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Introduction

In this paper we address two competitive location models [START_REF] Blanquero | Continuous location problems and big triangle small triangle: constructing better bounds[END_REF][START_REF] Drezner | Finding the optimal solution to the Huff competitive location model[END_REF][START_REF] Fernández | Solving a Huff-like competitive location and design model for profit maximization in the plane[END_REF][START_REF] Huff | Defining and estimating a trading area[END_REF][START_REF] Huff | A programmed solution for approximating an optimum retail location[END_REF][START_REF] Plastria | Static competitive facility location: An overview of optimisation approaches[END_REF] on a network [START_REF] Dearing | Optimal locations for a class of nonlinear single-facility location problems on a network[END_REF][START_REF] Labbé | Location on Networks[END_REF]. Let N = (V, E) be a network, with node set V and edge set E. The length of the edge e ∈ E is given, and it is denoted by l e . The distance between two nodes a i , a j is calculated as the shortest path [START_REF] Labbé | Location on Networks[END_REF] from a i to a j . For each e ∈ E, with end nodes a i , a j , we identify each x ∈ [0, l e ] with the point in the edge e at distance x from a i and distance l e -x from a j . This way, we obtain that, for any vertex a k ∈ V , the distance d(x, a k ) from x to a k is, as a function of x, a concave piecewise linear function, given by: d(x, a k ) = min{f ia k (x), f ja k (x)}

(1)

f ia k (x) = x + d(a i , a k ) f ja k (x) = (l e -x) + d(a j , a k )
We refer the reader to [START_REF] Labbé | Location on Networks[END_REF] for a comprehensive introduction to location models on networks.

The remainder of this paper is structured as follows. Two different location models on networks are considered. The first model (Section 2) is the classic Huff location model, as addressed in [START_REF] Berman | Big segment small segment global optimization algorithm on networks[END_REF], in which customers perceive the facility attractiveness in terms of their distance to the facility, while the second model (Section 3) is new, called the Huff origindestination (OD) trip model. In the OD trip model the facility attraction is a function of the length of the shortest path from the origin to the destination through the facility. In Section 4 a branch and bound algorithm is designed to solve both problems and two different procedures to obtain bounds are presented. Computational results are given in Section 5, comparing the two bounding strategies implemented. Some concluding remarks are presented in Section 6.

Huff location model

In this model, the finite set V of vertices of the network represents users, asking for a certain service. Each user a ∈ V has demand ω a ≥ 0. Such demand is being patronized by different existing facilities, located at points x 1 , . . . , x r on the network, so that the demand captured by facility at x i from user a is inversely proportional to a positive nondecreasing function of the distance d(a, x i ) from the user at a to the facility at x i . In other words, the demand captured by the facility at x i from the user at a is given by

ω a 1/ϕ a (d(a, x i )) r j=1 1/ϕ a (d(a, x j ))
.

(

) 2 
The usual choice for each ϕ a has the form ϕ a (d) = d λa . When λ a = 2 for all a ∈ V, we have the so-called gravitational model. A new firm is entering the market, by locating one facility at some point on the network. This perturbs market share, since the new facility at x will capture a demand from a ∈ V equal to ω a 1/ϕ a (d(a, x)) 1/ϕ a (d(a, x)) + r j=1 1/ϕ a (d(a, x j ))

.

Here ϕ a is assumed to be non-negative, non-decreasing and twice continuously differentiable in R + . Expression (3) must be carefully considered when ϕ a (0) = 0. Indeed, in such case, if some x j exists with x j = a ∈ V , then the full demand of a will be captured by x j . Hence, such a will not be taken into account, and thus we assume in what follows without loss of generality that x j / ∈ V, j = 1, . . . , r. The goal of the entering firm is the maximization of its market share. This is written as the following optimization problem:

max x∈[0,le], e∈E a∈V ω a 1/ϕ a (d(a, x)) 1/ϕ a (d(a, x)) + r j=1 1/ϕ a (d(a, x j )) . (4) 
Defining for each a ∈ V the positive constant β a ,

β a = r j=1 1 ϕ a (d(a, x j )) , (5) 
it follows that Problem (4) can be rewritten as

max x∈[0,le], e∈E F (x) (6) 
with F defined as

F (x) = a∈V ω a 1 1 + β a ϕ a (d(a, x)) . (7) 
This problem has been addressed in [START_REF] Berman | Big segment small segment global optimization algorithm on networks[END_REF], in which a branch and bound algorithm with Interval Analysis bounds is proposed.

Huff OD trip model

In this model, we have the set {{a, b}, a ∈ V, b ∈ V }, of origin-destination pairs. The trip from origin a to destination b will imply a demand ω ab > 0. Consumers in their way from origin a to destination b will stop at one facility; they choose among the r existing facilities, x 1 , . . . , x r , and the new facility at x as in the model described in Section 2: the demand from a user in his way from a to b captured by each facility is inversely proportional to a positive nondecreasing function of the length of the path from the origin to the destination via the facility.

In other words, the demand captured by x from users in their trip from origin a to destination b is given by

ω ab 1/ϕ ab (d(a, x) + d(x, b)) 1/ϕ ab (d(a, x) + d(x, b)) + r j=1 1/ϕ ab (d(a, x j ) + d(x j , b)) . ( 8 
)
As in the other model, the goal of the entering firm is the maximization of its market share. This is written as the following optimization problem:

max x∈[0,le], e∈E a,b∈V ω ab 1/ϕ ab (d(a, x) + d(x, b)) 1/ϕ ab (d(a, x) + d(x, b)) + r j=1 1/ϕ ab (d(a, x j ) + d(x j , b)) . (9) 
Defining for each a, b ∈ V the positive constant β ab ,

β ab = r j=1 1 ϕ ab (d(a, x j ) + d(x j , b)) ,
it follows that Problem (9) can be rewritten as

max x∈[0,le], e∈E F (x)
with F defined as

F (x) = a,b∈V ω ab 1 1 + β ab ϕ ab (d(a, x) + d(x, b)) . (10) 
We see that both the location and OD trip models yield an optimization problem of the same form, namely, [START_REF] Blanquero | On covering methods for d.c. optimization[END_REF], with a rather similar function F , as given by ( 7) and [START_REF] Drezner | The big triangle small triangle method for the solution of non-convex facility location problems[END_REF] respectively. Both functions F can be written in the form

F (x) = δ∈∆ ω δ 1 1 + β δ ϕ δ (d δ (x)) . ( 11 
)
where ∆ = V and, for δ ∈ ∆,

d δ (x) = d(a, x)
for the location model, and

∆ = {{a, b}, a, b ∈ V } and, for δ ∈ ∆, d δ (x) = d(a, x) + d(x, b)
for the OD trip model.

Solving the models 4.1 Multimodality

The optimization problems described in Section 2 and 3 are, in general, multimodal, and standard optimization methods get stuck at local optima. This can be seen in simple examples, even when the network is a segment and is illustrated in the following examples for the Huff location problem introduced in Section 2.

First, data for one problem with two users and r = 1 facility on a segment were randomly generated. The objective function F of such instance is plotted in Figure 1 (left). One can see that the problem is bimodal. 100 runs of a local search procedure starting with a random point were performed.

In Figure 1 (right) one can see the histogram of the objective values provided by the optimizer: below a 50% of the runs yielded the global optimum, whereas the remaining runs stopped at the local not globally optimal solution.

Another instance, with 500 user and 100 facilities was also generated. In Figure 2 the problem is shown to be multimodal, and just below a 14% of the runs solved with the optimizer yielded the global optimum.

In the right part of Figures 1-2 the x axis is normalized, so that 1 corresponds to the best found objective value, z * , and a bar at x ∈ [0, 1] indicates that an objective value x • z * was found. 

Algorithm

We will use a branch and bound algorithm [START_REF] Drezner | The big triangle small triangle method for the solution of non-convex facility location problems[END_REF][START_REF] Hansen | The minisum and minimax location problems revisited[END_REF][START_REF] Plastria | GBSSS: The generalized big square small square method for planar single-facility location[END_REF] to solve the problems under consideration. We first outline the algorithm that finds an optimal solution within a relative accuracy of ε, and later give the details on the bounding process, which will exploit monotonicity properties or the fact that the objective function is DC on each edge, [START_REF] Blanquero | On covering methods for d.c. optimization[END_REF][START_REF] Horst | Dc programming: Overview[END_REF][START_REF] Tuy | DC Optimization: Theory, Methods and Algorithms, Handbook of Global Optimization[END_REF][START_REF] Tuy | A d.c. optimization method for single facility location problems[END_REF]. We remind the reader that a function h is DC if it can be written as h = h + -h -, where h + , h -are both convex; the expression h + -h -is called a DC decomposition of h. In the description of the algorithm, we have ∆ = V for the Huff location model and ∆ = {{a, b}, a, b ∈ V } for the Huff OD trip model.

• Phase 1: Initialization -Fix the required accuracy ε > 0.

-Set LB = 0.

-Compute the all-pairs distance matrix.

-Calculate β δ , ∀δ ∈ ∆.

-Set the list H of remaining segments as empty.

• Phase 2: Prepare the list of segments -Consider the edge e as segment with its nodes as the segment vertices.

-The value of the objective function is evaluated at the segment midpoint. If the value is greater than LB, then LB is updated to such value and the midpoint stored as incumbent.

-Calculate an upper bound for the segment e, U B(e).

-

In case U B(e) ≥ LB • (1 + ε) insert e into H.
• Phase 3: Branch and bound process.

Repeat as long as no stop is reached:

-Select from H the highest upper bound segment, U B max , with LB as ε-optimal value and the incumbent as an ε-optimal solution. If U B max ≤ LB • (1 + ε), stop the algorithm with LB as the solution.

-The highest upper bound segment, U B max , is selected for a split at its midpoint into two smaller segments.

-The value of the objective function at the midpoint of the two small segments is calculated. If any of these values is greater than LB, then LB is updated and all segments from H whose upper bound is lower than LB are discarded.

-An upper bound for each small segment is calculated.

-All segments whose upper bound is greater than LB • (1 + ε) are added to H.

In the algorithm above, the segment midpoint yielding the best upper bound is given as ε-optimal solution. Observe that the full list of segments in H contain all ε-optimal solutions, and can thus be used in a two-phase process, as suggested in the GBSSS algorithm, [START_REF] Plastria | GBSSS: The generalized big square small square method for planar single-facility location[END_REF].

Let us detail the algorithm steps previously outlined. To calculate the all-pairs distance matrix we use the Floyd algorithm [START_REF] Bertsekas | Network Optimization: Continuous and Discrete Models[END_REF], which uses the edge length matrix to build recursively the distance matrix.

The computation of the bounds requires more detail. The algorithm needs the calculation of an upper bound, U B(s), for each segment s. We present two procedures, one based on Interval Analysis, and the other in properties of DC functions.

Interval analysis bound

When the distance d δ (x) decreases, the market share as given by the objective function [START_REF] Fernández | Solving a Huff-like competitive location and design model for profit maximization in the plane[END_REF] increases. Hence we obtain an upper bound on the market share F (x) for any location x on a segment s = [x 0 , x 1 ] ⊂ e ∈ E by replacing d δ (x) by the lowest possible of these distances on the segment. Defining therefore such lowest distance for the location model as in [START_REF] Berman | Big segment small segment global optimization algorithm on networks[END_REF] 

d δ (s) = min{d(a, x 0 ), d(a, x 1 )} for δ = a,
and for the OD trip model as

d δ (s) = min{d(a, x 0 ) + d(b, x 0 ), d(a, x 1 ) + d(b, x 1 )} for δ = {a, b}, we obtain the Interval Analysis bound U B IA (s) = δ∈∆ ω δ 1 1 + β δ ϕ δ (d δ (s)) (12) 

DC bound

An upper bound obtained making use of the fact that the objective function is DC on each edge exploits the following properties:

Proposition 4.1 Let I ⊂ R be an interval. Let d : I → R be a concave function on I, and let g : R → R be DC, with a DC decomposition given by g(x) = g + (x) -g -(x), with both g + and g -non-increasing functions. Then, the function f :

I → R defined as f (x) = g(d(x)) is DC on I and a DC decomposition is given by f (x) = f + (x) -f -(x), where f + (x) = g + (d(x)) and f -(x) = g -(d(x)).

Proof

The proof follows directly from the fact that the compositions g + (d(x)) and g -(d(x)) are also convex functions.

Remark 4.1 Proposition 4.1 makes use of a function g which can be written as the difference of two convex functions, g + and g -. Since such convex functions are also non-increasing, it turns out that g belongs to a subclass of DC functions, namely DCM functions, as introduced in [START_REF] Blanquero | Continuous location problems and big triangle small triangle: constructing better bounds[END_REF], which are those functions expressed as the difference of two convex monotonic functions, as g + , g -are. See [START_REF] Blanquero | Continuous location problems and big triangle small triangle: constructing better bounds[END_REF] for further properties.

We are now in position to give a bound for F on an edge exploiting the fact that F is DC. Let d δ (x) be the concave function given in [START_REF]Data instances for arc routing problems[END_REF]. Assuming ϕ δ (d) = d λ δ , (11) can be rewritten as

F (x) = δ∈∆ ω δ 1 1 + β δ d λ δ (x) (13) 
Let us define a simpler function:

g(t) = 1 1 + βt λ (14) 
The following DC decomposition is known for function g, [START_REF] Bello | On minimax-regret Huff location models[END_REF]:

c = λ -1 (λ + 1)β 1/λ g + (t) = g(c) + g (c)(t -c) if t ≤ c g(t) if t > c g -(t) = g(c) + g (c)(t -c) -g(t) if t ≤ c 0 if t > c That means that g(t) = g + (t) -g -(t).
Applying Proposition 4.1 we have that a DC decomposition for F as defined in ( 13) is:

F + δ (x) = ω δ g + (d δ (x)) F - δ (x) = ω δ g -(d δ (x)) F (x) = δ∈∆ F + δ (x) - δ∈∆ F - δ (x) = δ∈∆ (F + δ (x) -F - δ (x)) (15) 
To construct an upper bound, UB DC , first we obtain a convex minorant of F - δ (x) as in [START_REF] Blanquero | Continuous location problems and big triangle small triangle: constructing better bounds[END_REF]:

F - δ (x) ≥ F - δ (x 0 ) + ξ δ (x -x 0 ) F (x) ≤ δ∈∆ (F + δ (x) -F - δ (x 0 ) -ξ δ (x -x 0 )) for ξ δ ∈ ∂F - δ (x 0 ), (16) 
where ∂F - δ (x 0 ) denotes the set of subgradients of F - δ at x 0 [START_REF] Tuy | DC Optimization: Theory, Methods and Algorithms, Handbook of Global Optimization[END_REF].

Define for each δ ∈ ∆ the function from [START_REF] Labbé | Location on Networks[END_REF]:

U (x) = δ∈∆ (F + δ (x) -F - δ (x 0 ) -ξ δ (x -x 0 )) for ξ δ ∈ ∂F - δ (x 0 ) (17) 
An upper bound for a segment s is obtained:

U B DC (s) = max{U (v 1 ), U (v 2 )} v 1 , v 2 being vertices of s.

Computational results

The algorithm described in Section 4 was programmed in an Intel Fortran Compiler XE 12.0 and executed with an Intel Core i7 computer with 8.00 Gb of RAM memory at 2.8 Ghz. The solutions were found within an accuracy of 10 -10 . The Huff location model was first tested on the 55-node and 134-edge Swain's (1971) network [START_REF] Serra | Surviving in a competitive spatial market: The threshold capture model[END_REF][START_REF] Marianov | Location-allocation of multiple-server service centers with constrained queues or waiting times[END_REF], see appendix, with both bounding strategies.

Several instances of the problem were generated using different values for the number r of existing facilities, ranging from low-saturated markets (r = 10% of the number of edges of the network, |E|) to high-saturated markets (r ≤ 90%|E|). For each value of r, 10 different problems were solved. Each problem is obtained by randomly and independently generating the demands (each vertex of the network is assumed to have a demand uniformly distributed in the interval (0, 1)) and the location of the existing facilities. To generate the r facility locations, r edges are randomly chosen with replacement; on each edge, the facility location is generated following a uniform distribution. The results are shown in Table 1.

The percentage r of existing facilities is shown in the first column. Then, it is reported the minimum, maximum, mean and standard deviation (std) for the number of iterations, i.e., the number of executions of Phase 3, the branch and bound (B&B) list size and the CPU time. The branch and bound list size is the maximum size of the data structure used for storage reached during the algorithm execution.

In all cases, the best solution is found in less than 0.02 seconds for DC bounds, and 0.75 seconds for Interval Analysis bounds. It is remarkable that DC bounds lead to a very stable procedure, as can be seen for all values of r in memory requirements as well as computational time. On the other hand, when using Interval Analysis bounds one can see very extreme cases. There is always a huge difference between the minimum and maximum for the number of iterations, branch and bound list size and time. This means that in the ten runs that are solved for each value of r, Interval Analysis bounds are quite erratic for problems of the same difficulty. Therefore, we have an algorithm that when using DC bounds spends the same resources (computing time) than when using Interval Analysis bounds, but is much more stable and reliable.

Then the algorithm was tested for both models on a battery of test instances of larger dimensions (up to 1000 nodes and 3083 edges) to analyze the dependence of running time and memory requirements with respect to the size of the network and the number of facilities for both bounding strategies.

To attain this end, the models were tested on 43 test networks obtained from [START_REF]Data instances for arc routing problems[END_REF][START_REF] Corberán | A branch & cut algorithm for the windy general routing problem and special cases[END_REF][START_REF] Reinelt | Tsplib -a traveling salesman problem library[END_REF]. For r = 10%|E| and r = 90%|E| of existing facilities, 10 instances of the problem were solved. Results for the comparison between the two methods for obtaining bounds are shown in the following tables. Results for the Huff location model are shown in Tables 2 and3 comparing both bounding procedures applied in Phase 2 and Phase 3 of the algorithm. Results for the Huff OD trip model are shown in Tables 4 and5. Results from Table 1 show that DC bounds seem to be sharper than Interval Analysis bounds but more computationally expensive; therefore, it seems desirable to delete segments in the initialization (Phase 2 of the algorithm) using easy bounds (Interval Analysis), and then use DC bounds for the rest of the segments (Phase 3). Hence, let us note that for the OD trip model, Interval Analysis bounds are used always in Phase 2 of the algorithm, and then, in Phase 3, the two different bounding procedures are compared. This strategy was also tested for the Huff location model with no improvement and therefore not used. The name of the network, number of nodes and edges are reported in the first columns of Tables 2345. The remaining columns have the same meaning than those in Table 1. In Table 2, when dealing with r = 10%|E| facilities in the Huff location model, both bounding methods are comparable, but when dealing with a saturated market, Table 3, DC bounds clearly outperform Interval Analysis bounds. This is due to the simplicity of the Interval Analysis bounds and because DC bounds are sharper. One can see that, when using DC bounds, the branch and bound size and the number of iterations is much smaller than with the other bounds, which means that DC bounds are harder to calculate, but sharper.

DC bounds

For the Huff OD trip model, as the number of computations of the bounds increases, both methods become comparable, as there is an equilibrium between the computational cost of bounds and how sharp they are.

One can see that, although the OD trip model is, in terms of computing time, much harder to solve than the location model, the number of iterations is relatively smaller, while the size of the branch and bound tree is comparable for most networks. Note that the relevant increase of the computing time for the OD trip model with respect to the Huff location model is due to the complexity of the objective function from the model, which involves evaluating many more terms. In both cases all problems can be solved in reasonable time.

Concluding remarks

In this paper we have addressed two Huff models on a network, by considering that the users choose the facility according to the distance from their location (Huff location model, [START_REF] Berman | Big segment small segment global optimization algorithm on networks[END_REF]) or according to the length of the shortest path from the origin to the destination visiting the facility (Huff OD trip model), which is a new model. Since the problems are shown to be multimodal, in order to obtain a global optimum, a branch and bound algorithm based on two different bounding procedures, Interval Analysis and DC optimization, is proposed.

The computational experience reported shows that large networks can be successfully handled with both bounding procedures where the DC procedure seems to be more stable in both time and memory requirements.

Extensions of these problems to the multifacility case deserve further study.

APPENDIX

The Swain data set, [START_REF] Marianov | Location-allocation of multiple-server service centers with constrained queues or waiting times[END_REF][START_REF] Serra | Surviving in a competitive spatial market: The threshold capture model[END_REF] Initial 
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 1 Figure 1: users=2, facilities=1, λ a = 1 ∀a

Figure 2 :

 2 Figure 2: users=500, facilities=100, λ a = 20 ∀a

Table 1 :

 1 Results of the 55-Node and 134-Edge Swain's Network for the Huff location model

		r(%|E|)			iterations			B&B list size		time
			min	max	mean±	std min	max	mean±	std min max mean±	std
		10 111	196	144.40±	34.68	9	61	31.50±	17.25 0.00 0.02	0.00± 0.00
		20	80	193	140.10±	34.32	15	83	42.70±	22.76 0.00 0.00	0.00± 0.00
		30	51	209	117.80±	47.86	25	96	66.70±	22.42 0.00 0.00	0.00± 0.00
		40	50	256	176.40±	55.33	15	107	84.80±	30.51 0.00 0.02	0.00± 0.00
	DC	50	81	290	172.20±	67.40	74	126	107.50±	14.92 0.00 0.02	0.00± 0.00
		60 121	317	166.50±	60.54	72	121	110.10±	16.09 0.00 0.02	0.00± 0.00
		70	94	323	190.00±	64.79 113	131	123.80±	6.36 0.00 0.02	0.00± 0.00
		80 145	332	209.70±	58.43 117	133	123.70±	5.62 0.00 0.02	0.00± 0.01
		90 137	296	211.40±	55.51 111	129	121.40±	5.66 0.00 0.02	0.00± 0.00
		10 158	318	223.70±	50.81	26	120	64.20±	31.72 0.00 0.02	0.00± 0.00
		20 185 178915 18100.40± 56504.50	29 58170 5890.10± 18369.30 0.00 0.59	0.06± 0.19
		30 203	70911 17779.60± 25278.44	75 25465 6219.20±	8904.76 0.00 0.20	0.05± 0.07
		40 243 243922 24639.40± 77048.06	96 84425 8551.40± 26659.27 0.00 0.75	0.08± 0.24
	Interval	50 187	37594	9132.40± 13971.49 118 13306 3143.50±	4794.67 0.00 0.11	0.03± 0.05
		60 186	29111	7734.70± 12130.03 118	9927 2703.30±	4174.80 0.00 0.09	0.03± 0.04
		70 212	10748	3029.00±	4148.73 138	3489 1038.00±	1349.47 0.00 0.03	0.01± 0.02
		80 172	1950	866.60±	677.23 127	648	310.10±	192.99 0.00 0.02	0.00± 0.00
		90 224	22520	4243.00±	7225.49 147	7248 1442.20±	2338.18 0.00 0.09	0.02± 0.03

Table 2 :

 2 Results of test instances for the Huff location model with 10%|E| facilities

	Interval Analysis bounds

Table 3 :

 3 Results of test instances for the Huff location model with 90%|E| facilities

	13

Table 5 :

 5 Results of test instances for the Huff OD trip model with 90%|E| facilities
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