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a b s t r a c t

Recent studies [Hoeijmakers et al. 2014, Emmert et al. 2015] suggest that thermoacoustic modes can appear

in combustors with anechoic terminations, which have no acoustic eigenmodes. These modes, called here

Intrinsic ThermoAcoustic (ITA), can be predicted with simple theoretical arguments, but have been ignored

for a long time. They are reproduced in this paper using Direct Numerical Simulation (DNS) of a laminar

premixed Bunsen type flame. DNS results and theory are compared showing very good agreement in terms

of both frequency and mode structure. DNS confirms that the frequency of ITA modes does not depend on any

acoustic characteristic of the burner. Based on a numerical evaluation of the Flame Transfer Function, stability

limits of ITA modes predicted by theory are also recovered in the DNS with reasonable accuracy. Finally, DNS

is used to analyze the mechanisms of ITA modes.

1. Introduction

Thermoacoustic instabilities have been a topic of strong interest
in the aerospace industry as well as many other engineering appli-
cations for the past decades. Rayleigh [1] first described the underly-
ing mechanism of thermoacoustic instabilities as a constructive build
up of acoustic energy by the product of acoustic pressure and un-
steady heat released by the flame. Such accumulation is usually found
in systems that can store acoustic energy, thereby involving acous-
tic eigen modes. Resonance has become a mainstay of combustion
instability analysis, leading to the idea that there is no such thing
as a thermo-acoustically unstable flame in the absence of acous-
tic modes in the combustor, and that there has to be some sort of
acoustic coupling with the surrounding system for an instability to
develop.

However, recent theoretical studies [2,3] and experiments [4] sug-
gest that, even in an anechoic environment, thermoacoustic instabili-
ties may exist. These modes are called here Intrinsic Thermo-Acoustic
(ITA) modes because they do not require any acoustic feedback from
the boundaries of the burner to exist1. They correspond to a feedback
mechanism inherent to the flame and its anchoring station, com-
pletely independent of the acoustic behavior of the surrounding sys-
tems (combustion chamber, injectors, nozzle, compressors, turbines,

∗ Corresponding author.

E-mail address: emilien.courtine@imft.fr (E. Courtine).
1 The intrinsic terminology used here does not refer to flame front instabilities lead-

ing to cellular flames such as the Darrieus-Landau instability or thermodiffusive effects

[5,6], which do not require acoustics to develop. It is neither related to parametric in-

stabilities [7] which apply to planar flames.

etc.). Even though ITA modes have been evidenced only recently by
studying anechoic combustors, they may play a major role in most
combustors where they can interact with other feedback mechanisms
encountered in standard thermoacoustic modes.

ITA modes have been predicted theoretically and observed ex-
perimentally [2–4]. Analyzing them using Direct Numerical Simula-
tion (DNS) is an obvious next step [8]. This is the subject of this pa-
per. In Section 2, the theoretical derivation of ITA modes is recalled,
based on the work of Hoeijmakers et al. [2] and Emmert et al. [3],
and further emphasis is given on the key parameters controlling this
instability. Section 3 presents the numerical strategy to capture in-
trinsic thermoacoustic instabilities, and details are given on the lami-
nar premixed flame setup used in this study. Since theory suggests
that ITA modes are controlled by the cross-section ratio S2/S1 be-
tween chamber and injection duct (Fig. 1), the Flame Transfer Func-
tion (FTF) is computed for four cross-section ratios ranging from 1.5
to 6, and used in the theoretical model for stability and frequency
predictions in Section 4. The corresponding DNS are performed in
Section 5 and compared to theory in terms of stability and frequency.
Good agreement is found with theory, but practical limitations for
real configurations are also discussed. Section 6 focuses on the par-
ticular case S2/S1 = 2, which is found to be unstable and used for
comparison with theory in terms of frequency and mode structure.
The acoustic properties of the burner play no role on ITA modes.
This is confirmed by performing the simulation of the same flame
in two different burner configurations where the lengths of the injec-
tion duct and combustion chamber are changed. Finally, in Section 7,
the results from DNS are used to capture and evidence the under-
lying physical phenomena responsible for intrinsic thermoacoustic
instabilities.
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Fig. 1. Configuration of the 2D laminar premixed flame, colored by velocity magnitude. The steady flame position is indicated by a black iso-contour of heat release rate. Down-

stream and upstream propagating acoustic waves A+
j

and A−
j

are also represented in the inlet duct (i = 1) and the combustion chamber (i = 2).

2. Theoretical background

The generic setup studied here corresponds to the classical prob-
lem of a laminar premixed flame stabilized at a sudden expansion
plane separating the injection duct (length l1, section S1) and the
combustion chamber (length l2, section S2). The configuration is two-
dimensional (dihedral flame). The acoustic properties of the inlet and
outlet boundaries are represented by reflection coefficients Rj, where
the index j ∈ {1, 2} respectively refers to the inlet and outlet ducts.

The linearized Euler equations lead to a simple 1D acoustic wave
equation in each duct. The solutions of this equation are forward and
backward propagating planar waves A+ and A− (see Fig. 1) that couple
the acoustic pressure p′ and velocity u′ fields as follows (assuming
harmonic fluctuations):

p′
j(x, t) = ℜ(p̂ j(x)e−iωt) with p̂ j(x) = A+

j eik jx + A−
j e−ik jx (1)

u′
j(x, t) = ℜ(û j(x)e−iωt) with

û j(x) = 1

ρ jc j

[
A+

j eik jx − A−
j e−ik jx

]
(2)

where ω is the considered angular frequency, k j = ω/c j the associ-
ated wave number, and ρ j and cj the density and sound speed that
change between cold and hot gases. The prime ( ′ ) and hat (^) symbols
respectively denote temporal harmonic fluctuations and the associ-
ated complex amplitude at the corresponding angular frequency2. In
the wave formulations of Eqs. (1) and (2) the Mach number is as-
sumed to be zero so that acoustics is not affected by the mean flow.
The amplitudes of these planar waves in the injection and combus-
tion ducts are coupled via jump relations to account for the cross-
section area change and the combustion source term at x = 0, using
the assumption that the flame is compact with regards to the acoustic
wave lengths. These are known as the acoustical Rankine-Hugoniot
jump relations, expressed here in the limit of zero Mach number
[9–13]:

p′
2(x = 0+, t) − p′

1(x = 0−, t) = 0 (3)

S2u′
2(x = 0+, t) − S1u′

1(x = 0−, t) = γ − 1

γ p0
$̇′

T (t) (4)

where γ is the specific heat capacity ratio, p0 is the reference pres-
sure, assumed to be constant across the flame, and $̇′

T is the fluctuat-
ing component of heat release rate integrated over the flame domain.
In the velocity jump relation (Eq. (4)), the acoustic emission is due to
dilatation induced by the unsteady reaction rate. This relation is ex-
pressed in terms of volumetric flow rate, as effects of mean flow on
the acoustics are ignored3 [10,13].

2 More generally, for any causal temporal signal g′(t), ĝ(ω) would denote the corre-

sponding Laplace transform, defined for any complex frequency ω = ωr + iωi .
3 To take into account mean flow effects (low Mach number regime), a different for-

mulation using mass flow rates should be used instead of volume flow rates in the

velocity jump relation.

To close the set of Eqs. (3) and (4), $̇′
T must be expressed as a

function of the acoustic field. The simplest model for the unsteady
reaction rate is to link $̇′

T with the upstream acoustic velocity u′
1 [14].

This model combines a time delay τ and a dimensionless interaction
index n:

$̇′
T (t) =

ρ1c2
1

γ − 1
S1nu′

1(t − τ ) or $̂T =
ρ1c2

1

γ − 1
S1nû1eiωτ (5)

The term of velocity sensitive has been coined for the description
of flames whose behavior matches Eq. (5). Experimental data suggest
that the heat release of non-planar premixed laminar or turbulent
flames is indeed mostly driven by velocity fluctuations rather than
pressure fluctuations [15,16]. The parameters n and τ contain all the
convective mechanisms controlling the flame response (e.g. vortex
formation caused by the acoustic velocity surge, vortex convection by
the mean flow followed by vortex breakdown and combustion in tur-
bulent flows [17]). Thus, the model of Crocco (Eq. (5)) links the mech-
anisms in the “convective world” to those in the “acoustic world”, u′

1
being supposed to contain only acoustical components [14]. One may
note the peculiar property of this model as it seems to be acoustically
non causal4: the input quantity being the reference velocity fluctua-
tions in the inlet duct u′

1 = (A+
1 − A−

1 )/(ρ1c1), it is the difference of
upstream and downstream propagating waves. At first sight it seems
implausible that an upstream oriented wave A−

1 , propagating away
from the flame front, can affect the combustion process. This causality
concern has been addressed by [8] who showed that Crocco’s model
holds for a laminar premixed flame in this configuration, proving that
this flame is indeed velocity sensitive. In fact, A−

1 in the inlet duct is
the trace of an acoustic wave, generated by the flame or coming from
the outlet of the combustor, propagating upstream and that produced
a convective wave when passing through the backward step, leading
to mode conversion as discussed more thoroughly in Section 7.

Using Crocco’s model (Eq. (5)) and the wave decomposition
(Eqs. (1) and (2)), the acoustic jump relations (Eqs. (3) and (4))
become:

A+
2 + A−

2 = A+
1 + A−

1 (6)

A+
2 − A−

2 = &(A+
1 − A−

1 )(1 + neiωτ ) (7)

where & = (S1ρ2c2)/(S2ρ1c1) is a coupling parameter that reduces
to & = S1

√
T1/(S2

√
T2) for isobaric flames using the perfect gas law

[12,18,19], T1 and T2 being respectively the fresh and burnt gases
temperatures.

Eqs. (6) and (7) are the basic elements of all network models for
thermoacoustics. ITA modes can be constructed by considering the
specific case where both terminations are anechoic: R1 = R2 = 0. In
this case, the amplitudes of the waves propagating towards the flame

4 From an input-output point of view, the temporal notion of causality is respected in

Crocco’s model since the input is the reference velocity taken at a previous time u′
1(t −

τ ). Only when the acoustic decomposition of the reference velocity is performed does

the causality paradox appear.
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vanish: A+
1 = R1A−

1 = 0 and A−
2 = R2A+

2 = 0, and the jump relations
(6) and (7) reduce to:

A+
2 = A−

1 and A+
2 [1 + &(1 + neiωτ )] = 0

which leads to the dispersion equation derived by [2] and [3]:

1 + &(1 + neiωτ ) = 0 (8)

The solutions of Eq. (8) correspond to the ITA modes and have ana-
lytical expressions for the real part ωr (frequency) and the imaginary
part ωi (growth rate):

ωq
r = (2q − 1)π

τ
(q ∈ N∗) (9)

ωi = 1

τ
ln

(
n&

1 + &

)
(10)

The angular frequency of the first mode (Eq. (9) with q = 1) simply
writes:

ω1
r = π

τ
so that T = 2τ (11)

where T = 2π/ω1
r is the mode period. As noted by Emmert et al. [3]

this mode is quite unusual in thermoacoustics since it is obtained in
a situation where acoustic losses at the burner’s ends are maximum
(anechoic terminations). The period of the first ITA mode is twice
the flame delay and is not linked to any acoustic mode of the duct.
Note that no acoustic mode can exist here because both termina-
tions are anechoic: therefore the only time scale in this problem is
the flame delay τ .

Another interesting characteristic of ITA modes is that their sta-
bility, i.e. the sign of their growth rate, does not depend on the flame
delay τ but only on the gain n. In classical thermoacoustic modes,
stability is primarily determined by the delay τ , n playing only a sec-
ondary role: in the limit where small interaction indices are consid-
ered (weak flames) and acoustic losses are not accounted for, the sign
of the growth rate is even independent of n [12]. For ITA modes how-
ever, a critical gain nc appears when writing the stability criterion:

ωi > 0 ⇐⇒ n > nc = & + 1

&
(12)

This critical value may also be found using Rayleigh’s criterion on
the compact flame element, as shown in Appendix A.

Crocco’s model with constant parameters n and τ (Eq. (5)) consti-
tutes a rather limited representation of real flames. Their dynamics
can be modeled more accurately by using frequency dependent pa-
rameters n(ω) and τ (ω) or, equivalently, normalized Flame Transfer
Functions, F(ω), that have been introduced for this purpose and are
now used by most authors:

$̂T

$̄T

= F(ω)
û1

ū1
(13)

where $̄T is the total, time-averaged heat release rate. By taking ū1

as the bulk velocity of the inlet flow, one can see that the n − τ model
is equivalent to the FTF, using the relation between steady heat re-
lease rate and bulk velocity $̄T = ρ1S1ū1cp(T2 − T1), where cp is the
specific heat capacity at constant pressure of the fresh gas mixture5:

θF = neiωτ where θ = T2

T1
− 1 (14)

Eq. (14) shows that F(ω) carries the same information as the parame-
ters n(ω) and τ (ω). In the general case, n and τ being functions of the
frequency, Eq. (8) can be recast in terms of FTF as:

F(ω) = −& + 1

θ&
(15)

5 cp is assumed to be constant through the flame.

1 2 3 4 5 6
0

1

2

3

UNSTABLE

STABLE

|F | = Fc

S2/S1

|F
|

Fig. 2. Stability map for ITA modes. Critical FTF gain threshold as a function of the

cross-section area ratio Fc = f (S2/S1) ( ) for a temperature jump θ = 6.3.

or, equivalently:

φ = arg (F(ω)) = (2q − 1)π( q ∈ N∗) (16)

|F(ω)| = & + 1

θ&
(17)

Eqs. (16) and (17) are implicit equations that require further
knowledge on the transfer function of the flame, i.e. the FTF, to solve
for ωr and ωi. A useful particular case corresponds to flames for which
τ is supposed to be independent of ω (an assumption which is rea-
sonable for many premixed laminar flames at low frequencies [20]).
In this case, φ = ωrτ so that Eq. (16) reduces to the simple expres-
sions of Eqs. (9) and (11). In other cases, Eqs. (16) and (17) require a
numerical resolution, which in turn requires the Flame Transfer Func-
tion F(ω) to be known on the entire complex plane (i.e. at ωi ̸= 0) [21].
However, in practical situations, only the frequency response F(ωr) is
known. This frequency response, although not sufficient to obtain the
exact solutions of Eq. (15), is sufficient to derive a stability criterion
for ITA modes, according to Nyquist’s criterion6. Henceforth, F will
refer to the frequency response of the flame and will indistinctly also
be called FTF. The stability criterion is twofold: a necessary condition
on the gain, and a criterion for the phase.

A necessary condition for the instability to start is that the mod-
ulus of the frequency response |F(ωr)| exceeds a critical threshold Fc,
as can be inferred from Eqs. (12) and (14).

|F | > Fc with Fc = & + 1

&θ
(18)

For a perfect gas and an isobaric flame, & = S1

√
T1 / (S2

√
T2) so that

the threshold Fc can be written:

Fc = 1

T2/T1 − 1

(
1 + S2

S1

√
T2

T1

)
(19)

This is only a necessary condition for an unstable ITA mode to ap-
pear: for real flames, the gain of the FTF, |F(ωr)|, is a function of the
frequency. Therefore the criterion on gain given in Eq. (18) may be
satisfied only in a restricted frequency range, within which the phase
criterion arg (F(ω)) = π (Eq. (16)) must also be satisfied to trigger an
unstable ITA mode7.

Eq. (19) shows that the ITA stability threshold goes down linearly
when the section ratio between inlet duct and combustion chamber

6 The Nyquist criterion invokes the concepts of open and closed loop transfer func-

tions in the context of intrinsic thermoacoustic feedback, which are not mentioned in

this paper, but have been discussed by Emmert et al. [3]. It implies that F(ω) has no

poles, which is true for the n − τ model (see Eq. (14)), but can be difficult to justify for

arbitrary shaped FTFs. To overcome this problem, another interpretation of the Nyquist

criterion in the context of thermo-acoustics was proposed by Kopitz & Polifke [11], in

which the FTF is seen as a conformal mapping and its angle-conserving properties are

used to find the sign of ωi .
7 Recalling that the frequency response F(ωr) is the restriction of the FTF at real fre-

quencies, solving Eq. (16) for F(ωr) is only an approximation. This is relevant for most

laminar premixed flames whose phase appears to be independent of ωi , as can be

shown on a phase plot analysis at complex frequencies (see for instance Appendix B

of [22]).
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S2/S1 decreases, or when the temperature ratio T2/T1 (or θ ) increases,
as shown in Fig. 2. Intense flames in chambers with small section
changes (strong confinement) should therefore be more prone to in-
trinsic thermoacoustic instabilities.

Figure 2 displays a stability map of ITA modes for one particular
parameter: confinement S2/S1. The stable and unstable regions are
separated by the line |F | = Fc(S2/S1). A similar map can be drawn for
the temperature jump across the flame, the stability boundary be-
coming, in that case, the curve |F | = Fc(θ) .

The final part of this section on theory is devoted to the deriva-
tion of the spatial structure of ITA modes. Using the definition
of the FTF (Eq. (13)), and recalling that arg (F) = π [2π ] for ITA
modes so that F = −|F |, it is found that $̂T and û1 are com-
pletely out of phase. Moreover, using the null pressure jump condi-
tion p̂1(x = 0) = p̂2(x = 0) = p̂ (Eq. (3)) and recalling that anechoic
boundaries are considered, it can be shown that the velocity fluctua-
tions at the reference point û1 and the acoustic pressure at the flame
location p̂ are out of phase too, meaning that p̂ and $̂T are in phase.
This is consistent with Rayleigh’s criterion that states that production
of acoustic energy is only possible when pressure and heat release os-
cillations are in phase (Appendix A). The relationships between û1, p̂
and $̂T for an ITA mode are the following:

$̂T = −|F | $̄T

ū1
û1 and û1 = −

A−
1

ρ1c1
= − p̂

ρ1c1
(20)

With the compact flame assumption, and anechoic terminations,
the acoustic velocity and pressure in each duct are proportional to
a single planar harmonic wave, e.g. A−

1 , thereby their phase k j|x| =
ω|x|/c j unwraps linearly with the distance to the flame |x| (Eqs. (1)
and (2)). The pressure jump condition (Eq. (3)) shows continuity of
the pressure phase and amplitude across the flame. Regarding acous-
tic velocity, the jump condition (Eq. (7)) combined with the definition
of the FTF (Eq. (13)), together with the fact that arg (F) = π [2π ] for
ITA modes, imply a phase difference of π across the flame and an
amplitude ratio S1/S2(θ |F | − 1) between hot and cold gases8. Within
each duct acoustic losses are not taken into account so that the am-
plitudes of velocity and pressure fluctuations remain constant with
the distance to the flame. This spatial structure of the first ITA mode
is summarized in Eq. (21), and shown in Fig. 3.

⎧
⎪⎨

⎪⎩

|p̂2|
|p̂1|

= 1

|û2|
|û1|

= S1

S2
(θ |F | − 1)

⎧
⎪⎨

⎪⎩

arg[p̂1] = − π
c1τ

x

arg[û1] = − π
c1τ

x

⎧
⎪⎨

⎪⎩

arg[p̂2] = π
c2τ

x

arg[û2] = π
c2τ

x + π

(21)

8 The π phase shift for the velocity fluctuations between hot and cold gases comes

from the fact that 1 + θF = 1 − θ |F | with θ |F | − 1 > 1/& > 0 for an unstable ITA

mode (Eq. (18)). This property is also true for stable ITA modes as long as |F| > 1/θ ,

otherwise the phase of u′ is continuous through the flame.

3. Numerical setup

The DNS configuration corresponds to a laminar 2D dihedral flame
previously studied in [23,24], on which a combustion chamber has
been added for the study of intrinsic thermoacoustic modes (Fig. 1).
The cross-section of the inlet duct S1 = 1 cm is fixed, while the cross-
section of the combustion chamber can be adjusted in the DNS. The
lengths of the inlet duct l1 = 5 cm and combustion chamber l2 =
10 cm are fixed, except in one case where they are doubled to ensure
that they have no impact on the mode. An homogeneous methane-air
mixture at equivalence ratio φ = 0.95 and temperature T1 = 300 K is
fed through the inlet duct at ū1 = 1.8 m/s, leading to a Reynolds num-
ber Re1 ≃ 2000, typical of a laminar flow. The adiabatic tempera-
ture jump induced by the flame at this equivalence ratio is θadiab(φ =
0.95) = T2/T1 − 1 = 6.3, and the laminar flame speed SL = 0.41 m/s
will be constant throughout the study. The resulting flame tip half-
angle of the flame is α = sin−1 (SL/ū) = 13.2◦, as shown in Fig. 1.

The numerical solver used for the computation of the Flame
Transfer Functions and the unsteady simulations is AVBP. A high-
order fully explicit scheme is used to advance the compressible re-
acting Navier-Stokes equations [25]. Chemistry is modeled using a
two-step chemical scheme for methane-air flames, yielding a lami-
nar flame speed SL = 0.41 m/s, and the thickened flame model [26]
with a flame thickening factor of 2 for computational cost issues. Nu-
merical meshes are composed of approximately 500 000 cells (de-
pending on the geometry considered) all with identical smallest cell
volume V cell

min
≃ 5.5 × 10−10 m2 (dimensioned to resolve temperature

gradients at the flame anchor station), leading to time steps 0.015 !
dt ! 0.017 µs9, with a CFL condition of 0.7 and a Fourier number
Fo = 0.1. It was checked on an unstable case that using finer grids,
with different flame thickness factors, had very limited to no impact
on the results both in terms of flame shape and quantitative results
for the mode. Acoustic boundary conditions at the inlet and outlet of
the combustor are imposed using the NSCBC method [27,28]. For all
present simulations, fully non-reflecting conditions are used to allow
intrinsic thermoacoustic modes to develop. Walls are modeled with
no-slip isothermal boundary conditions at 300 K.

In order to capture an unstable ITA mode numerically, first the
FTF of the flame has to be computed so that it can be used in
the theoretical stability criterion (Eq. (18)) to evaluate the range of
the confinement parameter (S2/S1) required for triggering an unsta-
ble ITA mode10, θ being fixed by the chemistry and the equivalence
ratio that are constant throughout the study. The FTF will also serve to
predict, based on theory, the frequency of the instability (Eq. (16)), or

9 A typical physical time of interest of 100 ms requires about 65 h on 192 Intel

Harpertown 3.00 GHz cores (totaling 12 500 CPU hours) on the SGI Altix Ice 8200 scalar

supercomputer Jade of CINES.
10 Throughout this study, triggering will refer to the onset of a linear instability start-

ing from a steady flame configuration, and not to high-amplitude external excitations

required to set off non-linear instabilities as can be found in studies dedicated to non-

linear systems.
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Fig. 3. Theoretical structure of an ITA mode: pressure ( ) and velocity ( ). Left: modulus. Right: phase with different scales for pressure and velocity. The application case

corresponds to the numerical setup described in Section 3.
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Table 1

Summary of the various configurations used in numerical simulations. Corresponding case names refer to stan-

dard duct length lj (REF) or enlarged duct length l′j = 2l j (DOUBLE), and confinement expressed in terms of

cross-section ratio S2/S1.

ConfigurationnameCase

REF-1.5

REF-2.0

DOUBLE-2.0

REF-3.0

REF-6.0

equivalently the oscillation period via the flame delay τ (Eq. (11)).
Then a set of simulations is performed for different cross-section ra-
tios (S2/S1) (see Table 1) and intrinsic thermoacoustic stability will be
assessed using temporal signals of heat release rate, pressure and ve-
locity fluctuations. These are compared with theoretical predictions
in terms of stability (Fig. 2), frequency (Eq. (11)), and mode structure
(Fig. 3).

4. Measurement of the FTF in an intrinsically unstable system.

The gain of Flame Transfer Functions of premixed laminar flames
is typically of order unity at low frequencies and goes down to zero
at high frequencies (low-pass filter behavior). It was shown analyt-
ically from the linear solution of the G-equation [29] that |F| stays
below unity at every frequency for conical flames, and may reach val-
ues up to |F | = 2 for very shallow V-flames. The case of 2D dihedral
flames, such as the one investigated in this study, is not discussed in
[29] but is expected to behave qualitatively more like an axisymmet-
ric conical flame. Therefore, even though slight discrepancies may be
found between experimental or numerical results and the linearized
G-equation theory, unstable ITA modes should be found for values of
S2/S1 such that the critical FTF gain is lower than 1, i.e. Fc < 1. This
corresponds to S2/S1 < 2, according to Fig. 2 and using θadiab = 6.3.
Although being just a rough estimate, this order of magnitude of crit-
ical cross-section ratio Sc

2/S1 ≃ 2 sets off the procedure for the entire
quantitative analysis of ITA modes.

First, the FTF was computed at very low confinement (S2/S1 = 6)
and compared to the experimental measurements performed by [23]
on the same flame but in an unconfined configuration. For S2/S1 = 6
(case REF-6.0 on Table 1), the critical threshold for ITA modes is
Fc = 2.72 (Eq. (19)) while FTF values never exceed 1.2. Therefore, as
suggested in the previous paragraphs, the flame is stable for this case:

no ITA mode is observed. The FTF measured by DNS (Fig. 4) shows rea-
sonable agreement with the unconfined experimental FTF. The com-
putation of the FTF was performed by enforcing harmonic acoustic
waves through the inlet boundary condition using the NSCBC formal-
ism [27]. Results do not depend on the origin of the acoustic exci-
tation (upstream or downstream) as long as the reference point is
located inside the inlet duct [8].

The comparison of Fig. 4 between numerical and experimental FTF
results may seem unsuitable considering they were performed with
different confinements (S2/S1 = 6 for DNS, and S2/S1 = ∞ for the
experiment). This is a small limitation as shown by recent work on
the effect of confinement on laminar conical flames [30]. When the
flame is unconfined, the plume of hot gases expands in the transver-
sal direction only up to a given surface value, noted Sb and called the
unconfined plume surface [31]. Confinement effects may be quanti-
fied using the dimensionless parameter Cb =

√
Sb/S2 (where S2 is the

surface of the hot gas jet in a confined burner) that can be related to
the geometry of the burner and thermodynamic quantities:

Cb =

√
Sb

S2
= Cr

[
1 − θ

θ + 1
cos α

]− 1
2

(22)

where Cr =
√

S2/S1 and α = sin−1 (SL/ū) is the flame tip half-angle.
For the FTF shown in Fig. 4, Cb(S2/S1 = 6) = 1.02 ≃ 1 so that confine-
ment is expected to have negligible impact on the FTF in this case.
However, when S2/S1 decreases, the FTF is expected to change. This
was accounted for by additional FTF computations, which can be-
come increasingly difficult to perform when S2/S1 reaches values of
the order of 2, i.e. when ITA modes become unstable and can sponta-
neously be excited (cases REF-2.0 and REF-1.5).

Contrary to typical thermoacoustic studies where the computa-
tion of the FTF at the frequency of the instability is usually pos-
sible by isolating the flame in an anechoic combustor (therefore

http://dx.doi.org/10.1016/j.combustflame.2015.07.002
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Fig. 5. FTF gain and phase computed for various confinements S2/S1 = 1.5 ( ), 2.0 ( ), 3.0 ( ) and 6 ( ).
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Fig. 6. Illustration of the matching instability criteria for the gain (left) and phase (right) using a typical FTF of premixed laminar flames.

removing the coupling with the acoustics of the surrounding ele-
ments and making the flame stable), unstable ITA modes can ap-
pear even for cases where R1 = R2 = 0. However, Hoeijmakers et al.
[2] suggest that ITA modes may be damped by enforcing partially re-
flecting boundary conditions with a well-chosen set of reflection co-
efficients and duct lengths. In other words, unstable ITA modes can
be stabilized by using reflecting boundary conditions if R1 and R2 are
properly chosen. This procedure allows the computation of the FTF
for virtually any confinement, even those that would trigger unstable
ITA modes in anechoic environments.

The flame was stabilized using this technique for cases REF-1.5
and REF-2.0 (the less confined cases REF-3.0, REF-4.0, and REF-6.0
being intrinsically stable). The appropriate reflection coefficients for
stabilization Rj were obtained from the relaxation coefficients Kj en-
forced through Navier-Stokes Characteristics Boundary Conditions at
the inlet and outlet11 [32]. By choosing K1 = K2 = 800 s−1, the asso-
ciated complex-valued frequency-dependent reflection coefficients
R j = ±1/(1 − 2iω/Kj), that have phases arg (R j) ≃ π/2 and modu-
lus values |Rj| ranging from 0.1 and 0.2 over the frequency range of
interest (50 ! f ! 100 Hz), are sufficient to stabilize the flame for
cases REF-1.5 and REF-2.012. FTFs were then computed using acous-
tic forcing from the inlet boundary condition, following the same
procedure as for case REF-6.0 (Fig. 4). It was also checked that the
reflection coefficients Rj, that behave like low-pass filters of cut-off
frequency fc = K/(4π) = 32 Hz [32], let the acoustic fluxes of the har-
monic forcing leave and not accumulate in the cavity. This method
yielded constant amplitude harmonic signals suitable for the compu-
tations of the FTFs, represented in Fig. 5.

Figure 5 shows that, as S2/S1 decreases, the slope of the FTF phase
is reduced, while the overall gain curve is also reduced. The flame
delay τ = arg (F)/ω is reduced because of the deformation of the un-
perturbed flame front and the increased velocity of the fresh stream
of reactants along the central axis due to confinement. While theory
predicts a shift of the gain peak towards higher frequencies [30], DNS

11 At the inlet boundary the NSCBC formalism enforces a characteristic wave enter-

ing the domain L5 = K1ρ1c1(u − uT ), whereas a characteristic wave L5 = K(p − pT ) is

imposed at the outlet boundary condition, the “T” subscript referring to target values.
12 Complex-valued reflection coefficients are obtained via this procedure, whereas

only real-valued reflection coefficients were considered in the parametric study of [2].

Nevertheless, similar results hold with complex-valued reflection coefficients in terms

of stabilization of ITA modes.

results only show a gain reduction with increasing confinement. The
FTFs presented in Fig. 5 are computed only on the frequency range
relevant for the study of ITA modes, i.e. close to arg (F( f )) = π , as
explained hereafter.

Once the FTF has been computed at a given confinement, it is
straightforward to obtain the frequency and the stability criterion of
any ITA mode. The critical gain Fc is given by Eq. (18) as a function
of confinement S2/S1 (see Fig. 2). The theoretical frequency of the
first ITA mode corresponds to arg (F( f 1

ITA)) = π (Eq. (16)), as shown
in Fig. 6. Let +f be the range of frequencies for which |F(f)| ≥ Fc. If
f 1
ITA ∈ + f, as it is the case on the example in Fig. 6, the first mode

should be unstable. The corresponding flame delay given by the FTF
at this frequency is τ = 1/(2 f 1

ITA). The frequencies of higher order ITA
modes satisfy arg (F( f q

ITA
)) = π + 2(q − 1)π with q > 1 so that they

are generally out of the frequency range where the FTF is above the
critical gain. Thus, on the example of Fig. 6, only the first ITA mode
should be unstable. This method of prediction based on the FTF and
the critical gain is equivalent to the Nyquist criterion applied to a
Bode diagram.

5. Stability limits

The stability of an ITA mode can be predicted by using the proce-
dure of Fig. 6 on the FTFs of Fig. 5. The corresponding theoretical sta-
bility map is represented in Fig. 2 as a function of confinement. The
purpose of this section is to check whether the DNS results confirm
this stability map in terms of critical gain for various confinements.
To do so, DNS are repeated for several combustion chambers of dif-
ferent cross-sectional area ratios S2/S1 = 1.5, 2.0, 2.5, 3.0, 4.0 and 6.0
with fixed lengths l1 and l2 (see Table 1). The procedure described in
Section 6 is used: first the flame is stabilized using appropriate reflec-
tion coefficients at the inlet and outlet boundaries, then the acoustic
feedback is removed and the flame slightly perturbed from equilib-
rium by a low amplitude acoustic impulse. Stability is assessed by
considering the ensuing growth or decay of oscillations.

The results of these DNS are in qualitative agreement with the-
oretical predictions, as summarized in Fig. 7. Stable simulations are
represented with squares, while unstable simulations are marked by
triangles. Their location on the stability map is determined by their
respective cross-section ratio S2/S1 and the corresponding FTF gain
computed at the frequency of the instability as shown in Fig. 5 (see
computation of the FTFs in Section 4). Some cases (S2/S1 = 2.5 and
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4.0) are displayed in Fig. 7 even though their FTFs were not computed.
Their FTF gains are interpolated from neighboring points.

The trend is correctly reproduced: for confinements at which the
FTF gain exceeds the critical gain Fc, i.e. for S2/S1 ! 2, ITA modes are
found unstable in the DNS. Conversely, for S2/S1 " 3, the gain of the
FTF is lower than the critical value and the corresponding simulations
are stable. Some DNS, however, do not comply with theory. While
the case S2/S1 = 2.0 is predicted to be marginally stable by theory,
it is found to be unstable in the DNS (see details in Section 6). Simi-
larly, case S2/S1 = 2.5 is predicted to be stable by theory and yet is
unstable in the DNS. Possible explanations for these discrepancies
are twofold, and directly linked to each constitutive block of the ITA
theory. The first one is the determination of the critical FTF gain Fc

(Eq. (19)), based on the Rankine-Hugoniot acoustic jump relations
(Eqs. (3) and (4)). While the classical assumption of acoustical com-
pactness of the flame is reasonable at the frequencies of interest (the
associated wavelengths, λ # 3.5 m, being much larger than the av-
erage flame length H = 2 cm), it may be invalidated for the intrinsic
thermoacoustic feedback loop which is entirely comprized within the
flame scale, where the acoustic velocity field is highly discontinuous
(see Section 7). This acoustic field is also clearly two-dimensional (see
Fig. 15), questioning the 1D assumption used in the acoustic jump re-
lations. Moreover, the normalized adiabatic temperature jump across
the flame, θadiab = T2/T1 − 1 = 6.3, present in the expression of Fc (Eq.
(19)), should be modified to account for heat losses at the walls (even
though reducing θ would increase Fc and therefore widen the gap be-
tween theory and DNS in Fig. 7). The second aspect of the ITA theory
that may explain discrepancies is the computation of the FTF gain.
Even though FTF measurements have been performed with upstream
and downstream acoustic excitation, giving very consistent results
and proving the velocity sensitive assumption [8], the FTF gain is sen-
sitive to the location of the reference point used for velocity mea-
surements [33,34]. Bringing the reference point closer to the dump
plane would increase the FTF gain, thereby reducing the gap between
theoretical predictions and DNS results.

Despite discrepancies in terms of stability limits, Fig. 7 confirms
that ITA modes are expected to be amplified only in chambers with
small cross-section ratios (strong confinement). In terms of frequency
of the instability, it is interesting to compare the theoretical predic-
tion of the frequency of ITA modes based on FTFs (Eq. (16)), and the
frequency of the flame oscillations actually observed in DNS (Fig. 8).
As explained in Section 4, FTFs were computed for four confinements:
S2/S1 = 1.5, 2.0, 3.0 and 6.0, so theoretical predictions are available
only for these cases. For the unstable anechoic simulations, the fre-
quency of the ITA mode was evaluated in the early cycles of instability
in the DNS, i.e. at low oscillation amplitudes. By doing so, the effects
of non-linearities are discarded (see Section 6). A very good agree-
ment is obtained between theoretical predictions and the frequency
of ITA modes in the DNS, for both stable and unstable configurations.
The results presented in Fig. 8 also show that it is necessary to con-
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Fig. 8. Frequency map of ITA modes for various confinements. Theoretical predictions
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Fig. 9. Global heat release rate at the onset and limit-cycle of an unstable ITA mode,

from DNS for case REF-2.0.

sider the influence of confinement on the phase of the FTF in order to
have a correct prediction of the instability.

6. Control, growth and spatial structure of an ITA mode for
S2/S1 = 2

This section focuses on a particular case, S2/S1 = 2. For this case,
theory predicts that the frequency of the first ITA mode is f 1

ITA = 71 Hz
(Eq. (16) and Fig. 5), and that it is marginally stable, using the stability
criterion (Eq. (18), Figs. 5 and 6): |F( f 1

ITA)| = 1.0 ≃ Fc(S2/S1) = 1.01.
However, the corresponding anechoic DNS exhibits a strong unstable
ITA mode, which is used for more thorough investigation of ITA mode
characteristics and comparison with theory.

As mentioned in Section 4, with a well-chosen set of relaxation
coefficients Kj for the inlet and outlet boundaries of the DNS, it is
possible to stabilize an intrinsically unstable flame. Once the stable
solution is obtained, relaxation coefficients can be set to zero, corre-
sponding to a perfectly anechoic environment, and a low amplitude
Gaussian acoustic impulse can be injected at the inlet boundary con-
dition to trigger the instability13. The impulse is a velocity perturba-
tion of maximum amplitude u′

pulse
= ū1 × 10% and characteristic time

1.25 ms # τ × 10%. Immediately after the flame is moved away from
equilibrium by the acoustic disturbance, it starts pulsating at a dis-
tinct frequency as shown by the evolution of heat release rate in Fig. 9
for case REF-2.0.

These self-sustained oscillations grow rapidly in time and reach
very high amplitudes within a few periods: the fluctuations of global
heat release rate are of the same order of magnitude as the mean
value after only 5 periods. Following the growth phase, a limit-cycle
establishes in the combustion chamber at a very high amplitude. The
frequency of the oscillation in the limit-cycle (t ≥ 100 ms), f 1

DNS,l−c
=

50 Hz, differs from the one in the phase of linear growth (t ≤ 60 ms),
f 1
DNS, lin

= 68 Hz. The latter is close to the frequency of the first ITA

mode predicted theoretically: f 1
DNS, lin

≃ f 1
ITA = 71 Hz, proving very

13 Obviously, any given disturbance (even numerical) from the stable solution would

trigger the instability, the stable solution obtained in the case with non-zero reflection

coefficients becoming an unstable equilibrium state in the anechoic configuration. The

gaussian impulse was used here to control the timing of onset of the instability for

comparison with other cases.
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the limit-cycle ( ) of the unstable ITA mode presented in Fig. 9 (case REF-2.0).

Spectrum obtained with Hann windowing and zero-padding.

good agreement between theory and DNS in this linear domain (as
seen in Fig. 8). At 71 Hz, the time delay τ , measured in the FTF of
Fig. 5 for this confinement S2/S1 = 2, is τ = π/ωr = 1/(2 f 1

ITA) = 7.0
ms. This is consistent with the theoretical evaluation of Eq. (11) that
states that the period T = 14.7 ms must be equal to twice the flame
delay τ .

In order to verify that the mode observed here is indeed an ITA
mode, i.e. that it is intrinsic to the flame and does not depend on the
acoustics of the burner, the lengths of the feeding duct l1 and combus-
tion chamber l2 were doubled for another simulation: l′

j
= 2l j (case

DOUBLE-2.0 on Table 1), and the exact same simulation was con-
ducted on this enlarged setup. The acoustic eigenmodes of REF-2.0
and DOUBLE-2.0 configurations do not overlap, making this test rele-
vant to disprove the acoustic origin of the modes observed in the DNS.
Moreover, their frequency is much larger than the frequency range of
interest in the DNS (the acoustic mode with lowest frequency in the
DOUBLE-2.0 configuration is at 723 Hz). All parameters except the
lengths were kept unchanged, as well as the mesh in the flame re-
gion, and the onset procedure for triggering the instability was iden-
tical. Results (Fig. 10) show that, indeed, the frequency and growth
rate of the oscillations were kept unchanged, proving that ITA modes
do not depend on the acoustics of the burner.

The DNS mode structure is now compared to the theoretical ITA
form of Fig. 3. This is a more complex exercise because the limit-cycle
reached in Fig. 9 is strongly non-linear: the frequency shifts from
68 Hz in the linear zone to 50 Hz in the limit-cycle, as can be seen on
a PSD in Fig. 11. Although the study of non-linearities is not the pur-
pose of this work, this frequency drop is likely to be due to an effective
increase of the mean flame length as its feet are periodically pushed
upstream by high amplitude acoustic waves passing through the rim
[23,35]. This would result in an effective increase of the flame delay τ̃
(the mean flow rate being fixed) and a subsequent drop of the insta-
bility frequency f̃ 1

ITA = 1/(2τ̃ ). Figure 11 shows that sub-harmonics of
the first ITA mode are present in the frequency content of the limit-
cycle. They overlap higher order ITA modes (q > 1), which are most
likely also triggered by non-linearities, although being linearly stable.
More insight on the physical phenomena at play in intrinsic thermoa-
coustic instabilities are given in Section 7. The reduced frequency of
the first ITA mode in the limit-cycle f 1

DNS, l−c
= 50 Hz will be used

in the remainder of this section for the study of mode structure,
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which will show that, despite this frequency shift, the mode struc-
ture reached in the DNS limit-cycle is very close to the theoretical ITA
model of Fig. 3.

Limit-cycle oscillations shown in Fig. 9 are reproduced for four
periods in Fig. 12. As predicted by theory, and despite non-linear ef-
fects, the global heat release rate and pressure signals are perfectly
in phase, whereas the velocity signal in the inlet duct is completely
out of phase with pressure and heat release, proving that this speci-
ficity of ITA modes is well captured by the DNS. The amplitudes of
the acoustic waves are also recorded at the inlet and outlet bound-
aries and plotted in Fig. 13, showing that the characteristic treatment
of the anechoic boundaries is effective, even for very high amplitude
oscillations: the upstream and downstream incoming waves A+

1 and
A−

2 are zero at all times.
The mode structure can also be recovered using pressure and ve-

locity signals located along the symmetry plane of the burner (y = 0,

see Fig. 1). The comparison between DNS and theoretical predic-
tions14 (Eq. (21) and Fig. 3) is shown in Fig. 14. The π phase shift of the
acoustic velocity across the flame is perfectly recovered in the DNS
(Fig. 14d), as well as the linear phase unwrapping of the acoustic pres-
sure, which is characteristic of unidirectional planar waves (Fig. 14c).
The amplitude of pressure fluctuations remains constant through the
flame (Fig. 14a). The flame zone acts as an acoustic monopole radiat-
ing upstream and downstream with the same amplitude. The veloc-
ity jump S1/S2 (θ |F( f 1

ITA)| − 1) is correctly predicted despite slight
discrepancies (Fig. 14b). The latter discrepancies may be attributed

14 For consistency reasons, the comparison is done by using the actual frequency

of the limit-cycle oscillations f 1
DNS, l−c

= 50 Hz, leading to the effective flame delay in

limit-cycle τ̃DNS, l−c = 10 ms used in Eq. (21).
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Fig. 14. Comparison between theory ( ) and DNS ( ) for the spatial structure of the first ITA mode.

Fig. 15. One cycle of the ITA mode in limit-cycle on case REF-2.0. The black isoline corresponds to a high value of the Q criterion and marks intense vortices [41]. The heat release

rate is indicated by red isolines. The background color corresponds to the axial velocity field. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

to non-linear effects intervening in limit-cycle which result in re-
ducing the gain. A Flame Describing Function F(ωr, |u′

1|) that takes
into account the oscillation amplitude would be required for a more
accurate estimation of the gain in limit-cycle [36]. As mentioned in
Section 5, the validity of the adiabatic velocity jump θadiab = 6.3 may
also be questioned in this non-adiabatic setup. Finally, note that, in
Fig. 14, theoretical predictions are not plotted in the flame zone since
this region is not described in the model of Eqs. (3) and (4), which
uses the compact flame assumption.

7. Description of physical phenomena responsible for ITA modes

The final part of this work is devoted to the analysis of the sce-
nario of the ITA mode revealed by DNS. Indeed, at this point, even
though characteristics of these modes, such as frequency, mode struc-
ture, or stability limits, match theoretical predictions, the phenom-
ena responsible for this new kind of instability have not yet been
described. Previous theoretical studies suggest that vortex shedding
may be at the origin of ITA modes [3], while others mention a possible

counter-reaction of the flame to its own production of acoustics [2].

This section shows that mode conversion [17,37–40], i.e. the transfor-
mation of an acoustic wave into a convective wave is the mechanism
that must be introduced into the analysis to understand the insta-
bility loop. In the present case the transformation takes place at the
sharp corner where the flame is anchored, and where vorticity is gen-
erated by unsteady shear layers excited by acoustic waves. The second
mechanism needed to elucidate the ITA instability is Kinematic Over-
Restoration (KOR), which controls the second part of the instability
loop. To gain more insight into these mechanisms, a complete ITA cy-
cle is analyzed using the DNS data exposed in Section 6 for the case
S2/S1 = 2. Figure 15 shows four snapshots of the flame position dur-
ing one cycle. The time evolution of the reference acoustic velocity
and pressure in the chamber are plotted on the right hand-side of the
figure.

The cycle can be described as follows: assume that a pair of
vortices (visualized by Q-criterion isocontours in Fig. 15) is created
on both sides of the flame at t = t1 when the acoustic velocity is
maximal at the dump plane (as observed in all pulsated jets [17]).
These vortices push the flame anchoring points apart and a convec-

tive perturbation then propagates along the flame front (instant t2).
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This perturbation takes approximately a time τ before the flame
reaches its maximum elongation and the heat release rate is max-
imum at time t3. Kinematic Over-Restoration subsequently takes
place. Standard kinematic restoration happens when a flame, pushed
away from its stable position, naturally reverts to steady state [42,43].
Here, not only is the flame far from its equilibrium position at t = t3,

but the inlet velocity is also minimal at this instant: these two com-
bined factors lead to a very fast contraction of the flame between in-
stants t3 and t4. This is why the fluctuation of reaction rate becomes
negative at time t4. Strong contraction of the flame results in nega-
tive dilatation and negative acoustic pressure, which in turn induces
a velocity surge upstream from the flame. This positive inlet acoustic
velocity again initiates mode conversion at the corner and creates a
new pair of vortices, thereby closing the unstable loop at t = t1 + 2τ .
In this scenario, acoustics plays a role only between instants t3 and t4

to trigger a pair of vortices through mode conversion at the corner. No
acoustic mode of the full system is involved. The only acoustic prop-
agation involved in the ITA mode takes place between the flame zone
and the chamber inlet plane, and is oriented upstream.

8. Conclusion

The understanding of thermoacoustic instabilities has recently
evolved in a significant way through the theoretical derivation of In-
trinsic ThermoAcoustic (ITA) instability modes [2,3] that do not de-
pend on the acoustic eigenmodes of the combustor where the flame
is located. These ITA modes are studied here using DNS of a lami-
nar premixed flame stabilized in a dump combustor: most features
predicted theoretically are captured by DNS with very good accuracy
as soon as flames with sufficient confinement are considered (small
cross-section ratio between injection duct and combustion chamber).
These include frequency of the instability and spatial structure of the
mode via pressure and velocity fields. It was shown that theoretical
predictions of the stability and the frequency of ITA modes entirely
rely on the determination of the Flame Transfer Function. A simple
visual approach based on a Bode diagram of the FTF and a critical
gain expression are given for the determination of these character-
istics. This approach gives very good agreement with DNS results in
terms of frequency, while showing some limitations regarding stabil-
ity limits. However, results confirm that ITA modes are more unstable
in confined combustion chambers. Finally, the mechanisms involved
in the intrinsic feedback loop, i.e. mode conversion at the corners of
the chamber inlet plane and Kinematic Over-Restoration, were de-
scribed.

Intrinsic ThermoAcoustic instabilities may appear as a curiosity
since their formal derivation requires anechoic boundaries. Ther-
moacoustic modes in real combustion chambers feature acoustic
feedback through nozzles, compressors, turbines, etc., which are ob-
viously non anechoic [44,45]. However, the intrinsic feedback respon-
sible for ITA modes can still play a role in these cases and interact with
standard feedback mechanisms such as acoustic reflexion or entropy-
acoustic mixed modes [44]. Moreover, systems where ITA modes exist
may react differently to changes of impedance at inlet or outlet com-
pared to usual combustors. Increasing acoustic losses may actually
make these systems more unstable, a property which is quite unex-
pected in the combustion instability community.
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Appendix A. Derivation of the stability criterion of ITA modes
using Rayleigh’s criterion

Rayleigh’s criterion states that the temporal variations of the
period-averaged acoustic energy E results in the balance of the
period-averaged source term due to combustion R and the period-
averaged acoustic fluxes leaving the domain through the boundaries
F j . Consequently, unstable combustion– acoustics coupling will be
found for [12]:

R > F1 + F2 (A.1)

where the definition of the acoustic source term and fluxes are:

F j = 1

2
ε jS jℜ(p̂û∗

j(x = 0±)) and R = 1

2

γ − 1

γ p0
ℜ(p̂$̂∗

T ) (A.2)

where ε j = ( − 1) j because û j is an oriented quantity, and the star
(∗) symbol denotes the complex conjugate. Using the analogous of
Eq. (20) with the interaction index n instead of the FTF modulus, the
acoustic source term and fluxes can be expressed in terms of the ge-
ometry and flame parameters:

F j = 1

2

S j

ρ jc j
|p̂|2

and R = n

2

S1

ρ1c1
|p̂|2

(A.3)

Finally, injecting Eq. (A.3) in Rayleigh’s criterion (Eq. (A.1)), one can
easily recover the criterion for instability of Eq. (12):

n > nc = & + 1

&
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