bd/pp,1 (Ω)
‖φ̌kD(u)‖Bsp,1(Ω)

. δ−1‖µ‖
B
d/p
p,1 (Ω)

(
‖∇(φ̌ku)‖Bsp,1(Ω) + ‖φ̃ku⊗∇φ̌k‖Bsp,1(Ω)

)
. δ−1‖µ‖

B
d/p
p,1 (Ω)

(
‖ǔk‖Bs+1

p,1 (Ω) + δ−1‖ũk‖Bsp,1(Ω)

)
·
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A similar estimate holds for λ div u∇φk. Finally,

‖∇(u · ∇φk)‖Bsp,1(Ω) . ‖uφ̃k · ∇φk‖Bs+1
p,1 (Ω)

. ‖∇φk‖Bd/pp,1 (Ω)
‖ũk‖Bs+1

p,1 (Ω)

. δ−1‖ũk‖Bs+1
p,1 (Ω),

and the same holds for div
(
u⊗∇φk +∇φk ⊗ u

)
·

Let us denote ζ∗ := 1 + ‖λ/µ‖L∞ . Then, atogether, reverting to (6.11) and assuming that ε
has been chosen small enough (so as to absorb the terms with ∂tuk and ‖uk‖Bs+2

p,1 (Ω)), we end up

for all k ∈ {1, · · · ,K} with

(6.14) ‖uk(t)‖Bsp,1 +

ˆ t

0

(
‖∂tuk‖Bsp,1 + µ̃k‖uk‖Bs+2

p,1

)
dτ ≤ C

(
‖uk(0)‖Bsp,1 +

ˆ t

0
‖fk‖Bsp,1 dτ

+ µ̃kδ
−1

ˆ t

0

(
ζ∗‖ũk‖Bs+1

p,1
+ µ−1

k ‖(λ, µ)‖
B
d/p
p,1

‖ǔk‖Bs+1
p,1

)
dτ + ρ−1

k δ−2

ˆ t

0
‖(λ, µ)‖

B
d/p
p,1

‖ũk‖Bsp,1 dτ

)
·

Let us introduce the notation:

‖z‖
Bs,ψp,1

:=
K∑
k=1

‖ψkz‖Bsp,1(Ω) for ψ ∈ {φ, φ̌, φ̃}.

Then, summing up on k ∈ {1, · · · ,K} in (6.14) and denoting µ̃∗ := infΩ µ/ρ, µ̃
∗ := supΩ µ/ρ

and ρ∗ := infΩ ρ, we conclude that

(6.15) ‖u(t)‖
Bs,φp,1

+

ˆ t

0

(
‖∂tu‖Bs,φp,1 + µ̃∗‖u‖Bs+2,φ

p,1

)
dτ ≤ C

(
‖u0‖Bs,φp,1 +

ˆ t

0
‖f‖

Bs,φp,1
dτ

+ δ−1µ̃∗ζ∗
ˆ t

0
‖u‖

Bs+1,φ̃
p,1

dτ + δ−1ρ−1
∗

ˆ t

0
‖(λ, µ)‖

B
d/p
p,1

(
‖u‖

Bs+1,φ̌
p,1

+ δ−1‖u‖
Bs,φ̃p,1

)
dτ

)
·

Since the properties of the support of the families (φ̃k) and (φ̌k) guarantee that

φ̃k =
∑
k′∼k

φ̃kφk′ and φ̌k =
∑
k′∼k

φ̌kφk′ ,

we may write for all −min(d/p, d/p′) < σ ≤ d/p, owsing to Proposition 5.2 and Inequality (6.9),

‖ũk‖Bσp,1 ≤ C
∑
k′∼k
‖φ̃k‖Bd/pp,1

‖uk′‖Bσp,1 ≤ C
∑
k′∼k
‖uk′‖Bσp,1 .

A similar property is true for ǔk. Hence

‖u‖
Bσ,φ̃p,1
. ‖u‖

Bσ,φp,1
and ‖u‖

Bσ,φ̌p,1
. ‖u‖

Bσ,φp,1
.

This means that φ̃ and φ̌ may be replaced by φ in the right-hand side of (6.15) (up to a change of
C of course). Now, the terms of (6.15) involving the index s+1 may be bounded by interpolation
as follows for all A > 0 and ε > 0 :

A‖u‖
Bs+1,φ
p,1

≤ C
∑
k

A‖uk‖
1/2
Bsp,1
‖uk‖

1/2

Bs+2
p,1

≤ εµ̃∗
∑
k

‖uk‖Bs+2
p,1

+ Cε−1µ̃−1
∗ A2

∑
k

‖uk‖Bsp,1

= εµ̃∗‖u‖Bs+2,φ
p,1

+ Cε−1µ̃−1
∗ A2‖u‖

Bs,φp,1
,
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with C independent of A and ε. Hence, taking either A = Cδ−1µ̃∗ζ∗ or A = Cδ−1ρ−1
∗ ‖(λ, µ)‖

B
d/p
p,1

,

Inequality (6.15) entails (observing that the last term of it can be dominated by the other ones
resulting from the computations just above),

‖u(t)‖
Bs,φp,1

+

ˆ t

0

(
‖∂tu‖Bs,φp,1 + µ̃∗‖u‖Bs+2,φ

p,1

)
dτ ≤ C

(
‖u0‖Bs,φp,1 +

ˆ t

0
‖f‖

Bs,φp,1
dτ

+ρ−1
∗ µ̃−1

∗ δ−2
(
ρ∗(ζ

∗)2(µ̃∗)2 + ρ−1
∗ ‖(λ, µ)‖2

B
d/p
p,1

) ˆ t

0
‖u‖

Bs,φp,1
dτ

)
·

Since, ρ∗µ̃
∗ ≤ µ∗, and thus ρ∗µ̃

∗ . ‖µ‖
B
d/p
p,1

, applying Gronwall lemma eventually leads to

(6.16) ‖u(t)‖
Bs,φp,1

+

ˆ t

0

(
‖∂tu‖Bs,φp,1 + µ̃∗‖u‖Bs+2,φ

p,1

)
dτ

≤ C
(
‖u0‖Bs,φp,1 +

ˆ t

0
‖f‖

Bs,φp,1
dτ

)
exp
(
Cµ̃−1
∗ δ−2ρ−2

∗ (ζ∗)2‖(λ, µ)‖2
B
d/p
p,1

t
)
·

Since the covering is finite, the norms ‖·‖
Bσ,φp,1

are actually equivalent to the Besov norms ‖·‖Bσp,1(Ω)

(with bounds depending on K of course), which eventually ensures the desired inequality (6.8).

In order to prove the existence of a solution to (6.6) in the space Fsp(T ) corresponding to the
statement of Proposition 6.2, one may adapt the continuity method used in [8, Thm. 2.2].

For all θ ∈ [0, 1], we define the linear operator Lθ acting on time-dependent vector fields u by:

Lθu := ρθ∂tu− 2 div(µθD(u))−∇(λθ div u)

with ρθ := (1− θ) + θρ, µθ := 1− θ + θµ and λθ := θλ. Note that the ellipticity condition (6.7)
is ensured uniformly for θ ∈ [0, 1] and that the value of δ and of C may be chosen independent
of θ in Inequality (6.16) (hence Inequality (6.8) corresponding to System (6.6) with coefficients
ρθ, µθ and λθ is uniform with respect to θ as well).

We denote by E the set of parameters θ ∈ [0, 1] such that for all data u0 and f satisfying
the hypotheses of Proposition 6.2, System (6.6) with coefficients ρθ, µθ and λθ has a solution in
Fsp(T ). Corollary 3.9 guarantees that 0 is in E . Now consider any θ0 ∈ E and data u0, f. Solving

Lθu = f, u|∂Ω = 0, u|t=0 = u0

in Fsp(T ) amounts to finding a fixed point in Fsp(T ) for the map Φ : v 7→ u such that u is a
solution in Fsp(T ) of

(6.17) Lθ0u = f + (Lθ0 − Lθ)v, u|∂Ω = 0, u|t=0 = u0.

Obviously, we have

(Lθ0 − Lθ)v = (θ − θ0)
(

(1− ρ)∂tv + 2 div
(
(µ− 1)D(v)

)
+ div

(
λ div v

))
·

Hence, using Proposition 5.2 eventually leads to

‖(Lθ0 − Lθ)v‖Bsp,1 ≤ C|θ − θ0|
(
‖∂tv‖Bsp,1 + ‖v‖Bs+2

p,1

)
·

The constant C depends of course of ρ, λ and µ, but is independent of θ and θ0. Now, since θ0 ∈ E ,
equation (6.17) is solvable in Fsp(T ) and estimate (6.8) combined with the above computation
gives us

‖Φ(v)‖Fsp(T ) ≤ C
(
‖u0‖Bsp,1 +

ˆ T

0
‖f‖Bsp,1 dt+

ˆ T

0
‖(Lθ0 − Lθ)v‖Bsp,1 dt

)
≤ C

(
‖u0‖Bsp,1 + |θ − θ0|‖v‖Fsp(T )

)
·
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The same computation leads, for all pair (v1, v2) in Fsp(T ) to

‖Φ(v2)− Φ(v1)‖Fsp(T ) ≤ C |θ − θ0| ‖v2 − v1‖Fsp(T ).

Hence, setting ε = 1/2C, one can conclude by the contracting mapping argument that Φ admits
a fixed point u in Fsp(T ) whenever |θ− θ0| ≤ ε. Since ε is independent of θ0, we deduce that 1 is
in the set E , which completes the proof of existence. �

Proof of Theorem 1.1. As in the previous parts, we shall rather prove the result in Lagrangian
coordinates. Having Proposition 6.2 at hand, it suffices to modify the fixed point map Ψ intro-
duced a couple of pages ago accordingly. More precisely, we observe that we want the Lagrangian
velocity ū to satisfy

Lρ0 ū = 2 div
(
µ(ρ̄ū) adj(DXū) ·DAū(ū)− µ0D(ū)

)
+∇

(
λ(ρū) divAū ū− λ0 div ū

)
− T adj(DXū) · ∇(P (ρ̄ū)),

ū|∂Ω = 0,

ū|t=0 = u0

with λ0 := λ(ρ0), µ0 := µ(ρ0), Lρ0 ū := ρ0∂tū− 2 div(µ0D(ū))−∇(λ0 div ū) and ρ̄ū := ρ0J
−1
ū .

Define Ψ : Fp(T ) → Fp(T ) to be the map v̄ 7→ ū with ū the solution in Fp(T ) provided by
Proposition 6.2 that corresponds to the right-hand side of the above system with v̄ instead of ū.
Denote by uρ0

L the solution to Lρ0u = 0 with initial data u0 given by Proposition 6.2.
Then, by following the proof of Proposition 6.1, it is not difficult to check that Ψ satisfies the

conditions of the contraction mapping theorem on some ball B̄Fp(T )(u
ρ0

L , R) provided R and T

are small enough. In fact, the main changes are that the term corresponding to h̄1 is no longer
present (hence we do not need to assume ρ0 to be close to some constant) and that one has

to bound in B
d/p
p,1 terms like µ(ρ̄v̄) − µ0. However, owing to Propositions 5.2 and 5.3, and to

Inequality (5.13), we may write

‖µ(ρ̄v̄(t))− µ0‖Bd/pp,1

. ‖ρ̄v̄(t)− ρ0‖Bd/pp,1

. ‖ρ0‖Bd/pp,1

‖J−1
v̄ (t)− 1‖

B
d/p
p,1

. ‖ρ0‖Bd/pp,1

ˆ t

0
‖Dv̄‖

B
d/p
p,1

dτ

hence the proof may be easily completed. The details are left to the reader. �

Appendix A. Results on the Lamé operator

As a first, for the convenience of the reader, we recall the proof of regularity estimates in
Sobolev spaces for the Lamé operator.

Proof of Proposition 3.3. The first step is to prove that there exists a constant C > 0 such that
all solutions u ∈Wk+2,p(Ω;Cd) to the equation{−µ∆u− z∇ div u = f in Ω

u = 0 on ∂Ω

for some f ∈Wk,p(Ω;Cd) satisfy

(A.1) ‖u‖Wk+2,p(Ω;Cd) ≤ C
(
‖f‖Wk,p(Ω;Cd) + ‖u‖Lp(Ω;Cd)

)
·
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In dimension d = 1, the result readily follows by integration. In the multi-dimensional case, it is
a consequence of the theory of Agmon, Douglis, and Nirenberg (more precisely [1, Thm. 10.5]).
To verify the assumptions therein, define the symbol of L by

S(ξ) := µ|ξ|2 Id +zξ ⊗ ξ (ξ ∈ Rd).

Lemma A.1. Let µ > 0 and z ∈ C with µ + Re(z) > 0. Let δ ∈ (0, 1) be any number that
satisfies δµ+ Re(z) ≥ 0. Then, for each ξ ∈ Rd the determinant of S(ξ) satisfies

µd(1− δ)d2−
d
2 |ξ|2d ≤ |det(S(ξ))| ≤

(
µ+ |z|

)d|ξ|2d.
Proof. The result for z = 0 being obvious, assume from now on that z 6= 0. Let M denote the
matrix M := ξ ⊗ ξ. Because M is real and symmetric, S(ξ) is diagonalizable. Let η ∈ Cd be a
unit eigenvector to S(ξ) with corresponding eigenvalue α ∈ C. Then,

αη = S(ξ)η = µ|ξ|2η + zMη, hence z−1(α− µ|ξ|2)η = Mη.

Hence, η is an eigenvector to M with corresponding eigenvalue z−1(α − µ|ξ|2). Since M is real
and symmetric, η and z−1(α− µ|ξ|2) must be real. Thus, keeping in mind that |η| = 1, we get

α = µ|ξ|2 + zMη · η = µ|ξ|2 + z[ξ · η]2.

Let δ ∈ (0, 1) be such that δµ + Re(z) ≥ 0 holds. This combined with µ > 0 and some
trigonometry yields

|α| =
∣∣∣µ(|ξ|2 − δ[ξ · η]2

)
+ (δµ+ z)[ξ · η]2

∣∣∣ ≥ 1√
2

(
µ(1− δ)|ξ|2 + (δµ+ Re(z))[ξ · η]2

)
≥ µ(1− δ)√

2
|ξ|2.

Consequently, the determinant of S(ξ) satisfies

|det(S(ξ))| ≥ µd(1− δ)d2−
d
2 |ξ|2d.

The other inequality follows from

|α| ≤ µ|ξ|2 +
∣∣z[ξ · η]2

∣∣ ≤ (µ+ |z|
)
|ξ|2. �

If d ≥ 3, then Lemma A.1 implies that the operator −µ∆ − z∇ div is elliptic in the sense of
Agmon, Douglis, and Nirenberg, and we get (A.1). For d = 2, one needs to verify the following
supplementary condition.

Lemma A.2. Let d = 2 and let ξ, ξ′ ∈ R2 be linearly independent. Then, det(S(ξ + τξ′))
regarded as a polynomial in the complex variable τ has exactly two roots with positive and two
roots with negative imaginary part.

Proof. The determinant of S(ξ + τξ′) is calculated as

det(S(ξ + τξ′)) = µ(µ+ z)
[
(ξ + τξ′) · (ξ + τξ′)

]2
.(A.2)

Due to the assumptions on µ and z, the prefactor cannot be zero. If there would be a real
root to the equation det(S(ξ + τξ′)) = 0, then ξ and ξ′ would have to be linearly dependent,
a contradiction. Thus, (A.2) determines a fourth order polynomial in τ with real coefficients
and no real roots. Hence, there must be two roots with positive and with negative imaginary
part. �
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Let us now go to the existence part of the proposition. Clearly, the case p = 2 follows from
Proposition 3.1. The case p > 2 will be also a consequence of it. Indeed, then Lp is injective

as it is the part of L2 in Lp(Ω;Cd). Next, to prove the surjectivity of Lp, let us first consider

p1 ≥ 2 satisfying 1/p1 − 1/2 ≤ 2/d, and let f ∈ C∞(Ω;Cd). By Proposition 3.1 there exists a
unique u ∈ D(L2) with L2u = f and u ∈Wk+4,2(Ω;Cd). By Sobolev’s embedding theorem, we
conclude that u ∈ Wk+2,p1(Ω;Cd). Thus, by virtue of Inequality (A.1) we discover that there
exists a constant C > 0 such that

‖u‖Wk+2,p1 (Ω;Cd) ≤ C
(
‖f‖Wk,p1 (Ω;Cd) + ‖u‖Lp1 (Ω;Cd)

)
·

Moreover, by Sobolev’s embedding theorem and again by Proposition 3.1 followed by Hölder’s
inequality together with the boundedness of Ω, we derive

‖u‖Wk+2,p1 (Ω;Cd) ≤ C
(
‖f‖Wk,p1 (Ω;Cd) + ‖u‖W2,2(Ω;Cd)

)
≤ C

(
‖f‖Wk,p1 (Ω;Cd) + ‖f‖L2(Ω;Cd)

)
≤ C‖f‖Wk,p1 (Ω;Cd).

(A.3)

To proceed let p2 ≥ p1 with 1/p1 − 1/p2 ≤ 2/d. By Proposition 3.1, we now find u ∈
Wk+6,2(Ω;Cd) ↪→ Wk+2,p2(Ω;Cd). Inequality (A.1) followed by Sobolev’s embedding theorem
then provide the estimate

‖u‖Wk+2,p2 (Ω;Cd) ≤ C
(
‖f‖Wk,p2 (Ω;Cd) + ‖u‖W2,p1 (Ω;Cd)

)
·

Combining this with (A.3) in the case k = 0, Hölder’s inequality, and the boundedness of Ω we
conclude that

‖u‖Wk+2,p2 (Ω;Cd) ≤ C‖f‖Wk,p2 (Ω;Cd).

Bootstrapping this argument delivers the stated estimate of the proposition for all p ≥ 2. By
density, we get (3.5) for all f ∈Wk,p(Ω;Cd). Taking k = 0 gives the surjectivity of Lp.

Let us next consider the case 1 < p < 2. Then, the invertibility of its adjoint (as according to
Lemma 3.2, it is equal to (L∗2)p′ , and L∗2 is L2 with z replaced by z), and standard annihilator
relations imply that Lp is injective and has dense range.

Next, for f ∈ L2(Ω;Cd) ↪→ Lp(Ω;Cd), let u ∈ D(L2) be such that L2u = f . In this case, we
already know that u ∈W2,2(Ω;Cd) ↪→W2,p(Ω;Cd) is valid, and Inequality (A.1) implies

‖u‖W2,p(Ω;Cd) ≤ C
(
‖f‖Lp(Ω;Cd) + ‖u‖Lp(Ω;Cd)

)
.(A.4)

As u ∈ D(Lp), there exists by definition a sequence (un)n∈N ⊂ D(L2) which converges in

Lp(Ω;Cd) to u and for which fn := L2un converges in Lp(Ω;Cd) to f := Lpu. Estimate (A.4)

implies then that (un)n∈N converges in W2,p(Ω;Cd). Hence (A.4) is valid for all u ∈ D(Lp).
One can show that (3.6) with k = 0 is valid by contradiction. Assuming the contrary, we

obtain the existence of a sequence (un)n∈N ⊂ D(Lp) with fn := Lpun such that for all n ∈ N

‖un‖W2,p(Ω;Cd) = 1 and ‖fn‖Lp(Ω;Cd) → 0 as n→∞.

By compactness (and by going over to a subsequence), (un)n∈N converges in Lp(Ω;Cd) to some
u ∈ Lp(Ω;Cd). The closedness of Lp then implies u ∈ D(Lp) and Lpu = 0. Since we already
know that Lp is injective, it follows that u = 0. Now, (A.4) gives a contradiction and thus we
infer that (3.6) for k = 0 is valid. This estimate in turn implies that the range of Lp is closed

and since it is dense in Lp(Ω;Cd), we deduce that 0 ∈ ρ(Lp).
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Next, let f ∈ D(Lp) and u ∈ D(L2
p) with Lpu = f . By definition, there exists (fn)n∈N ⊂ D(L2)

with fn → f and L2fn → Lpf in Lp(Ω;Cd) as n→∞. By (A.4) it holds

‖fn − fm‖W2,p(Ω;Cd) ≤ C
(
‖L2(fn − fm)‖Lp(Ω;Cd) + ‖fn − fm‖Lp(Ω;Cd)

)
·

Thus, (fn)n∈N is a Cauchy sequence in W2,p(Ω;Cd). Define un := L−1
2 fn ∈ D(L2

2) and observe
that un → u in Lp(Ω;Cd) as n → ∞. Since D(L2

2) ↪→ W4,2(Ω;Cd) ↪→ W4,p(Ω;Cd), Inequal-
ity (A.1) guarantees that

‖un − um‖W4,p(Ω;Cd) ≤ C
(
‖fn − fm‖W2,p(Ω;Cd) + ‖un − um‖Lp(Ω;Cd)

)
·

In the limit, this implies that u ∈W4,p(Ω;Cd) and

‖u‖W4,p(Ω;Cd) ≤ C
(
‖f‖W2,p(Ω;Cd) + ‖u‖Lp(Ω;Cd)

)
·

As above, (3.6) for k = 1 follows from a contradiction argument. The case k ≥ 2 follow the same
strategy by iterating this argument.

Finally, using what we just proved in the case k = 0 in the definition of D(L2) ensures that

D(Lp) ↪→W2,p(Ω;Cd) ∩W1,p
0 (Ω;Cd), and the reverse embedding is obvious. �

The following lemma clarifies the relationships between Lp, Lp and L̃p.

Lemma A.3. Let 1 < p <∞. Under the notations in (3.8) with r = p′, and (3.9), the following
statements hold true:

(1) For all u ∈ D(Lp) it holds

Φ−1L̃pΦu = Lpu.

(2) For all f ∈ Lp(Ω;Cd) it holds

Φ−1L−1
p Φf = L−1

p f.

(3) For T := L̃pΦ, we have that T : Lp(Ω;Cd)→ X−1
p is an isomorphism and that

Lp = TLpT
−1.

(4) If Lp denotes the part of Lp in Lp
′
(Ω;Cd)′, then it holds

Lp = (L∗2)′p′ .

(5) It holds

Φ−1LpΦ = Lp.

Proof. (1) Let u ∈ D(Lp). Then, by virtue of the definition of L̃p, the definition given
in (3.4), and Lemma 3.2, we have

Φ−1L̃pΦu = Φ−1(L∗2)◦p′Φu = (L∗2)∗p′u = Lpu.

(2) This is just a reformulation of (1).

(3) Notice that since Lp maps into Lp(Ω;Cd) it holds D(L̃pΦLpΦ−1L̃−1
p ) = D(LpΦ

−1L̃−1
p ).

Let u ∈ D(LpΦ
−1L̃−1

p ). Since Lp is invertible, there exists f ∈ Lp(Ω;Cd) such that

L−1
p f = Φ−1L̃−1

p u.

Applying (2) delivers f = Φ−1u and it follows that u ∈ D(Lp). Furthermore, another
application of (2) yields

TLpT
−1u = L̃pΦLpΦ−1L̃−1

p u = L̃pu = Lpu.
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Conversely, let u ∈ D(Lp) = Lp
′
(Ω;Cd)′. Then (1) implies

u = L̃pΦΦ−1L̃−1
p ΦΦ−1u = L̃pΦL−1

p Φ−1u.

It follows that Φ−1L̃−1
p u ∈ D(Lp) and thus that u ∈ D(LpΦ

−1L̃−1
p ).

(4) Let u ∈ D(Lp). Then by definition of the part of an operator, it holds u ∈ Lp
′
(Ω;Cd)′

and (L∗2)◦p′u ∈ Lp
′
(Ω;Cd)′. In particular, there exists w ∈ Lp

′
(Ω;Cd)′ such that for all

v ∈ D((L∗2)p′) it holds

〈(L∗2)◦p′u, v〉D((L∗2)p′ )
′,D((L∗2)p′ )

= 〈w, v〉(Lp′ )′,Lp′ .

Consequently,

〈u, (L∗2)p′v〉(Lp′ )′,Lp′ = 〈(L∗2)◦p′u, v〉D((L∗2)p′ )
′,D((L∗2)p′ )

= 〈w, v〉(Lp′ )′,Lp′ .

This implies that u ∈ D((L∗2)′p′) and that (L∗2)′p′u = w.

Conversely, let u ∈ D((L∗2)′p′). By definition, it holds u ∈ Lp
′
(Ω;Cd)′ and there exists

w ∈ Lp
′
(Ω;Cd)′ such that for all v ∈ D((L∗2)p′) it holds

〈u, (L∗2)p′v〉(Lp′ )′,Lp′ = 〈w, v〉(Lp′ )′,Lp′ .

Thus,

〈(L∗2)◦p′u, v〉D((L∗2)p′ )
′,D((L∗2)p′ )

= 〈u, (L∗2)p′v〉(Lp′ )′,Lp′ = 〈w, v〉(Lp′ )′,Lp′ .

It follows that (L∗2)◦p′u ∈ Lp
′
(Ω;Cd)′ and thus u ∈ D(Lp).

(5) This readily follows by combining (4) with (3.4) and Lemma 3.2. �

Lemma A.4. For all 1 < p < ∞, 1 ≤ q ≤ ∞, and −1 < s < 1 it holds with equivalent norms
that D(Lp,q,s) = Y s+1

p,q .

Furthermore, if θ ∈ (0, 1) and s + θ < 1, then the part of Lp,q,s on Xs+θ
p,q ' B

2(s+θ)
p,q (Ω;Cd)

coincides with Lp,q,s+θ.

Proof. First of all, recall that Lp is invertible and that its inverse is a bounded operator

L−1
p : X−1

p → X0
p .(A.5)

If f ∈ X1
p , then f can be written as f = Φf for some f ∈ D(Lp). Now, Lemma A.3 (2) implies

L−1
p f = ΦL−1

p Φ−1f = ΦL−1
p f.

By virtue of Proposition 3.3, we thus have

‖L−1
p f‖X2

p
= ‖L2

pL
−1
p f‖Lp(Ω;Cd) ≤ C‖L−1

p f‖W4,p(Ω;Cd) ≤ C‖f‖W2,p(Ω;Cd) ≤ C‖f‖X1
p
.

It follows that L−1
p gives rise to a bounded operator

L−1
p : X1

p → X2
p .(A.6)

Interpolating (A.5) and (A.6) reveals that for all −1 < s < 1, 1 < p < ∞, and 1 ≤ q ≤ ∞ the
operator L−1

p is a bounded operator

L−1
p : Xs

p,q → Y s+1
p,q .(A.7)

Let u ∈ D(Lp,q,s). Then, by (A.7)

u = L−1
p Lpu ∈ Y s+1

p,q .
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Moreover, since Lpu = Lp,q,su, the boundedness stated in (A.7) implies that there exists C > 0
such that

‖u‖Y s+1
p,q
≤ C‖Lp,q,su‖Xs

p,q
.

Conversely, let u ∈ Y s+1
p,q . Since D(Lp) = Lp′(Ω;Cd)′ and since Y s+1

p,q ↪→ X0
p = Lp′(Ω;Cd)′

(cf. (3.10)), we have u ∈ D(Lp). By (A.7), we find Lpu ∈ Xs
p,q and the only information we

need, to conclude that u ∈ D(Lp,q,s), is that u ∈ Xs
p,q. This, however, follows by Proposition 3.6.

Finally, the inequality follows from

‖Lp,q,su‖Xs
p,q

= ‖Lpu‖Xs
p,q
≤ C‖u‖Y s+1

p,q
.

Finally, to prove the second part of the lemma, we use that the domain of the part of Lp,q,s on

Xs+θ
p,q is by definition given as{

u ∈ D(Lp,q,s) ∩Xs+θ
p,q : Lp,q,su ∈ Xs+θ

p,q

}
=
{
u ∈ D(Lp) ∩Xs

p,q ∩Xs+θ
p,q : Lpu ∈ Xs

p,q ∩Xs+θ
p,q

}
=
{
u ∈ D(Lp) ∩Xs+θ

p,q : Lpu ∈ Xs+θ
p,q

}
= D(Lp,q,s+θ). �

Appendix B. Some results for Besov spaces in domains

Proof of Proposition 5.2. Consider two real valued functions u ∈ Bs
p,1(Ω) and v ∈ B

d/p
p,1 (Ω). We

want to prove that uv lies in Bs
p,1(Ω), if −min(d/p, d/p′) < s ≤ d/p. The result is classical for

Ω = Rd and the general domain case follows from the definition of Besov spaces by restriction

given in Section 3. Indeed, if u ∈ Bs
p,1(Ω) and v ∈ B

d/p
p,1 (Ω), then for any extension ũ ∈ Bs

p,1(Rd)
and ṽ ∈ B

d/p
p,1 (Rd) of u and v on Rd, we may write

‖ũ ṽ‖Bsp,1(Rd) . ‖ũ‖Bsp,1(Rd)‖ṽ‖Bd/pp,1 (Rd)
.

As ũ ṽ is an extension of uv on Rd, taking the infimum on all extensions gives the result. �

Proof of Proposition 5.3. Looking at the proof of [10, Prop. 1.7] and using the embedding of

B
d/p
p,1 (Rd) in L∞(Rd), we see that in the Rd case, we do have the result with the estimate

‖K(z)‖
B
d/p
p,1 (Rd)

≤ C(1 + ‖z‖
B
d/p
p,1 (Rd)

)k‖z‖
B
d/p
p,1 (Rd)

with k := dd/pe.

The result in a general domain then follows, considering all the extensions z̃ ∈ B
d/p
p,1 (Rd) of

z ∈ B
d/p
p,1 (Ω), then taking the infimum.

The second part of the proposition follows from the first part, the following formula:

K(z2)−K(z1) = K ′(0)(z2 − z1) +

ˆ 1

0

(
K ′(z1 + τ(z2 − z1))−K ′(0)

)
(z2 − z1) dτ

and Proposition 5.2. �

Property (6.13) is a consequence of the following proposition.

Proposition B.1. Let f be in B
d/p
p,1 (Rd) for some 1 ≤ p ≤ ∞. Let ψ be a smooth function,

supported in the unit ball of Rd. Denote ψδ,x0 := ψ(δ−1(· − x0)) for δ > 0 and x0 ∈ Rd. Then,

lim
δ→0
‖ψδ,x0 (f − f(x0))‖

B
d/p
p,1

= 0 uniformly with respect to x0.
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Proof. Let us first establish the result for g a smooth function with bounded derivatives at all
order. Let without loss of generality δ ∈ (0, 1). We first notice, owing to the mean value theorem
and the fact that ψδ,x0 is supported in a ball of radius δ that

‖∇αψδ,x0(g − g(x0))‖Lp ≤ C‖∇g‖L∞δ1+ d
p
−α

for all α ∈ N.
Next, we see that for any couple (β, γ) of integers with γ ≥ 1,

‖∇βψδ,x0 ∇γ(g − g(x0))‖Lp ≤ C‖∇γg‖L∞δ
d
p
−β
.

Consequently, in light of Leibniz formula, for all integer α there exists a constant Cα > 0
depending only on g and such that for all x0 ∈ Rd and δ ∈ (0, 1),

‖∇α(ψδ,x0 (g − g(x0)))‖Lp ≤ Cαδ
d
p

+1−α
.

If α ∈ N is such that d/p < α ≤ d/p + 1, the exponent of δ in the previous inequality is non-
negative. Moreover, combining the derived estimates with the following interpolation inequality

‖h‖
B
d/p
p,1

≤ C‖h‖
1− d

pα

Lp ‖h‖
d
pα

Wα,p

and the assumption that δ < 1 yields that there exists a constant Cg > 0 depending only on g,
p and d such that

(B.1) ‖ψδ,x0 (g − g(x0))‖
B
d/p
p,1

≤ Cgδ(1+ d
p

)(1− d
pα

)
for all δ ∈ (0, 1) and x0 ∈ Rd.

Let us now prove the proposition for a general function f in B
d/p
p,1 . Fix some ε > 0 and take g

smooth with bounded derivatives at all order such that ‖f − g‖
B
d/p
p,1

≤ ε. We have

‖ψδ,x0 (f−f(x0))‖
B
d/p
p,1

≤ ‖ψδ,x0 (g−g(x0))‖
B
d/p
p,1

+‖ψδ,x0 (f−g)‖
B
d/p
p,1

+ |f(x0)−g(x0)|‖ψδ,x0‖Bd/pp,1

.

Using Proposition 5.2, Inequality (B.1) and the embedding B
d/p
p,1 ↪→ L∞, we thus have

‖ψδ,x0 (f − f(x0))‖
B
d/p
p,1

≤ Cgδ(1+ d
p

)(1− d
pα

)
+ C‖ψδ,x0‖Bd/pp,1

‖f − g‖
B
d/p
p,1

.

Using the invariance (up to an harmless constant) of the norm in B
d/p
p,1 (Rd) by translation and

dilation, and the definition of g, we end up with

‖ψδ,x0 (f − f(x0))‖
B
d/p
p,1

≤ Cgδ(1+ d
p

)(1− d
pα

)
+ Cε,

which ensures
‖ψδ,x0 (f − f(x0))‖

B
d/p
p,1

≤ 2Cε

provided δ is small enough. �
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