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This article explores the design, on-line, of an electrical machine's healthy reference by means of statistical tools. The definition of a healthy reference enables the computation of normalized fault indicators whose value is independent of the system's characteristics. This is a great advantage when diagnosing a broad range of systems with different power, coupling, inertia, load, etc. In this paper, an original method called spectral kurtosis with reference is presented in order to design a system's healthy reference. Its principle is first explained on a synthetic signal. This approach is then evaluated for mechanical unbalance detection in an induction machine using the stator currents instantaneous frequency. The normalized behaviour of the proposed indicator is then confirmed for different operating conditions and its robustness with respect to load variations is demonstrated. Finally, the advantages of using a statistical indicator based on a healthy reference compared to a raw fault signature are discussed.

D IAGNOSIS and condition monitoring of electrical ma- chines has become a major topic of concern among industrial and academic research. Unexpected failures in electromechanical systems may indeed lead to important losses of production, safety issues and additional costs. For these reasons, developing efficient and robust diagnosis systems is a priority for electrical machines' manufacturers.

Numerous monitoring methods are based on vibratory signals' analysis and enable an efficient detection of mechanical faults [START_REF] Prieto | Bearing Fault Detection by a Novel Condition-Monitoring Scheme Based on Statistical-Time Features and Neural Networks[END_REF]- [START_REF] Immovilli | Bearing Fault Model for Induction Motor With Externally Induced Vibration[END_REF]. However, these methods require accelerometers which are expensive devices. They are only profitable for high power systems where vibration sensors represent a negligible part of the total cost. Therefore, research has focused on diagnosing machine failures through the analysis of current signals due to their availability for control purposes. These methods are mainly based on the Motor Current Signature Analysis (MCSA). A review of MCSA techniques can be found in [START_REF] Bellini | Advances in Diagnostic Techniques for Induction Machines[END_REF]. These methods generally focus on failures generating fault signatures at specific frequencies. These harmonics are predicted by MCSA and can be tracked with signal processing tools in order to obtain specific fault indicators [START_REF] Ebrahimi | Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis[END_REF]- [12]. In the case of mechanical unbalance detection, the current spectral signatures at frequencies f f ± f r proved to be efficient fault indicators [13]- [14]. MCSA may also be used on other electrical quantities extracted from stator currents such as active and reactive power [15], current instantaneous frequency [16]- [17] or demodulated current signals [18].

However, recent researches pay little attention to unavoidable constraints faced in diagnosing a manufacturer's broad range of machines. Most works focus on the study of a single machine operating at a particular functioning point but MCSA fault indicators may vary a lot for healthy and faulty conditions depending on the system's characteristics and operating point. For example, Bellini et al. showed in [19] the influence of the load inertia level on fault signatures related to broken bar detection. It has also been shown in [13] that the load level could significantly affect current signatures linked to mechanical unbalance. Thus, classification systems based on neural networks (NN) or fuzzy logic (FL) have been developed in order to automatically determine a machine's health state while taking into account its characteristics and operating conditions. Relevant applications of NNs based on stator currents are presented in [20]- [23]. Bearing fault detection is also studied by Raj et al. in [24] with a FL-based surveillance system. All these classification methods require faulty and healthy learning sets at different operating points for training. During the functioning time of the system, each new data set is compared to the different learning sets in order to determine the machine's health condition. Fault severity may as well be evaluated if faulty learning sets have been realized for different levels of the considered degradation. Unfortunately, it seems impossible for a machine's manufacturer to obtain such an amount of information, especially faulty learning sets, for every machine model. Moreover, these information may depend on the machine environment such as the load inertia or the coupling for example.

In this context, it seems more profitable to create a machine's healthy reference during its initial working period by statistical means and with a protocol which takes into account the influence of the operating point. After this reference period, each new recording will be tested to find out whether the system has drifted from its referenced behaviour or not. The aim is therefore to detect faulty workings and the estimation of the fault severity is not targeted here since no faulty learning sets are used. The present article explains how new implementations of the spectral kurtosis (SK) make this kind of monitoring possible. SK is a signal processing tool complementing the Power Spectrum Density (PSD) representation. Its rules and properties are explained in [25]. Recent works [26]- [28] have shown that SK may be an efficient tool for monitoring faults generating impulses in vibration or current signals such as bearing or gear faults. Moreover, SK can also be successfully used to detect generalizedroughness bearing fault, as shown in [29]. However, SK is unsuitable for detecting long term changes within a signal in its classic implementation. Indeed, a slowly increasing spectral component is considered as stationary on each local part of the signal by the SK. A different approach is presented in a previous work [30] with new protocols of computation of the SK. These SK calculations no longer use only a single signal's recording but several recordings in order to detect a developing mechanical unbalance in an induction machine (IM) via stator phase currents.

In this context, this article aims to enhance the design of normalized fault indicators independent of a machine's type, power and operating point by using a statistical reference. This healthy reference is provided thanks to the spectral kurtosis with reference (SK R ) presented in [30] and detailed in this paper. Moreover, new experimental tests have been carried out at several load conditions and current instantaneous frequency (IF) is now used to monitor mechanical unbalance development. Applications targeted in this paper are indus-trial systems such as fans, pumps or compressors driven by induction motors. These latter are fed by open-loop inverters which enable the selection of one or several supply frequencies dedicated to the monitoring phases. In Section II, definition and properties of the classic implementation SK are presented to remind its principle of operation. In section III, the SK R computation protocol is designed in order to overcome the limitations of the SK. SK R performance are then tested in Section IV for detection of a developing mechanical unbalance via current IF. These experiments are performed at several load conditions in order to verify the normalized character of SK R indicators. SK R robustness when faced to load variations is also tested. Finally, advantages of SK R for the diagnosis of a broad range of machine are discussed and perspectives are detailed.

II. MATHEMATICAL BACKGROUND AND CLASSICAL USE OF SPECTRAL KURTOSIS A. Kurtosis

Let x be a random variable with mean µ and standard deviation σ. In high order statistics, the excess kurtosis of the random variable x is defined in (1) as

K(x) = κ 4 κ 2 2 (1) 
where κ i is the i th cumulant of x and is defined as

κ i = m i - i-1 k=0 k -1 i -1 κ k m i-k (2) 
with m i is the i th moment of x. For clarity reasons, the excess kurtosis will be simply referred as kurtosis from now on.

In statistics, kurtosis is the second shape factor (after the skewness) and reflects the sharpness of a distribution. The sharper the distribution of x, the higher its kurtosis. Reciprocally, the flatter the distribution, the lower its kurtosis. However, kurtosis may also be used to detect outlier elements within a distribution. For instance, let us consider a sample of a random variable x whose probability density function (PDF) is illustrated in Fig. 1 (top). The kurtosis of this sample, where there is no outliers and whose elements are well gathered around the sample's mean, has a low value (examples: 0 for a Gaussian sample, -1,2 for a uniform sample). Now, let us consider the same sample in which were added some extreme (and rare) elements around 10. Its PDF is plotted in Fig. 1 (bottom). This time the sample's kurtosis has a high value caused by the outliers' presence. This property is the basic principle used in SK computation for detecting non-stationary components within a signal.

B. Classic Spectral Kurtosis

Let x[k] ∈ R be a digital signal and X(f ) its Discrete Fourier Transform. Its spectral component at a specific frequency f i is a complex random variable, noted X(f i ). Thus, the spectral kurtosis of x(k) is noted SK x (f ) and is defined as the kurtosis of the random variable X(f i ) at each frequency Therefore, a minimum number of spectra is required to properly estimate a signal's SK. In practice, this number is reached by using the STFT whose principle is to split the signal x into N segments (with or without overlap) and to compute a FFT on each one. When a spectral component |X(f )| has a stationary behavior, its distribution is similar to the one presented in Fig. 1 (top). Thus, SK x (f ) has a low value. On the contrary, when this spectral component is non-stationary, its distribution is closer to the one presented in Fig. 1 (bottom). More explanations about the principle of operation of SK and its computation protocol are detailed in [30].

f i [26] SK x (f i ) = K(X(f i )) = κ 4 (X(f i )) κ 2 2 (X(f i )) (3) 
This algorithm is therefore suitable to detect fault signatures with a non-stationary behaviour during a recording period, such as bearing faults. However, an innovative SK implementation is presented in the following section in order to design normalized fault indicators for other types of degradation.

III. DEFINITION OF A MACHINE'S HEALTHY REFERENCE VIA A NEW IMPLEMENTATION OF SPECTRAL KURTOSIS

In the case of the monitoring of an electrical machine, phase currents (or other useful measures) are recorded for a certain amount of time T recording at regular intervals, once a day for example. Each recording contains L samples. As shown in section II, SK would be an efficient indicator to detect fault signatures with a non-stationary behaviour over time T recording , such as some bearing faults signatures. However, many faults occurring in electro-mechanical systems are more likely to produce signatures with a stationary behaviour. Indeed, a mechanical unbalance slowly increasing in a ventilation system will induce fault signatures growing over large time scale but locally constant on each recording. A shaft misalignment provoked by a maintenance phase would do the same but more suddenly. Therefore, this section focuses on the design of normalized fault indicators with the aim of detecting two successive increases of the level of a simulated mechanical unbalance.

In order to simulate a mechanical unbalance in a rotating system, let us consider a synthetic signal IF (t) representing the current instantaneous frequency. To obtain this variable, I α (t) and I β (t) are first computed by applying Concordia matrix on phase currents I 1 (t), I 2 (t) and I 3 (t). Instantaneous frequency (IF) and instantaneous amplitude (IA) of stator currents are then defined as

IF (t) = 1 2π dφ(t) dt (4) 
IA(t) = |I c (t)| (5) 
with

I c (t) = I α (t) + iI β (t) and φ(t) = arg(I c (t)
). The authors of [14] indeed proved that faults producing load torque oscillation also cause phase modulations (PM) of stator currents. Thus, IF is a relevant quantity for detecting these kinds of faults because it reveals PM harmonics of currents.

The impact of a mechanical unbalance on the current IF can reasonably be modelled as

IF (t) = f f + β • cos(2πf r t + φ r ) + n(t) (6) 
This signal is composed of: 1) a constant component of amplitude f f → the current fundamental frequency; 2) a fault component with an amplitude equal to β at the rotation frequency f r → relative to the unbalance level; 3) a noise component n(t). In this example, the signal IF (t) is composed of 400 5srecordings and the fault severity β evolves over the recordings as shown in Fig. 2. This profile is representative of two 

A. Spectral Kurtosis

First, the classical implementation of the SK is tested on the synthetic signal IF . It is computed on each IF recording by using STFT windows of 8000pts with 75 % overlap. Specific explanations on the choice of the window length and the overlap are given in [25] and [27]. The SK of the simulated current IF at frequency f r is presented in Fig. 3. It can be observed that the indicator SK(f r ) decreases from about 0 to -0.8 after the first increase of the modulation excessive because its length also conditions the duration of the reference phase. A good compromise between a trustworthy reference and a short referencing phase is N ref = 50. Now let us consider the choice of the parameter N mov . As it is visible in Fig. 5, the reaction of indicator SK R is strongly related to the ratio R =

N ref
Nmov . Indeed, SK R reacts stronger for high R values but it is also noisier. In any case, the detection sensitivity is not affected by parameter N mov as long as the ratio R is much higher than 1. N mov = 1 is a good choice since it ensures the highest possible value of R for a given value of N ref . In this way, the indicator SK R tests the membership of the latest value of the considered fault signature to its reference achieved during healthy working. The couple {N ref = 50, N mov = 1} is not the unique possibility but the indicator SK R thus created is robust and easy to interpret. This choice will therefore be retained in the rest of the study.

Finally, an improvement of the SK R can be easily achieved. It may indeed be useful to subtract the kurtosis value of the reference set to the SK R value in order to correct the non-Gaussianity of the considered variable. In this way, SK R has always a quasi-zero value during healthy period, even if the random variable is not Gaussian.

IV. EXPERIMENTAL RESULTS

A. Test Bench Description

An experimental test bench has been set up in order to illustrate the efficiency of SK R for the detection of a mechanical unbalance occurring in an electro-mechanical system. The experimental bench is composed of:

1) a 5.5 kW Leroy Somer IM with two poles pairs, 28 rotor bars and a wye connection; 2) a direct current motor (DCM) used as a generator in order to produce the desired load torque level; 3) an iron disk placed on the shaft between both machines.

Several weights may be associated with it in order to create different levels of mechanical unbalance. An overall view of the test bench is presented in Fig. 6. The IM is fed by an open-loop inverter and all tests presented in this section are realized with a supply frequency f f = 40Hz. A data acquisition system is used to measure the IM phase the system's rotation axis generates load torque oscillations Γ osc (t) at the frequency rotation f r which are defined by

Γ osc (t) = m • R • g • cos(2πf r t) (7) 
with g the gravitational acceleration. For example, this kind of degradation usually happens in industrial fans due to blade clogging by grease and dust accumulation or the break of a fan blade. Once detected, the mechanical unbalance may easily be fixed in order to prevent a premature wear of the mechanical components, especially bearings.

B. Tests at no load condition

250 5s-recordings of the IM currents have been measured on the machine. They are composed of:

1) 100 recordings with no mechanical unbalance and corresponding to the healthy state of the machine; 2) 50 recordings with the low level of mechanical unbalance B 1 created by a small weight m 1 = 77.5g fixed to the iron disk at a distance R = 7.5cm from the rotation axis. This level of mechanical unbalance produces load torque oscillations at f r with a theoretical amplitude of 0.15% of the IM rated torque; 3) 50 recordings with the medium level of mechanical unbalance B 2 created by a small weight m 2 = 133g fixed to the iron disk at a distance R = 7.5cm from the rotation axis. This level of mechanical unbalance produces load torque oscillations at f r with a theoretical amplitude of 0.27% of the IM rated torque; 4) 50 recordings with the high level of mechanical unbalance B 3 created by a small weight m 3 = 274g fixed to the iron disk at a distance R = 7.5cm from the rotation axis. This level of mechanical unbalance produces load torque oscillations at f r with a theoretical amplitude of 0.55% of the IM rated torque. The spectral component of the current IF at frequency f is noted ÎF (f ). It is shown in [14] that a mechanical unbalance produces a phase modulation (PM) of the current fundamental (of frequency f f ) at the rotation frequency f r . So, mechanical unbalance signature appears in the current IF spectrum at frequency f r . In order to tolerate small variations of the system operating point while monitoring spectral components, we redefine the variable IF (f ) as

IF (f ) = max{ ÎF (f -∆f : f + ∆f )} (8) 
with ∆f chosen to be 0. variable for the detection of load torque oscillations due to a mechanical unbalance. Although the harmonic IF (f r ) is noisy, its value remains stable during the healthy working period. Then, its evolution well reflects the different stages of mechanical unbalance. Even the lowest unbalance level visibly affects the mean level of IF (f r ) while it produces extremely weak load oscillations. The harmonic IA(f r ) has also been illustrated in Fig. 8. It can be noticed that IA also reflects the increase of the mechanical unbalance level (especially the two highest levels), but to a much lower extent than IF. Indeed, IA is more sensitive to degradation generating amplitude modulation (AM) of phase currents, such as eccentricity faults. Thus, a joint study of IF and IA may enable the detection and differentiation of many mechanical faults occurring in a system.

However, although it may seem easy to choose a fault threshold for the fault indicator IF (f r ), the healthy level of this harmonic depends on many factors. Electrical machines with different rated power, poles number, inertia, etc... may have different healthy levels of fault signatures. In order to illustrate this issue, let us monitor the harmonic IF (f r ) during two experiments, both in healthy conditions and at the same load level but with two different total inertia. The difference of inertia in the two experiments is only due to the addition of the iron disk on the shaft. Of course, no unbalance weights were fastened on the iron disk during this test. Results of both indicators are shown in Fig. 9. It is well perceptible in Fig. 9 that both healthy indicators have different mean values µ 1 = 0.0068 and µ 2 = 0.0094 ≈ 1.4µ 1 , while the same machine was monitored at the same load level. When considering diagnosis of a broad range of machines and applications, choosing an a priori robust fault threshold is therefore tricky. It seems unavoidable to study the behavior of fault signatures during the initial working period of the system, when it can be considered as healthy. In this way, the system's reference created is thus specific to each monitored system, which is a key point of the proposed approach.

It has been shown in section III that SK R can be used both to create a system's reference and to compare each new recording to it. This second step enables the user to evaluate if the system has drifted from its healthy reference or not. In order to test SK R efficiency for the detection of a mechanical unbalance, this algorithm has been computed on the fault signature IF (f r ). This computation has been achieved according to the protocol presented in Fig. 4 with N ref = 50 and N mov = 1. Results are shown in Fig. 10 (green solid line). First, it is visible in Fig. 10 that SK R is an efficient indicator for detecting the different levels of mechanical unbalance. This statistical treatment holds the information contained in the fault signature IF (f r ). However it normalizes the healthy values around 0 which makes the detection of abnormal behaviours easier. After the reference period, the SK R (f r ) value remains close to 0 during the healthy operation period. Its value then increases with the severity of the mechanical unbalance. The application of the SK R on the fault signature IF (f r ) thus enables the creation of a normalized fault indicator. Indeed, SK R -based indicators will always have a value about equal to zero during healthy condition whereas classical energy indicators may have many different levels, depending on the system characteristics (type of motor, operating point, etc.). This point is major when considering the diagnosis of a wide range of electro-mechanical systems. Finally, the influence of the ratio R =

N ref
Nmov on the SK R is experimentally verified. SK R sensitivity is indeed directly related to the R level. The choice N ref = 50 and N mov = 1 guarantees a good detection sensitivity and an easy interpretation. It will be conserved in the rest of the study.

C. Tests at different load conditions

The same experiments have been carried out for multiple load conditions in order to confirm the previous results. As mentioned in section IV-B, the application of SK R on fault signatures enables the creation of normalized fault indicators. But also, a single fault threshold may be associated to these normalized indicators, whatever the system or the fault considered. Indeed, let SK R (f r ) be the SK R applied on current IF at frequency f r . The fault threshold t 1% is defined by

P(SK R (f r ) > t 1% ) = 1% (9) 
Therefore, the normalized fault indicator SK R (f r ) exceeds t 1% only 1% of the time during healthy working conditions. If the exceeding rate of SK R (f r ) above t 1% is much more higher than 1%, the system has then drifted from its healthy reference. A maintenance phase is thus necessary. For N ref = 50 and N mov = 1, the fault threshold t 1% is about equal to 0.2.

For every experiment at the different load levels, SK R has been computed on the fault component IF (f r ). The percentage by which SK R exceeds the fault threshold t 1% is then calculated for each health state (healthy, lowest unbalance (B 1 ), middle unbalance (B 2 ) and highest unbalance (B 3 )). The results of this test campaign are presented in Table I. First, it can noticed that, as expected, the exceeding rate of SK R is always about equal to 1 % during healthy conditions. It is a key point of this reference-based monitoring system because no false alarms are generated, for all load conditions. Then, it can also be observed that the indicator sensitivity seems to decrease with the load level. Indeed, the lowest unbalance level B 1 , which is extremely low, is only clearly detectable at no load condition. Two reasons may explain the loss of SK R (f r ) sensitivity with the load level. First, energy indicators are more noisy for high load levels. Then, their faulty levels also decrease with the increase of the load level. However, both unbalance levels B 2 and B 3 seems well detectable for every load conditions (except the middle unbalance level at 70% load).

D. Toward an automatic referencing and monitoring protocol in the torque-speed plane

The previous tests proved the normalization and sensitivity properties of the SK R at different load conditions. However, a reference was necessary per operating point in order to ensure the proper functioning of the indicator. It is impossible, in practice, to associate a reference per every possible working point in the torque-speed plane because it would require a infinite number of references.

The aim here is therefore to associate a reference to a relatively large area in the torque-speed plane, and not to a singularity. To achieve this, areas must be designed such that the considered fault signature has a stable behaviour on each of them. Experimental results showed that the healthy level of the fault signature IF (f r ) varies moderately with the load level. At a specific supply frequency f f , the load axis may therefore be split into M relatively large zones and a reference is created per load area.

Experimental results also showed that the healthy level of the considered fault signature could have large variations along the speed axis. To ensure a good robustness and sensitivity of the SK R indicator, it should be split into a great number of speed zones. However, most industrial systems such as fans, pumps, or compressors, which are targeted in this study, are fed by open-loop inverters. This way, the supply frequency f f may be changed during the monitoring phases in order to always realize the diagnosis at one or a few supply frequencies.

The tests presented in section IV-C can be reorganized by selecting an adequate division of the load axis and a specific supply frequency chosen to perform the diagnosis phases. The monitoring parameters have been selected as follows:

1) the supply frequency selected to achieve the monitoring phases is equal to f f = 40Hz; 2) the load axis is split into M = 4 areas wide by 25% of the rated load.

In this way, a unique reference of the fault signature IF (f r ) is designed for each quarter of the load axis. The reference of the first quarter is built by using N ref recordings acquired at both 0% and 25% of the rated load. In the same way, the reference of the second quarter is designed with N ref values of the fault signature IF (f r ) extracted from recordings at both 35% and 45% of the rated load. Similarly, the reference of the third quarter of the load axis is achieved by using the recordings obtained at 60% and 70% of the rated load. At each new recording, the SK R applied on the fault signature IF (f r ) is computed by using the reference corresponding to the load level of the system. alarm rate is not affected at all by using a single reference per load area. The robustness of the proposed approach is therefore maintained. Moreover, the SK R sensitivity is hardly affected by the use of a reference covering a wide zone of the load axis. Indeed, the exceeding rate in a load area is often close to the mean of the exceeding rates of each functioning point included to this area. For example, the exceeding rate under the lowest unbalance level B 1 in the first load quarter is equal to 20. The exceeding rate at 0% of the rated load and the one at 25%, presented in Table I are respectively equal to 44% and 7% giving a mean exceeding rate equal to 25.5%. Both values are close and the little loss of sensitivity observed is due to the slight non-homogeneity of the variable IF (f r ) over the considered load area. Finally, this referencing process could be repeated for different supply frequencies in order to minimize the impact on the application. To conclude this experimental section, SK R seems to be an efficient monitoring protocol for the diagnosis of a broad range of induction machines operating with different characteristics (type of load, inertia, coupling, etc.). It should be recalled that the tested unbalance levels remains rather low, from B 1 = 0.15% to B 3 = 0.55% of the IM nominal torque. The test campaign presented in Table I shows that a single fault threshold with a statistical meaning is sufficient to ensure a robust detection of these different levels of mechanical unbalance without false alarms. The creation of several references (one for each load condition) enables a good detection of low levels of mechanical unbalances. Because references are created on-line, SK R indicator is therefore independent of the type of machine, of load characteristics and others parameters which can affect classical MCSA indicators as the ones presented in Fig. 8. Moreover, tests realized in section IV-D showed that this method may easily be adapted to ensure a robust diagnosis in the torque-speed plane.

V. CONCLUSION In this paper, an efficient diagnosis protocol based on the computation of a system's healthy reference has been presented. Normalized indicators well adapted for the condition monitoring of a broad range of machines were designed thanks to this statistical reference. In section II, the kurtosis has been defined and its ability to detect outliers within a reference distribution has been demonstrated. In section III, an innovative indicator, the SK R , based on the kurtosis has been designed by including a reference set. SK R ability to generate a system's healthy reference and to detect any drift from it has been tested on synthetic signals. Finally, an experimental test bench has been set-up in order to verify SK R efficiency, when applied on current IF, for the detection of low levels of mechanical unbalance. Tests performed at several load conditions have proven the SK R detection capacity with a single fault threshold for all load conditions. The creation of the system's healthy reference thus enabled a robust detection of weak mechanical unbalances without any false alarms for different operating conditions. Moreover, its robustness to load variations has been demonstrated. Future work will focus on the definition a generic monitoring protocol in the torque-speed plane which specifies the references' area of validity and optimizes the indicator's sensitivity while conserving its robustness and minimizing the impact of the monitoring protocol on the application. Moreover, the proposed approach showed good performance for mechanical unbalance detection in an IM and it will be interesting to confirm these results for other kinds of faults (eccentricity, bearing faults, etc.) and for different systems.
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 1 Fig.1. Probability density function and kurtosis value of a normal distribution without outliers (top) and with some outlier elements around 10 (bottom). The presence of outliers within a distribution is responsible for the increase of its kurtosis value.
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 2 Fig. 2. Evolution of the modulation index (or fault severity) β over the 400 recordings. This profile models two successive increases of the simulated fault severity.
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 5 Fig. 5. SK R applied on the simulated fault harmonic IF (fr) for N ref = 50 and Nmov = 1 (dark blue line with circles), N ref = 25 and Nmov = 1 (light blue line with triangles) and N ref = 50 and Nmov = 4 (magenta line with stars). The ratio R = N ref Nmov greatly impacts the indicator's behaviour.
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 67 Fig. 6. Experimental test bench composed of a 5.5 kW induction machine (right), a direct current motor to produce the load torque (left) and a iron disk placed on the shaft to create the different levels of mechanical unbalance.
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 8 Fig. 8. Illustration of |IF (fr)| (green solid line) and |IA(fr)| (red dotted line) evolutions for the different health states of the induction machine (healthy, B 1 , B 2 and B 3 ).
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 219 Fig. 9. Fault signature |IF (fr)| during healthy conditions with different configuration of the monitored system : with the inertia disk (light blue solid line) and without the inertia disk (dark blue dotted line).
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 10 Fig. 10. SK R applied on current IF at fault frequency fr in the healthy state and for the different unbalance levels B 1 , B 2 and B 3 . Different values of the ratio R = N ref Nmov are used and simulation results are confirmed.
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TABLE I PERCENTAGE

 I BY WHICH THE INDICATOR SK R APPLIED ON IF (fr) EXCEEDS THE FAULT THRESHOLD t 1% FOR EACH HEALTH STATE AND

			LOAD LEVEL.			
				Load level (% of rated load)	
		Health state	0% 25% 35% 45% 60% 70%
		Healthy	0	0	1	0	1	0
	SK R applied on	B 1	44	7	0	0	1	2
	IF (fr)	B 2	100	100	68	42	72	9
		B 3	100	100	100	100	100	100

  The percentage by which SK R exceeds the fault threshold t 1% is then calculated for each health state (healthy, lowest unbalance (B 1 ), middle unbalance (B 2 ) and highest unbalance (B 3 )) and for the different load areas. Results are presented in Table II. It can be noticed that the false

TABLE II PERCENTAGE

 II BY WHICH THE INDICATOR SK R APPLIED ON IF (fr) EXCEEDS THE FAULT THRESHOLD t 1% FOR EACH HEALTH STATE AND

			LOAD AREA.		
			Load area (% of rated load)	
		Health state	[0%→25%] [25%→50%] [50%→75%]
		Healthy	0	1	1
	SK R applied on	B 1	20	1	3
	IF (fr)	B 2	99	47	41
		B 3	100	100	100