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Functional response of an adapted subtidal macrobenthic
community to an oil spill: macrobenthic structure
and bioturbation activity over time throughout an 18-month field

experiment

Franck Gilbert - Georges Stora - Philippe Cuny

Abstract An experimental oil spill was carried out in order to
assess in situ responses of a macrobenthic community of
shallow subtidal sediments historically exposed to petroleum
contamination. Both structural and functional (bioturbation
activity) parameters of the community, subjected or not to a
pulse acute contamination (25,000 ppm), were studied for
18 months. No difference in the community structure was
detected between contaminated and control sediments, from
6 to 18 months of experimentation. Vertical distributions of
organisms, however, were affected by the presence of oil
contamination leading to a deeper burial of some polychaete
species. In the same time, changes in sediment-reworking
activity and more especially a deeper particle burying in
sediments subjected to acute oil contamination were shown.
These results highlight the need to complete the analysis of
community structure by assessing functional aspects, such as
bioturbation activity, a process integrating various aspects of
benthic behaviour (e.g. feeding, locomotion, burrow building)
in order to estimate real (structural and functional) and long-
term effects of oil contamination on benthic communities.

Responsible editor: Robert Duran

Electronic supplementary material The online version of this article
(doi:10.1007/s11356-014-3906-4) contains supplementary material,
which is available to authorized users.

F. Gilbert

INP, UPS, EcoLab (Laboratoire écologie fonctionnelle et
environnement), Université de Toulouse, 118 Route de Narbonne,
31062 Toulouse, France

F. Gilbert (D<)
CNRS, EcoLab, 31062 Toulouse, France
e-mail: franck.gilbert@univ-tlse3.fr

G. Stora * P. Cuny

Aix-Marseille Université, CNRS, Université de Toulon, IRD, MIO
(Mediterranean Institute of Oceanography) UM 110,

13288 Marseille, France

Keywords Subtidal shallow sediments - Field experiment -
Acute oil contamination - Macrobenthic community -
Bioturbation - Sediment reworking

Introduction

Changes in the structure and composition of macrobenthic
communities driven by pollution may have marked effects on
biogeochemical cycles and other important benthic ecosystem
processes and functions (Hale et al. 2014). As such, crude and
refined petroleum hydrocarbon pollution of coastal sediments
has generally been shown to induce pronounced community
structural changes. These changes, which may appear at hy-
drocarbon concentrations above 50 ppm (Kingston 1992), are
generally associated to an impoverishment of the diversity
concomitant with the selection of opportunistic and tolerant
species (e.g. Gomez Gesteira and Dauvin 2000; Nikitik and
Robinson 2003; Gémez Gesteira and Dauvin 2005). Several
studies also reported a decrease in species abundances with
increasing or elevated hydrocarbon contamination levels such
as those observed after an oil spill (e.g. Carman et al. 2000; Je
et al. 2003; Venturini et al. 2008; Seo et al. 2014; Zabbey and
Uyi 2014; Ferrando et al. 2015). Apart from the concentra-
tion, many other factors can, however, modulate the re-
sponse of the community like the composition and toxicity
of crude oils, the characteristics of the sedimentary matrix
(e.g. grain size range, organic matter content; Je et al. 2003;
Venturini and Tommasi 2004) and the bioavailability of
hydrophobic contaminants (Di Toro et al. 1991). Initial
benthic community structure and variable tolerances within
and among species can also strongly affect the resistance
capacities of the benthic system (Bickman and Smolen 1994;
Depledge 1996; Hawkins 1998; Carman et al. 2000). This
variability may be in part explained by differences in the life
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style and feeding strategies between deposit feeders and car-
nivores (Venturini and Tommasi 2004). Historical or chronic
exposures to hydrocarbon contamination of benthos lead to an
adapted community with higher proportion of more tolerant
species and/or increased tolerance among individual species
(Carman et al. 2000). Instead, communities from pristine
ecosystems seem to be particularly sensitive to oil spills
(Ferrando et al. 2015). Whatever the previous history of
contamination, the community shifts and the removal of or-
ganisms with specific biological traits induced by the contam-
ination may have important consequences on the functioning
of the whole ecosystem. For instance, the experimental re-
moval from marine soft sediments of large suspension feeders
or deposit feeders was shown to influence the flux of nitrogen
and oxygen, surficial sediment characteristics, and also com-
munity composition (Thrush et al. 2006). Kristensen et al.
(2014) also demonstrated that shifts in benthic fauna compo-
sition and species functional traits from a marine fjord could
affect biogeochemical cycling resulting in modulation of pri-
mary productivity in the overlying water column with a feed-
back effect on the benthic system. Indeed, macrobenthic or-
ganisms have a pivotal role in the functioning of benthic
ecosystems notably through their bioturbation activities (sed-
iment reworking and ventilation, i.e. transport and mixing of
particles and solutes, respectively; Kristensen et al. 2012).
Due to their reworking activity, dwelling macroorganisms
introduce temporal and spatial heterogeneity in the sediment
system resulting in the modification of the expression of the
main microbial activities, which in turn influences the degra-
dation of organic matter (organic contaminants) (for a review,
see Cuny et al. 2011). They notably ensure the oxygenation of
the superficial sediments by the construction and ventilation
of burrows and tubes (Aller 1994; Pischedda et al. 2008;
Pischedda et al. 2012).

To date, most of the studies dealing with the effects of
hydrocarbon contamination on macrobenthic communities
were focused on the changes in species densities and faunal
composition. In this study, time changes of macrobenthic
community as well as of reworking activity (functional de-
scriptor of macroorganism activity) induced by a field exper-
imental oil spill in subtidal chronically contaminated sedi-
ments was assessed during 18 months.

Materials and methods
Experimental site

The experimental was carried out in the Gulf of Fos (Medi-
terranean Sea), a highly urbanized and industrialized site,
notably surrounded by chemical and petroleum plants, char-
acterized by heavy ships and tanker traffic (Fig. 1). In the Gulf
of Fos, sediments are recognized having a long-time, from
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Fig. 1 Experimental site. Schematic map of the Gulf of Fos
(Mediterranean Sea) indicating the experimental site (black diamond)
and nearby oil and gas refining and chemicals main facilities (grey spots)

moderate to high level, contamination history by pyrogenic
and petrogenic hydrocarbons (Mille et al. 2007). More espe-
cially, in the experimental subtidal site (northern Carteau
Cove; 43° 23" 40" N, 4° 51' 35" E) organic rich muddy sand
sediments contain ~1240 mg kg ' sed. and ~70 mg kg ' of
extractable organic matter (EOM) and total hydrocarbon con-
tent (THC), respectively (Mille et al. 2007).

Experimental and analytical procedures

At the beginning of experiment (December 1994), 18 PVC
cores (diameter 10 cm, height 25 cm) were separately embed-
ded into sediments by divers, at 5-m water depth. Then, a
frozen “cake” (diameter 10 cm; 1 cm thick) was deposited at
the surface of each portion of sediment ecosystem delimited by
a core. For half of the cores (OIL cores), the deposited cakes
were a mixing of sediment and Brut Arabian Light topped at
250 °C petroleum (25.2 g oil kg~ wet sediment). The rest of
cores received a clean sediment cake and served as uncontam-
inated controls (UNC-Cores). In order to quantify the sediment
reworking, particulate inert tracers (luminophores; 63—125 pm;
8 g) were added to the different cakes.

Then, after 6, 12, and 18 months, three cores from each
sediment type (oil-contaminated, control) were sampled by
divers, transported to the laboratory, and sliced in 2-cm-thick
segments. Then, each sediment slice was divided in eight
different equal parts.

For macrofauna species identification, four parts of each
slice were randomly selected and pooled while sieved through
a 500-um mesh. Retained organisms were then stored into a
plastic bottle with fixating solution (4 % buffered formalde-
hyde with Rose Bengal) and further sorted and counted under
optic microscopes.



For luminophore quantification, two other parts of each
slice were randomly selected, pooled, freeze-dried, and ho-
mogeneously mixed. Luminophores’ counting in each layer
was then realized under UV light using an epifluorescence
microscope. The quantification of sediment reworking by the
gallery-diffusor model (Frangois et al. 2002) was based on
each vertical luminophore profile measured in each core
(Duport et al. 2007). This model allows describing both the
biodiffusion-like transport (D,, coefficient) due to the contin-
uous displacement of the tracers and the nonlocal bioadvective
displacement of the tracers (r coefficient). The best fit between
observed and modelled tracer distribution with depth (i.e.
producing the best Db and r coefficient couple) was estimated
by the least squares method.

For hydrocarbon quantification, the two remaining parts of
each slice were pooled. The extraction of petroleum hydro-
carbons from the sediment was achieved by alkaline digestion
as described by Mille et al. (1988). The fractionation and
capillary gas chromatography analyses of the saturated frac-
tion of hydrocarbons (SF), used a as proxy to calculate oil
budget and vertical repartition with time, were those used by
Gilbert et al. (1997).

Similarity between macrobenthos samples was estimated
using the Bray—Curtis index, a measure of the Bray—Curtiss
dissimilarity (Bray and Curtis 1957).

Differences between biodiffusion coefficients (Db) and
bioadvection coefficients (r) were each analyzed by two-way
ANOVA with time and conditions (contaminated or control)
as factors, after assessing homogeneity of variance and nor-
mally distributed residuals using Barlett’s and Shapiro-Wilk’s
tests, respectively.

Results
Contamination state of sediments

As indicated earlier, in the frame of our work, the saturated
fraction of hydrocarbons (SF) was used as a proxy to calculate
oil budget and vertical repartition with time. This was based
on the assumption that all components of the Arabian Light
crude oil (i.e. saturates, aromatics, resins, asphaltenes and
waxes) were submitted to the same transport processes within
sediments. To be consistent with this simple model, and
despite previous studies carried out in the same area have
shown that biodegradation processes were active in the sedi-
ments (Grossi et al. 2002; Miralles et al. 2007), we also
considered the biodegradation as negligible compared to abi-
otic losses. Therefore, by now, we will only refer to oil in the
text.

In order to allow long-time lasting contamination at the
experimental site (Plante-Cuny et al. 1993), but without

Table 1  Sediment contamination

Period of experiment Estimated oil content (g oil kg ' sed)

Start to 6 months 252t04.8
6 to 12 months 48t02.3
12 to 18 months 23t01.0

Oil content, within contaminated (OIL) sediments, after 6, 12 and
18 months. Oil content was estimated from the saturated hydrocarbon
fraction budget for an initial oil content of 252 g kg ' sed

confining sediments (Gilbert et al. 1996), an initial 25.2 g
oil kg ! wet sediment oil contamination was applied. Indeed,
results showed an important loss (i.e. resuspension and release
into the water column) of added oil in the experimental oiled
sediments of 81, 91 and 96 %, after 6, 12 and 18 months. This
indicated, however, that highly polluted conditions (i.e. from
25.2to 1 g oil kg ') were present throughout the experiment
within oil-contaminated cores (Table 1). Remaining oil was
found down to 10 cm deep but with a vertical of remaining
hydrocarbons different with time (Fig. 2). After 6 months, oil
presented a regular decrease with depth down to 6-cm depth
(99 % of remaining oil). Then, after 12 and 18 months, oil
repartition highlighted a subsurface peak, layer 2—4 cm con-
taining 63 % of remaining oil.

Macrobenthic community structure

Within the experimental sediments, the polychaetes (56.4 to
89.9 % of the total organisms) and the crustaceans (4.7 to
35.6 %) represented the two dominant macrobenthic groups.
Molluscs and echinoderms were also present (see Online
Resource 1). Throughout the experiment, global macrofauna
density and specific richness in experimental sediments varied
from 1336 to 2413 ind. m 2 and from 10 to 38, respectively.
None of these parameters of the community structure did
show any significant difference with both time and type of
sediments (Figs. 3 and 4).

Cluster analysis based on Bray—Curtis similarity distances
indicated communities with affinities close or higher than
50 %, however, suggesting that the communities grouped with
sampling time (Fig. 5).

Vertical repartitions of the organisms indicated that they
were mainly (more than 75 %) located in the first 8 cm of
sediment but with some individuals found down to 22-cm
depth (Fig. 3). On a general way, in both contaminated or
control sediment, the presence of organisms decreased regu-
larly with depth. Contaminated sediments, however, showed a
reduced presence of organisms in the surface layer, but a
subsurface density peak centred on the 4—6-cm depth layer,
from the 6th to the 18th month of experimentation.
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Macrobenthic community sediment reworking

Luminophores deposited at the sediments’ surface were tracked
within the sedimentary columns, with time. Whatever the
absence or presence of oil contamination or the time of exper-
iment, the tracers were never found deeper than 16 cm deep and
the majority of them (more than 95 %) in the first 8 cm (Fig. 6).
In contaminated sediments, a subsurface repartition peak (layer
2—-4 cm) was present throughout the experiment. On the other
hand, after 6 months, the distribution of tracers initially depos-
ited at the sediment surface decreased exponentially with depth
in control sediments. After 12 months, a subsurface peak was
detected in the 2—4 layer but was finally less marked at the end
of experiment (18 months).

Quantification of sediment reworking showed mean Db
and r coefficients, respectively, ranging from 2.1 to
10.1 cm? year ' and 1.1 to 3.7 year ', respectively (Table 2).
Biodiffusive coefficient Db, but not the bioadvective

coefficient », was found to significantly decrease with time
(P>0.001; F 22.451; df 15). No significant difference in both
coefficients was found between control (UNC) and contaminat-
ed (OIL) sediments. The mean bioadvective coefficient,
however, was higher in presence of oil contamination
(2.98 year ") than for the control sediments (1.98 year ).

Discussion

Our results indicated very similar macrobenthic communities,
from both qualitative and quantitative points of view, in
controls and oiled contaminated sediments 6, 12 and
18 months following the initial experimental contamination.
Both Gandra et al. (2006) and Egres et al. (2012) in situ
experimental contamination works have previously shown
equivalent communities in oil impacted and no impacted



Fig.3 Macrobenthic community.
Specific richness for control
(UNC, white column) and
contaminated (OIL, closed
column) sediments, after 6, 12
and 18 months

sediments. These works have also demonstrated quasi instan-
taneous (i.e. day-scale) acute effects on macrobenthic

Fig.4 Macrobenthic community.
Density of organisms with depth
for control (UNC; open circle)
and contaminated (OIL; closed
square) sediments, after 6, 12 and
18 months. Values are mean+SD
for triplicates
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Fig. 5 Macrobenthic community. Cluster analysis based on Bray—Curtis

similarity distances for control (UNC) and contaminated (OIL)
sediments, after 6, 12 and 18 months

2006), followed by recoveries of population levels as soon as
after 8 or 2 days, respectively. Such very fast recovery was
suggested resulting from larval recruitment and surrounding
migration of adults and juveniles (Carman et al. 2000;
Negrello Filho et al. 2006). The contaminations applied were,
however, far lower than our 25,000-ppm oil pulse. They
resulted in pre-impact oil concentration reestablishment after
only 73 days (Egres et al. 2012) while our experimental
sediments were still highly contaminated 18 months after
initial oil deposition. This ‘pulse’ disturbance (Glasby and
Underwood 1996) allowing rapid recovery may have also
occurred in our experimental conditions. Our 6-month sam-
pling interval, however, was not appropriate to allow such
detection. Furthermore, the investigated Carteau Cove com-
munity had a quite long history of contamination exposure
and could have been potentially able to better endure contam-
ination stress than communities with lower or almost absent
previous contamination (Carman et al. 2000).

Community structures were similar between controls and
contaminated sediments, but organisms were retrieved deeper
in presence of oil. This macrofaunal vertical migration activity
in presence of deposited material in sediments has been de-
scribed as an efficient way for organisms to temporarily avoid
unsuitable conditions (Bolam 2011). Within a community, this
capacity is, however, not shared by all species (e.g. Miller et al.

2002; Hinchey et al. 2006). As a matter of fact, the presence of
high amounts of oil in the surface leads to a reduction of the
oxygen diffusion to the deeper layers of sediments that could be
critical for some species. In the frame of our work, the poly-
chaetes Nereis caudata, Notomastus latericeus, Paradoneis
lyra and Tharyx marioni were the species that successfully
vertically migrated in presence of oil.

Changes in organisms’ repartition into the sedimentary col-
umn were also accompanied by changes in global community
mixing pattern: the control uncontaminated sediments present-
ed a rather biodiffusive-like mixing pattern while the mixing of
particulate tracers in oiled sediments tended to be non-local and
more especially of convoying type (i.e. with production of a
subsurface peak). It is possible that the deeper burial of organ-
isms may have affected sediment reworking modes and rates
(e.g. by a deeper extension of tracers spreading), as demon-
strated in case of predation avoidance (Maire et al. 2010).
Switches in feeding modes have been previously demonstrated
for some infaunal species as a function of biological or envi-
ronmental factors (Buchanan 1964; Lopez and Levinton 1987;
Lindsay and Woodin 1995; Fodrie et al. 2007; Riisgérd and
Larsen 2010). Similarly, the general change in global commu-
nity mixing in presence of surface oil contamination may have
been linked to switches of individual modes of mixing by the
totality or part of species. Actually, among the four species that
were found buried deeper in oiled sediments, Notomastus
latericeus, Paradoneis lyra and Tharyx marioni have the ability
of both surface or subsurface feeding modes (Fauchald and
Jumars 1979; Sanchez-Moyano and Garcia-Asencio 2009).
However, without any available supporting data on individual
species reworking, caution must be applied. Indeed, as a func-
tion of the stressor applied, species which have the capacity to
switch in feeding mode may not ex abrupto, or even never
perform this ability. Moreover, a switch in feeding mode may
not affect the sediment-reworking mode noticeably depending
on factors such as mixing intensity or measurement time. For
instance, Hediste diversicolor, described as a multiple feeding
mode polychaete (e.g. Riisgérd 1994; Scaps 2002; Riisgard and
Larsen 2010), did not show any change in reworking mode
when experimentally exposed to a surface oil contamination
(Brut Arabian Light 250; from initial 4.5 g kg™ dry sed. to
1 gkg ' dry sed. after 45 days; Gilbert et al. 1994). On the other
hand, according to biodiffusion and bioadvection mixing
coefficients recently calculated from the Gilbert et al. (1994)
data (mean control Db/r 0.8/7.6; mean contaminated Db/r 0.1/
4.1), sediment-reworking intensity by this experimental
H. diversicolor population was significantly lowered in pres-
ence of oil. In the frame of our experimental in situ work, no
significant reduction of sediment mixing by the macrobenthic
community was found under contaminated conditions. Never-
theless, results clearly suggested a deeper burying of tracers in
presence of oil as indicated by higher bioadvective coefficients
compared with uncontaminated controls.



Fig. 6 Sediment reworking.
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Conclusion

Despite high oil concentration still present, no difference in
the macrobenthic community was detected between experi-
mentally contaminated and natural control sediments histori-
cally exposed to petroleum contamination. Contrary to the
structure of community, organisms’ vertical distribution was

Table 2 Sediment

Db (cm® year ') 7 (year )

reworking

Biodiffusion (Db) and UNC6 7.1£0.8 1.4+0.5
bioadvection (r) mixing OIL6 10.1£0.4 3.1£0.1
coefficients within UNC12 6.140.8 34409
control (UNC) and

contaminated (OIL) sed- OIL12 4.4£0.5 2.1£0.8
iments, after 6, 12 and 18 UNCI18 2.1+0.8 1.1+£0.8
months. Values are mean OIL18 2.442.0 37431

+SD for triplicates

affected by the presence of oil contamination leading to a
deeper burial (burial survival) of some polychaete species.
This was accompanied by changes in sediment-reworking
activity and more specifically by a deeper particle burying in
sediments subjected to acute oil contamination. These results
highlighted the need to complete the analysis of community
structure by assessing functional aspects such as bioturbation
activity, a process integrating various aspects of benthic be-
haviour (e.g. feeding, locomotion, burrow building), in order
to estimate real (structural and functional) and long-term
effects of oil contamination on benthic communities. Even if
long-term toxicity effects could not be discarded, shallow
subtidal macrobenthic communities adapted to chronic hydro-
carbon inputs seemed to be particularly resistant to elevated
hydrocarbon concentrations. In case of an oil spill, they would
ensure the functioning of the benthic system by adapting their
behaviour and maintaining a similar level of bioturbation



activity. Thus, the oxygenation of superficial sediments and
the stimulation of aerobic oil-degrading bacteria would nota-
bly favour the natural attenuation of the sediments (Cuny et al.
2007).
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