
HAL Id: hal-03518918
https://hal.science/hal-03518918v1

Submitted on 10 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic replication strategies in data grid systems: A
survey

Uras Tos, Riad Mokadem, Abdelkader Hameurlain, Ayav Tolga, Sebnem Bora

To cite this version:
Uras Tos, Riad Mokadem, Abdelkader Hameurlain, Ayav Tolga, Sebnem Bora. Dynamic replication
strategies in data grid systems: A survey. Journal of Supercomputing, 2015, vol. 71 (n° 11), pp.
4116-4140. �10.1007/s11227-015-1508-7�. �hal-03518918�

https://hal.science/hal-03518918v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 14981

To link to this article : DOI :10.1007/s11227-015-1508-7
URL : http://dx.doi.org/10.1007/s11227-015-1508-7

To cite this version : Tos, Uras and Mokadem, Riad and Hameurlain,
Abdelkader and Tolga, Ayav and Bora, Sebnem Dynamic replication
strategies in data grid systems: A survey. (2015) Journal of
Supercomputing, vol. 71 (n° 11). pp. 4116-4140. ISSN 0920-8542

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

http://oatao.univ-toulouse.fr/
http://dx.doi.org/10.1007/s11227-015-1508-7
mailto:staff-oatao@listes-diff.inp-toulouse.fr

Dynamic replication strategies in data grid systems:

a survey

Uras Tos1,2,3
· Riad Mokadem1

·

Abdelkader Hameurlain1
· Tolga Ayav2

·

Sebnem Bora3

Abstract In data grid systems, data replication aims to increase availability, fault tol-

erance, load balancing and scalability while reducing bandwidth consumption, and job

execution time. Several classification schemes for data replication were proposed in

the literature, (i) static vs. dynamic, (ii) centralized vs. decentralized, (iii) push vs. pull,

and (iv) objective function based. Dynamic data replication is a form of data replica-

tion that is performed with respect to the changing conditions of the grid environment.

In this paper, we present a survey of recent dynamic data replication strategies. We

study and classify these strategies by taking the target data grid architecture as the sole

classifier. We discuss the key points of the studied strategies and provide feature com-

parison of them according to important metrics. Furthermore, the impact of data grid

architecture on dynamic replication performance is investigated in a simulation study.

Finally, some important issues and open research problems in the area are pointed out.

B Uras Tos

urastos@gmail.com; tos@irit.fr

Riad Mokadem

mokadem@irit.fr

Abdelkader Hameurlain

hameurlain@irit.fr

Tolga Ayav

tolgaayav@iyte.edu.tr

Sebnem Bora

sebnem.bora@ege.edu.tr

1 Institut de Recherche en Informatique de Toulouse (IRIT), Paul Sabatier University,

118 Route de Narbonne, 31062 Toulouse, France

2 Department of Computer Engineering, Izmir Institute of Technology, 35430 Urla, Izmir, Turkey

3 Department of Computer Engineering, Ege University, 35100 Bornova, Izmir, Turkey

Keywords Data grid · Dynamic replication · Data grid architecture · Performance

1 Introduction

Data grid provides a scalable foundation for computationally intensive applications, in

which large amounts of data are processed [15]. Many research areas, including high-

energy physics [25,50,53], astronomy [19], biology [34], and climate science [14]

employ data grid based infrastructures for their computational needs. Experiments in

these scientific research areas create very large amounts of data that are often measured

in petabytes [25,56]. Frequent access to these data sets would strain network links,

overload remote data stores, and affect computational performance. On the other hand,

placing local copies at each node is costly and not realistic. As a result, the placement

of data plays an important role in data grid systems.

Dealing with data placement problem, data replication is a common solution in data

grid systems. It consists of strategically placing copies of data to increase availability,

access performance, reliability, and fault-tolerance, as well as to reduce bandwidth

usage, and job completion times. Many replication strategies were proposed [11,42,

45,54] to satisfy these constraints.

Any replication strategy should address at least three challenges [45]: (i) which

files should be replicated? It is generally not feasible to replicate every file; there-

fore, establishing criteria on choosing files to be replicated is important. (ii) When

should the replication of a file occur? Finding a good balance on when to replicate is

also crucial as replicating too early might be wasteful on storage space, while repli-

cating too late may not yield the full benefits of replication. (iii) Where should the

replica of a file be placed? Placing replicas closer to the clients with the most access

requests plays an important role in overall performance of replication strategy. Opti-

mal replica placement is an NP-complete problem [55]. Therefore, each replication

strategy approaches the issue as an optimization problem and answers these three

questions differently.

There are many ways to look at data replication, e.g. fault-tolerance, security, load

balancing points of view. However, from the most general perspective, data replica-

tion strategies can be divided into two categories, namely static [13,18,22,32] and

dynamic [11,41,42,54] replication. In this paper, we are focusing on dynamic repli-

cation strategies, where all replication decisions are made adaptively while the system

is in operation. In addition, allowing updates on replicas creates serious consistency

problems and introduces a significant amount of management overhead. Consequently,

most of the work done on dynamic replication focus only on read-only access perfor-

mance [13], which is also the scope of this paper.

Different classification criteria are often intertwined in recent surveys on data

replication. Some papers deal with the already cited static vs. dynamic classifica-

tion [13,18], while some other works deal with centralized vs. decentralized replication

management [4,20,33], push-based vs. pull-based replication [16,20,41,52], and

objective function-based classification [40].

In general sense, most dynamic replication strategies are developed for a target

data grid architecture. In this context, important issues as replica placement and

selection depend significantly on data grid architecture. Few papers consider target

data grid architecture as a classification criteria. Kingsy Grace and Manimegalai [28]

discuss various replica placement and selection strategies with a focus on decentral-

ized replication management. In their survey, architecture is not the only classifier,

but instead it is used alongside objective function, and load balancing criteria in

a mixed classification. In another paper, Amjad et al. [4] show interest in another

replication classification. In their classification, both the centralized/decentralized

aspect of replication management and storage assumption are considered as the most

important criteria, while the main focus is on improved data availability. Further-

more, performance evaluation is not present in these recent surveys. We believe it

is important to point out the impact of the classification criteria in an experimental

analysis.

In this paper, we provide a new classification of dynamic replication strategies with

respect to the data grid architecture only. We regard data grid architecture as a system

that consists of components and their relationships [26]. Our classification, following a

brief description of each architecture, discusses the current state of the art on dynamic

data replication strategies. Furthermore, we evaluate and discuss the impact of data

grid architecture on data replication by means of a simulation study. In addition, we

show how the features of an architecture may contribute to which types of benefits in

terms of performance.

We also study some factors that impact the performance. Considering the dynamic

nature of the data grid, nodes can join or leave the data grid at any time. As a result,

the number of active nodes at any given time varies. Dynamic replication strategies

must consider these dynamic aspects of the data grid, as well as taking advantage of

file access patterns, making realistic storage assumptions, managing available storage

space in the nodes, and calculating costs of replication. Indeed, for any dynamic

replication strategy, benefits of replication should always outweigh the overhead. The

simulation study presented in this paper enables us to investigate the effect of data

grid architecture on replication performance.

The organization of this paper is as follows: Sect. 2 discusses existing classifications

and how dynamic replication can be classified with respect to different criteria. Sec-

tion 3 describes our classification and analyzes recent work on dynamic replication.

Section 4 evaluates the performance of selected strategies on different architectures to

investigate the impact of architecture on data replication performance. Section 5 dis-

cusses the important issues and some open problems for dynamic replication strategies.

Section 6 presents a conclusion to the paper.

2 Existing classifications

Replication strategies vastly vary, as all have different implementations. While every

replication strategy is different, they may have common features with respect to certain

aspects. Therefore, it is a sensible approach to classify replication strategies, as it

helps building a coherent and organized foundation for studying them. In this section,

existing classification schemes for dynamic replication are discussed.

2.1 Static versus dynamic replication

In most general sense, replication strategies can be classified into two groups, namely

static and dynamic replication. In static replication, all decisions regarding the repli-

cation strategy are made before the system is operational and not changed during

operation [13,18,22,32]. On the other hand, in dynamic replication, what, when,

and where to replicate are decided as a response to the changing trends of the data

grid [11,41,42,54].

In a non-changing grid environment, where nodes do not join or leave the grid and

file access patterns are not varied, static replication might be a good choice. Com-

pared to dynamic replication, static replication does not have the overhead caused by

replication decision and management. On the other hand, when a replication scenario

needs to be periodically reconfigured according to dynamic grid properties, it causes

significant administrative overhead and affects scalability and optimal resource use of

the system. In a dynamic environment where nodes are free to join or leave, and file

access patterns change over time, dynamic replication excels static replication due to

its nature of adaptability.

2.2 Centralized versus decentralized replication

Data replication involves many tasks, including but not limited to, choosing files to

replicate, and deciding where to place replicas. Each task requires having a priori

information about that particular state of the data grid environment. Which party or

parties will collect this information, process it, and take actions regarding replication

is in the scope of this classification scheme [4,20,33].

Centralized replication strategies contain a central authority to control all aspects

of data replication. All metrics are either collected by or propagated to this central

authority. Replication decisions are given by this point of control and all the other

nodes report to it. In contrast, decentralized approach encourages no central control

mechanism to exist in the system. Nodes themselves decide on how replication will

occur. With no central control, no single node can hold complete information about

the entirety of the data grid. In a decentralized replication management strategy, coor-

dination of a replication event is usually performed with the collaboration of a number

of nodes. As the system scales up, the inter-node communication overhead should

not increase to a point that surpasses the benefits of the replication. Similarly, if a

centralized replication management is chosen, the capabilities of the central replica

manager should not cause bottlenecks if the system scales up in the future.

Each approach has its advantages and drawbacks. Centralized replication is easier to

implement and generally more efficient, as a single entity is responsible for all the deci-

sions and has knowledge about every aspect of the data grid. On the other hand, central

authority is also a point of failure and thus is not ideal for reliability and fault-tolerance.

Decentralized replication is good for reliability as there is no single point of failure in

the system and the system can still behave predictably even a number of nodes are lost.

However, having no central control and nodes acting on incomplete information about

the state of the system may yield non-optimal results, e.g. excessive replication [46].

2.3 Push versus pull based replication

In any replication strategy, if we take a close look at the replication event of any

particular file, there are two main actors involved. The former is the server that holds

the file in its storage elements, and the latter is the client that needs that file in its local

storage. Push- vs. pull-based classification is focusing on which of these two actors

triggers the replication event [16,20,41,52].

In push based replication, the replication event is triggered by the originator of

the file, as the server pushes the file to the requestor node. Servers receive requests

from a number of clients, thus they require enough information about the state of the

system to be able to trigger replication events. Therefore, push based replication is

often proactive.

In pull-based replication, the replication event is triggered by the requestor node, as

the client pulls the file from the server. Compared to push-based strategies, pull-based

replication can be regarded as a reactive approach as the replication event is realized on-

demand. Client-side caching is also regarded as pull replication due to the fact that in

this form of caching, clients decide to temporarily store a file in their local storage [52].

2.4 Objective function based classification

When approaching data replication as an optimization problem, observing an objective

function can be expected. Considering that each data replication strategy aims to

minimize or maximize some objective, it is possible to make a classification with

regard to the definition of this objective function [40].

A popular approach to define an objective function is to set data locality goals [45,

54]. In this approach, the primary aim is to place replicas as close to the requestors

as possible, preferably in the local storage. There is also the possibility to extend this

locality goal with some other objective. For example, instead of increasing the locality

of all requested files, some strategies use heuristics to selectively increase the locality

of just the popular files [51].

Cost model based objective functions enable the replication decision to take a

number of parameters into account [5,36,44]. In these works, replication decision

is generally given according to the output of a mathematical model. These models

can include many parameters including collective file access statistics, bandwidth

availability, replica sizes, etc.

Market-like mechanisms and economic behaviors are also evaluated [8,23]. In the

economic models, files are treated as tradable goods on the market. During a replication

event, clients tend to buy files from remote sites that offer the lowest price and remote

sites try to sell their files for the greatest profit.

3 Classification of dynamic replication strategies

In this section, we classify the existing dynamic replication strategies with respect to

target data grid architecture. Each different data grid architecture has different proper-

ties, and these properties necessitate different strategies concerning data replication.

Table 1 Dynamic replication strategies for multi-tier architecture

Replication strategy Ranganathan

et al. [45]

Tang

et al. [54]

Shorfuzzaman

et al. [51]

Abdurrab

et al. [2]

Khanli

et al. [27]

Features

Architecture Multi-tier Multi-tier Multi-tier Multi-tier Multi-tier

Replication decision Decentr. Centr. Centr. Decentr. Decentr.

Storage assumption Limited Limited Limited Limited Limited

Objective function Locality Locality Locality Locality Locality

Measured metrics

Availability No No No No No

Number of replicas No No No No No

Response time Yes Yes No No Yes

Request success rate No No No No No

Total execution time No No Yes Yes No

Storage usage No No Yes No No

Network usage Yes Yes Yes Yes No

Replication

frequency

No Yes No No No

Tables 1, 2, 3, 4, 5 and 6 provide a summary of studied replication strategies in each

respective subsection.

3.1 Dynamic replication strategies for hierarchical architecture

Hierarchical architectures assume a structured network generally in the form of a

tree or a star. Whether the replication strategy is developed for a multi-tier hierarchy,

or it takes advantage of some hierarchy with network-level locality, all hierarchical

approaches are studied in this subsection.

3.1.1 Dynamic replication strategies for multi-tier architecture

Multi-tier architectures follow the data grid model of GriPhyN project [45]. It is hier-

archical in nature, and it has a well-defined, strict structure. On the other hand, due to

this strict organizational structure, multi-tier architectures are not very flexible to allow

arbitrary addition of removal of nodes. Multi-tier data grid is organized in four tiers as

Fig. 1 shows. Tier 0 denotes the source, e.g. CERN, where the data are generated and

master copies are stored. Tier 1 represents national centers, Tier 2 the regional centers,

Tier 3 consists of work groups, and Tier 4 contains desktop computers. In this model,

generally, the storage capacity increases from bottom to upper levels of the data grid.

Ranganathan and Foster [45] propose six dynamic replication strategies for multi-

tier data grid. These strategies are No Replication or Caching, Best Client, Cascading

Replication, Plain Caching, Caching plus Cascading Replication, and Fast Spread. No

Replication or Caching is implemented as a base case for comparing other strategies

Table 2 Dynamic replication strategies for bandwidth hierarchy architecture

Replication strategy Park

et al. [42]

Horri

et al. [24]

Sashi

et al. [49]

Mansouri

et al. [35]

Mansouri

et al. [36]

Mansouri

et al. [37]

Features

Architecture BW

hierarchy

BW

hierarchy

BW

hierarchy

BW

hierarchy

BW

hierarchy

BW

hierarchy

Repli. decision Decentr. Centr. Centr. Decentr. Decentr. Decentr.

Stor. assump. Limited Limited Limited Limited Limited Limited

Obj. function Locality Locality Locality Locality Cost model Locality

Measured metrics

Availability No No No No No No

Num. of replicas No No No No No No

Response time No No No No No No

Req. success rate No No No No No No

Tot. execution time Yes Yes Yes Yes Yes Yes

Storage usage No No Yes No No Yes

Network usage No No Yes No No Yes

Replication frequency No No No No No No

Table 3 Dynamic replication strategies for other hierarchical architectures

Replication strategy Chang

et al. [11]

Perez

et al. [43]

Zhao

et al. [58]

Lee

et al. [30]

Saadat

et al. [48]

Features

Architecture Hier. Hier. Hier. Hier. Hier.

Replication decision Centralized Centralized Centralized Centralized Centralized

Storage assumption Limited Limited Limited Limited Limited

Objective function Locality Locality Locality Locality Locality

Measured metrics

Availability No No No Yes No

Number of replicas No No Yes No Yes

Response time No No No No No

Request success rate No No No No Yes

Total execution time Yes No Yes No Yes

Storage usage Yes No No No Yes

Network usage Yes Yes Yes Yes Yes

Replication

frequency

No No No No No

to a no-replication scenario. In Best Client strategy, access history records are kept for

each file on the grid. When a certain threshold is reached, the file is replicated only

on the client that generates most requests. Cascading Replication introduces a tiered

replication strategy, in which when a threshold for a file is exceeded at the root node,

Table 4 Dynamic replication strategies for P2P architecture

Replication strategy Ranganathan

et al. [46]

Bell

et al. [8]

Abdullah

et al. [1]

Challal

et al. [10]

Chettaoui

et al. [17]

Features

Architecture P2P P2P P2P P2P P2P

Replication decision Decentr. Decentr. Decentr. Decentr. Decentr.

Storage assumption Unlimited Limited Unlimited Limited Limited

Objective function Locality Economic

behavior

Locality Locality Locality

Measured metrics

Availability Yes No No No No

Number of replicas Yes No Yes Yes No

Response time No No Yes No Yes

Request success rate No No Yes No No

Total execution time No Yes No Yes No

Storage usage No No No Yes No

Network usage No No No Yes Yes

Replication frequency No No No No No

Table 5 Dynamic replication strategies for hybrid architecture

Replication strategy Lamehamedi et al. [29] Rasool et al. [47]

Features

Architecture Hybrid Hybrid

Replication decision Decentralized Centralized

Storage assumption Limited Limited

Objective function Cost model Locality

Measured metrics

Availability No No

Number of replicas No Yes

Response time Yes Yes

Request success rate No No

Total execution time No No

Storage usage No No

Network usage No Yes

Replication frequency No No

a replica is placed at the level on the path towards the best client, progressively. In

Plain Caching, the client requests a file and stores it locally. Caching plus Cascading

Replication combines Cascading Replication and Plain Caching. Fast Spread is the

final strategy in which, upon client file requests, a replica of the file is placed on each

tier on the path to the client. Popularity and file age are used as parameters to select

Table 6 Dynamic replication strategies for general graph architecture

Replication strategy Rahman

et al. [44]

Lei

et al. [31]

Chen

et al. [12]

Bsoul

et al. [9]

Andronikou

et al. [5]

Features

Architecture General

graph

General

graph

General

graph

General

graph

Not

men-

tioned

Replication decision Decentr. Decentr. Decentr. Centr. Centr.

Storage assumption Limited Limited Limited Limited Limited

Objective function Cost

model

Locality Locality Locality Cost model

Measured metrics

Availability No Yes No No No

Number of replicas No No No No No

Response time Yes No No Yes No

Request success rate No No No No No

Total execution time No Yes Yes No Yes

Storage usage No No Yes No No

Network usage No No No Yes No

Replication frequency No No No No No

...

...

...

...

Tier 4

Tier 3

Tier 2

Tier 1

Tier 0

...

Node

Fig. 1 Multi-tier architecture

files for the replica replacement approach. In simulations with three different access

patterns, they show that Best Client strategy performs worst. Fast Spread works better

with random data access patterns and Cascading Replication performs better when

locality exists in data access patterns.

Two dynamic replication strategies, Simple Bottom-Up (SBU) and Aggregate

Bottom-Up (ABU) were proposed by Tang et al. [54] to reduce the average response

time. Popular files are identified by analyzing the file access history. When an access

threshold is exceeded, SBU places replicas close to the nodes that request files

with higher frequencies. ABU, on the other hand, calculates the aggregate access

records for each sibling of a node and passes this information to higher tiers until

the root node is reached. At each level, replication decision is given when aggregate

access values pass a predefined threshold. Both strategies employ Least Recently Used

(LRU) [6] replica replacement approach. In the performance evaluation, ABU gives

the best average response time and average bandwidth cost among studied strate-

gies.

Shorfuzzaman et al. [51] propose two dynamic replication strategies for multi-tier

data grid, Popularity Based Replica Placement (PBRP), and its adaptive counter-

part, Adaptive-PBRP (APBRP). PBRP aims to balance storage utilization and access

latency trade-off by replicating files based on file popularity. The replication strategy

is run periodically in a way that access records are aggregated bottom-up and replica

placement is done in a top-down manner. APBRP improves PBRP by introducing

an adaptive access rate threshold. In simulations, APBRP shows improvement over

PBRP while both strategies perform better than Best Client, Cascading, Fast Spread,

and ABU in terms of job execution time, average bandwidth use, and storage use.

Abdurrab and Xin [2] present a replication strategy, called File Reunion (FIRE),

which takes advantage of the correlation between file requests. FIRE assumes that

there is a strong correlation between a group of jobs and a set of files. Based on this

assumption, FIRE aims to reunite the file set onto the sites by means of replication.

Replication is performed when a file is not locally available, and there is enough

storage space to store it. If there is not enough storage space, a file with a lower group

correlation degree is removed before replicating the new file. In a simulation scenario,

FIRE performed better than Least Frequently Used (LFU) [6] and LRU replication

strategies.

Khanli et al. [27] mention that most of the recent work on data replication focus

on temporal and geographical locality, but not on spatial (file) locality. They propose

Predictive Hierarchical Fast Spread (PHFS) as an improvement over Fast Spread.

PHFS works in three stages. In monitoring stage, file access records from all clients

are collected in a log file. In analyzing stage, data mining techniques are used to

discover the relationships between files. For a file A, any file B with a relationship

greater than a threshold is considered in the predictive working set (PWS) of A. In the

final stage replication configuration is applied according to the calculated PWSs. They

left the simulation for future work but showed on an example that PHFS improved

access latency over Fast Spread.

3.1.2 Dynamic replication strategies for bandwidth hierarchy architecture

Park et al. [42] propose a dynamic replication strategy that takes advantage of the

bandwidth hierarchy in the data grid. In their approach, they present that bandwidth

between regions, e.g. countries, are narrower compared to bandwidth available inside a

region. Their strategy, Bandwidth Hierarchy Replication (BHR) takes advantage of this

relationship between regions to introduce a new type data locality, namely network-

level locality as depicted in Fig. 2. BHR replicates popular files as many times as

possible within a region, where intra-region bandwidth is abundant. In simulations,

BHR performs better than delete LRU and delete oldest replication when narrow

inter-region bandwidth or low node storage space exists. However, as the inter-region

Network region

Network region

Network region

Node

Router

Fig. 2 A hierarchical architecture based on network-level locality

bandwidth or available storage space of the nodes increase, BHR performs similarly

to the traditional strategies.

Horri et al. [24] presented 3-Level Hierarchical Algorithm (3LHA) for network

level hierarchy. The proposed strategy targets a hierarchical architecture that consists

of three levels. The first level consists of regions, i.e. having low bandwidth availability.

Levels two and three represent local area networks (LAN) and clients in the LANs,

respectively. When a client accesses a file, if it has enough storage, the file is replicated.

However, if files needed to be deleted before the replication, first, the local files that

also already exist on the LAN are chosen for deletion. Then, the local files that already

exist in the region are selected, and if there is still not enough space available, other

local files are deleted. They compared their strategy with BHR and LRU and showed

that the proposed strategy performs better in terms of mean job time.

An improved implementation of BHR was proposed by Sashi and Thanamani [49]

as Modified BHR algorithm. In their strategy, the data are generated at the master

site and replicated to region headers before any jobs are scheduled on the grid. They

assume that the files accessed by a node will also be accessed by nearby nodes and

popular files will be accessed more frequently. Replicas are only placed in the region

header and the node that makes the most requests. The access records are kept in the

region header and least frequently used replicas are chosen as the deletion strategy.

Modified BHR algorithm is compared with no replication, LFU, LRU, and BHR in a

simulation study and the results show improved mean job time than to other strategies.

Mansouri and Dastghaibyfard [35] extended 3LHA further and proposed Dynamic

Hierarchical Replication (DHR) algorithm. They emphasize that 3LHA places replicas

in all of the requestor sites. On the other hand, DHR creates a per-region ordered list

of sites with respect to the number of accesses to a file. The site that is at the top of the

order is chosen to place the new replica. By placing replicas at best sites, DHR aims

to lower storage cost and mean job execution time. They compare the effectiveness

of DHR against no replication, LFU, LRU, BHR, and 3LHA. The results show that

DHR shows better job execution times compared to other studied strategies, especially

when grid sites have smaller storage space.

In another paper, Mansouri and Dastghaibyfard [36] added economic cost model

calculation to DHR and presented Enhanced Dynamic Hierarchical Replication

(EDHR). By predicting future economic value of files, they made better assessment of

which replicas will not be beneficial and get deleted, and which files will be beneficial

and get replicated. Simulations indicate that EDHR yields even better mean job times

than DHR.

Mansouri et al. [37] also present Modified Dynamic Hierarchical Replication

Algorithm (MDHRA), which is another extension of DHR strategy. In MDHRA,

replica replacement decision mechanism is altered to take last request time, num-

ber of accesses, and size of the replica into account. They note that the new approach

improves the availability of valuable replicas. Simulations show that, compared to

DHR and other studied strategies, MDHRA performs better in terms of mean job

completion time and effective network usage. However, performance comparisons do

not include EDHR.

3.1.3 Dynamic replication strategies for other hierarchical architectures

An access-weight based dynamic replication strategy is proposed by Chang and

Chang [11]. Their work, Latest Access Largest Weight (LALW), defines a strategy

for measuring popularity of files on the grid, calculating the required number of repli-

cas, and determining sites for replica placement. In the presented strategy, clients are

connected to cluster headers that manage all replication decisions. File access history

records are aggregated to the cluster headers and system-wide popularity of files are

calculated. Recently accessed files have larger weights, and the replica placement is

based on weighted access frequencies. In simulations, LALW shows similar total job

execution times compared to LFU while consuming less storage space and having

more effective bandwidth usage.

Perez et al. [43] present Branch Replication Scheme (BRS) that has three key fea-

tures: (i) sub-replica creation optimizes storage usage, (ii) data access performance

is increased via parallel I/O, and (iii) consistency on updates are maintained to allow

replica modification. In BRS, files are divided into several disjoint sub-replicas that

are placed on different nodes. With this approach, BRS aims to create high levels of

fault-tolerance without increasing the storage use. A simulator based on Omnet++

was developed for performance evaluation. In the simulations, BRS is compared with

hierarchical replication strategy and shows improved data access performance on both

read and write operations.

Zhao et al. [58] propose a replication strategy, called Dynamic Optimal Replication

Strategy (DORS). A file is replicated when the number of replicas of that particular

file is less than a threshold. This threshold is the ratio of total grid capacity to the

total size of the files on the grid. For the replica replacement policy, they designed

a model that calculates value of the replicas. When a shortage of storage space is

detected, replicas with the lowest value are replaced. Replica value is dependent on

access frequency and access cost of the replicas. They compared DORS with LFU

and LRU in a simulation environment. The results show that DORS performs better

in terms of mean job execution time and effective network use metrics.

Saadat and Rahmani [48] propose Pre-fetching Based Dynamic Data Replication

Algorithm (PDDRA) with the assumption that members of a virtual organization (VO)

have similar interests in files. PDDRA predicts the future accesses of files and pre-

replicates them before the requests are placed. In the algorithm, file access records of

VOs are collected and logged. When a file request is put forward for a file A, PDDRA

scans the logs and determines which files follow file A, and which of the follower

files has the greatest number of accesses. Using five different access patterns, they

compared PDDRA with six existing strategies. PDDRA shows better performance

than other strategies in terms of mean job execution time and effective network usage

under all simulated access patterns.

Lee et al. [30] developed an adaptive replication strategy, called Popular File Repli-

cate First (PFRF). Their algorithm runs periodically in four stages: (i) file access

records are aggregated by header nodes to the replication manager. (ii) Popularity of

each file is calculated. (iii) Top 20 % popular files are chosen to be replicated for every

grid site, and (iv) files are replicated to destination sites from the closest site that holds

the required files. In case of a storage shortage, less popular files are deleted prior

to replication. In a simulation scenario using five access patterns, PFRF shows better

performance on average job turnaround time, average data availability, and bandwidth

cost ratio metrics, compared to other strategies.

Meroufel and Belalem [39] propose a replication strategy, called Placement

Dynamic (PD). The aim of PD is to minimize the number of replicas to ensure certain

degree of availability without degrading performance. In the strategy, placement of

the replicas and the failures in the system are taken into account. If a failure suspi-

cion is observed, the data are moved to other nodes in the system to maintain the

availability level. Authors compared PD with random replication approach via simu-

lations performed with FTSim. The results show that PD demonstrates better recovery

times compared to random replication, and unlike random replication, PD can keep

the desired availability.

3.2 Dynamic replication strategies for peer-to-peer architecture

In P2P architectures, nodes act in an autonomous way, without intervention of a central

authority (Fig. 3). Nodes normally possess enough functionality to be both servers and

clients at the same time. This decentralized structure allows for even higher volatility

than other architectures, as nodes can connect to any part of the grid and leave without

notice. Replication strategies for P2P architecture are developed by keeping this highly

dynamic nature of P2P grids in mind [57].

Ranganathan et al. [46] propose a replication strategy which is dynamic and model

driven. Their model takes single system stability, transfer time between nodes, storage

cost of files, and accuracy of replica location mechanism to calculate the required

number of replicas to achieve a desired availability level. They show with a simulation

scenario that their replication strategy performs better than static replication. They

also report that their strategy accurately predicts the number of replicas in the system.

Fig. 3 Peer-to-peer architecture Node

However, they note that nodes act on incomplete information and this sometimes lead

to unnecessary replication.

Bell et al. [8] presented an economy-based data replication strategy for P2P data

grids. In the proposed strategy, data grid is treated as a marketplace, where files rep-

resent goods that are traded by the optimization agents in the system. Computing

elements purchase files and aim to minimize the purchasing cost. Similarly, storage

elements try to maximize their profits and make investments based on file access pre-

dictions to increase revenue. In simulations, the proposed model is compared with

LRU strategy. The results indicate that the proposed model reduces total job execution

times in sequential file access; however, LRU performed better in Gaussian random

walk distribution.

Abdullah et al. [1] propose two dynamic replication strategies, Path and Requestor

Node Placement Strategy, and N-hop Distance Node Placement Strategy. Path and

Requestor Node Placement Strategy replicates files on all nodes on the path to the

requestor node, including the requestor node. In N-hop Distance Node Placement

Strategy, the replicas are placed on all neighbors of the provider node with a distance

of N. In simulations, proposed strategies increase availability and decrease response

time with the expense of using more bandwidth.

Challal and Bouabana-Tebibel [10] presented a priori data replication strategy for

P2P data grid systems. Their strategy supplements dynamic replication by finding

optimal nodes to place initial replicas before the jobs are started. Maximizing the dis-

tance between identical replicas and minimizing distances between different replicas,

they increase availability and ensure that each node has replicas of different file in

its vicinity. In their simulations, a priori replica placement strategy is compared with

random initial replica placement and no initial replica placement. The proposed strat-

egy improves job completion times and reduces file transfer times without increasing

bandwidth and storage costs.

Chettaoui and Charrada [17] propose DPRSKP, Decentralized Periodic Replication

Strategy based on Knapsack Problem. Two main features of the proposed strategy are

the limited storage assumption for grid sites and dynamicity of the data grid, i.e. the

number of grid sites that exist at any given time. DPRSKP selects what to replicate

by creating a prioritized list according to the popularity and availability of each file.

Replicas of popular files are then placed on nodes that are stable and having good

bandwidth to the requestor nodes. This objective is accomplished by formulizing and

solving it as the Knapsack problem.

Fig. 4 An example hybrid

architecture (sibling tree)

...

Node

...

3.3 Dynamic replication strategies for hybrid architecture

In this subsection, we studied dynamic data replication strategies for hybrid architec-

tures. Hybrid data grid architectures generally combine at least two other architectures

with different properties. For example, as depicted in Fig. 4, if a replication strategy

is created for a sibling tree hybrid architecture that combines P2P-like inter-sibling

communication with hierarchical parenthood relationships, that particular strategy is

studied in this subsection.

Lamehamedi et al. [29] present a hybrid replication strategy that combines the

hierarchical architecture with P2P features. They implemented a cost model and based

the replication decisions on how the gains of the replication measure against the costs.

A runtime component constantly monitors the grid to collect important parameters,

i.e. replica size, and network status. These information used in the calculation of

the replication costs. They evaluated three different simulation scenarios on a single

architecture. The results indicate that, average response time is improved as replicas

are placed closer to the clients.

Rasool et al. [47] propose Two-Way Replication (TWR) that combines a multi-tier

architecture with P2P-like features. In the target architecture, in addition to being

connected to the parent node, each node (except at the leaf level) is connected to its

siblings as well. Replication decision is handled by a central authority, called Grid

Replication Scheduler (GRS). GRS targets the files that have higher-than-average

access frequency are replicates them at the parent of the client that generate the most

requests. Files with lower access frequencies are replicated at the grandparent level.

A simulation study shows that, in terms of response time TWR performed similarly

to Fast Spread, while consuming less resources.

3.4 Dynamic replication strategies for general graph architecture

In this subsection, we discuss dynamic data replication strategies that are proposed

for general graph architectures. In general graphs, nodes are freely connected. From

a scalability point of view, these architectures are at an advantage because there is

no strict limitation on the organization of the nodes. Scale-free, social network based

data grid architectures (Fig. 5), and other general strategies that do not focus on one

particular architecture are classified in this subsection.

Fig. 5 An example data grid

with scale-free topology
Node

Rahman et al. [44] present a multi-objective approach to the replica placement

problem. They use p-median and p-center models to select nodes for placing replicas.

The p-median model finds p replica placement nodes to optimize the request-weighted

average response time. The p-center model selects p replication nodes to minimize

maximum response time. Their strategy aims to minimize p-median model by restrict-

ing the increase in the p-center objective. By doing this, they minimize average

response time without having a requestor too far from a replication node. Their sim-

ulation study show that the multi-objective strategy has better response time than

single-objective strategies that employ p-median and p-center models.

Lei et al. [31] propose a dynamic replication strategy, called Minimize Data Missing

Rate (MinDmr). MinDmr measures and manages availability of the entire system. They

introduce two data availability metrics, System File Missing Rate (SFMR) and System

Bytes Missing Rate (SBMR). The former represents ratio of the missing number of

files to total files requested by jobs and the latter represents the ratio of unavailable

bytes to total bytes requested by all jobs. With the objective of improving SFMR or

SBMR, all files are assigned weights by calculating the availability of the file, number

of predicted future accesses, number of copies, and size of the file. The files with

lower weights are called cold data and files with higher weights are called hot data.

During replica replacement, cold data are deleted first, and hot data have the greater

probability of replication. In performance evaluation, MinDmr performed better in

terms of job execution times, SFMR, and SBMR compared to other strategies.

Chen et al. [12] developed the Dynamic Multi-replicas Creation Algorithm (DMRC)

for data grids with scale-free complex network topology. Their strategy measures the

degree of distribution of nodes, i.e. the number of links connected to a node. They

assume that nodes with higher degrees are more important and better suitable for

replica placement. Candidate nodes for replica placement are selected from two pools:

frequency-based candidate pool and degree-based candidate pool. They established

a cost model to calculate costs of placing replicas on candidate nodes. DMRC is

compared to economic model and always replicate strategies of OptorSim. In both total

job completion time and storage usage metrics, DMRC showed better performance.

Bsoul et al. [9] propose an improved Fast Spread replication strategy, called

Enhanced Fast Spread (EFS). Different from Fast Spread, in EFS strategy, a replica is

created only under two conditions: (i) when enough storage is available, or (ii) replica

to be created is more important than the replicas it is replacing. The replica replacement

decision is based on a dynamic threshold that takes the number of requests, frequency

of requests, size of the replica, and last request time into account. EFS is compared to

Fast Spread with LFU, and Fast Spread with LRU in three different scenarios. In both

total response time and total bandwidth consumption, EFS performed better compared

to other studied strategies.

Andronikou et al. [5] present a quality of service (QoS) aware centralized dynamic

replication strategy. In their approach, replication decisions are given by measuring

data importance. The importance of data is defined as maximizing profits by satisfying

QoS requirements of the system. The mechanisms for replica placement, relocation,

and retirement are reduced to a search problem. In order to solve this search problem,

they proposed a greedy algorithm and an adaptable heuristic algorithm. They compared

both strategies against each other by measuring the execution time of the optimization

algorithm. The heuristic approach outperformed the greedy algorithm in terms of

execution speed.

4 Performance evaluation

Using data grid architecture the classification criteria raises the necessity to investigate

the effect of data grid architecture on replication performance. Rather than comparing

replication strategies individually, we are focusing on contrasting the benefits and

disadvantages presented by the key properties of each architecture.

4.1 Simulation environment

There are a number of simulation tools available for the data grid. For our simulations,

we have chosen OptorSim [7], as it is extremely popular and already used in many

of the studied strategies in this paper. Originally developed as a part of the European

Data Grid Project, OptorSim is easily extensible as a result of being an open source

project.

In OptorSim, simulation scenarios are defined in three configuration files. First, gen-

eral parameters file defines which access pattern, replica optimizer, and scheduling

algorithm will be used, among other system-wide settings. Second, grid configura-

tion file contains the topology definition of the grid, the storage and computational

capabilities of nodes, and bandwidth capability of the network links. Finally, a job con-

figuration file defines the available jobs on the grid for processing, as well as including

a list of files that are required for each job.

A typical topology of a simulation scenario consists of computing elements (CE),

storage elements (SE), and network links. When users submit jobs to the system, the

resource broker (RB) assigns jobs to CEs as defined by the parameter files. During the

computation of the jobs, the replica optimizer handles data replication.

OptorSim comes with LFU, LRU, and Economic replication strategies built-in.

Our aim is to show the effect of data grid architecture on data replication. Therefore,

we use these built-in replication strategies as tools and do not implement every single

replication strategy studied in this paper. Moreover, these strategies are very suitable for

CE & SE

SE

Master

Router

(a) (b)

(c) (d)

Fig. 6 Architectures used in the simulations. a Multi-tier b Hybrid c P2P d General graph

our purposes as they are architecture-independent, i.e. they do not favor any particular

architecture.

Every data grid architecture has different topologies and various key properties that

differentiate it from other architectures. In order to be able to make a clear and mean-

ingful comparison of data grid architectures, it is necessary to set some constraints.

These constraints help the results of the simulation to be the measurement of the ini-

tial intention. For example, without the constraint of network links, it would not be

possible to comment on whether the results are due to the difference in architecture

or due to the variation of the available bandwidth. Therefore, in the simulations, we

keep the number of master nodes, number of CEs, capacity of SEs, and inter-node

bandwidths the same for each architecture.

As the test cases, we created four architectures: (i) multi-tier, (ii) hybrid, (iii) P2P,

and (iv) general graph. The topologies of these architectures are depicted in Fig. 6.

In all scenarios, there is only one master node with enough storage capacity to hold

all files initially. Storage capacity for all nodes is the same and of 5 GB. All network

links in all architectures are of 100 Mbps. Some important simulation parameters and

their respective values are included in Table 7.

We have used the same job configuration file for all architectures, in order to make

sure that there would be no differences in the total amount of jobs processed by each

architecture. In each run, a total of 100 jobs are distributed to the nodes by the RB. Each

job requires 16 files on average, and each file has a size of 1 GB. File access patterns

are also an important aspect in the simulations. We wanted our simulations to follow

a realistic file access pattern. As a result, we have used a Zipf distribution, as Zipf

distribution is the most accurate representation of the file requests on the Internet [3].

Table 7 Simulation parameters
Parameter Value

Number of master nodes 1

Number of files 97

Size of a single file 1 GB

Number of jobs 100

Average number of files per job 16

Total number of CEs 12

Storage capacity per SE 5 GB

Inter-node bandwidth 100 Mbps

All three replication strategies are run on each of the four data grids. We have

performed five simulation runs per scenario, and a total of 60 simulation runs were

executed.

4.2 Simulation results

We are primarily focusing on the impact of data grid architecture on data replication

performance. For this purpose, we consider response time as the most important met-

ric. We measured response time as the elapsed time between the start of the first job

and the completion of all jobs. It includes file access, computation, and communi-

cation time. Therefore, we can further comment on whether file access, computation

or communication time contribute more to faster response time by evaluating other

additional metrics.

Effective network usage (ENU) is another measured metric, and provided by OptorSim.

By looking at the source code of OptorSim we can see that it is calculated as shown

in Eq. 1:

ENU =
Nremotereads + Nreplications

Ntotal
(1)

The number of remote reads (Nremotereads) and the number of replications (Nreplications)

contribute to an increase in bandwidth consumption. ENU shows the ratio of the num-

ber of file operations that consume bandwidth to the number of total file requests

(Ntotal). Therefore, a lower ENU value is an indication of efficiency in replicating the

files. In order to investigate ENU deeper, we also recorded the metrics contribute to

ENU, namely replications, number of local reads, and number of remote reads. And

as the final metric, we measured CE usage to observe its effect on response time.

Analyzing response times depicted in Fig. 7a, it is obvious that all replication strate-

gies performed best on general graph architecture. Also, P2P architecture performed

better than hybrid, and hybrid architecture performed better than multi-tier in the same

manner. In the results, comparison between different strategies among architectures

are not the focus of this study. What is important is the performance comparison of

any particular strategy with changing grid architecture. Despite the limited set of test

0

50

100

150

200

250

300

Multi-tier Hybrid P2P Graph

R
es

p
o

n
se

 t
im

e
(m

in
)

LRU
LFU

EcoModel

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Multi-tier Hybrid P2P Graph

E
ff

ec
ti

v
e

n
et

w
o

rk
 u

sa
g

e

LRU
LFU

EcoModel

(b)

Fig. 7 Response time and ENU. a Response time (min). b ENU

cases with limiting constraints, there is a noticeable relation between the increasing

connectivity of the nodes and the response time.

In order to explain how a more relaxed architecture results in an increase in perfor-

mance, we need to look at other measured metrics. We see relatively similar levels of

ENU as Fig. 7b shows. However, ENU is not a measure of bandwidth usage in terms

of the amount of data transferred per unit time. It is a ratio, and we need to take a

closer look at the values that contribute the calculation to correctly assess the result.

Economic model may decide to perform a remote read if it finds that a required file

is not valuable enough to store in the local storage as a replica. While LFU and LRU

always replicate instead of performing a remote read, Economic model performed

251, 256, 307, and 363 remote reads in multi-tier, hybrid, P2P, and general graph

data grid scenarios, respectively. Multiple access paths to remote data files lessens

the bottleneck during file transfers. As the connectivity of the nodes increased in the

tested architectures, remote access cost is reduced, and economic model could afford

a greater number of remote reads. As a result, both the number of local reads (Fig. 8a)

and number of replications (Fig. 8b) decreased for the economic model, and this leads

to a slight increase in ENU.

Another component that contributes to the calculation of the response time is CE

usage. For some strategies, we observed decreased CE usage (Fig. 8c) as the archi-

tecture is relaxed. Even though this has a negative impact on the response time, the

benefits of the easier file access surpasses this negative effect, as the response time is

still decreased for these strategies.

4.3 Analysis

The analysis of the results show that more relaxed architectures offer easier data access,

with multiple network routes to remote sites. In applications where frequent remote

requests are a necessity, these architectures should be more suitable than other archi-

tectures with stricter topologies. It is safe to say that, in the architectures where nodes

are connected in a less restrictive manner, the response time is decreased, regardless

of the replication strategy we have used.

0

200

400

600

800

1000

1200

1400

1600

Multi-tier Hybrid P2P Graph

N
u

m
b

er
 o

f
lo

ca
l

re
ad

s

LRU
LFU

EcoModel

(a)

0

100

200

300

400

500

600

Multi-tier Hybrid P2P Graph

N
u

m
b

er
 o

f
re

p
li

ca
ti

o
n

s

LRU
LFU

EcoModel

(b)

0

10

20

30

40

50

60

70

80

90

Multi-tier Hybrid P2P Graph

C
E

 u
sa

g
e

(%
)

LRU
LFU

EcoModel

(c)

Fig. 8 Number of local reads, number of replications, and CE usage. a Number of local reads. b Number

of replications. c CE usage (%)

As in many studied methods, we used the built-in replication strategies of OptorSim.

Although not evaluating the most recent strategies for simulations is frowned upon [4],

it is irrelevant for our simulations as we are comparing data grid architectures. For this

reason, we deliberately did not use the replication strategies from our classification to

avoid favoring any particular architecture. We would like to note that any future work

on comparing data grid architectures should be aware of this issue.

File access patterns are shaped by the user requests [20,49]. Therefore, a popular file

of today may not be popular in the future or vice versa. There are a number of different

access patterns used in the literature, including sequential, and random access patterns

that are generated from statistical distributions, e.g. Gaussian and Zipf. While some

papers use three [45] or five [30,48,51] different access patterns in the simulations,

we used just one and the most realistic access pattern [3], namely Zipf-based, to keep

the focus on architecture comparison.

5 Open problems in dynamic replication strategies

In recent years, data grid systems have seen a constant evolution as the avail-

able technologies changed. Foster et al. [21] describe the change of focus in data

grids from an infrastructure-based grid that delivers storage and computational

resources, to economy-based ones that the serve resources in a more abstract way.

In the infrastructure-based systems, we see the institutions sharing a federated set of

resources. On the other hand, in the economy-based systems, these set of resources are

typically offered by a third party for a profit. In this direction towards the economy-

based systems, elastically scalable computing solutions bring new challenges into the

scene. Monetary aspect of the resources makes it as must to consider the point of view

of the resource providers as well.

Many replication strategies aim to increase performance through increasing avail-

ability. As a result, there are many studies pointing out replication strategies that

always replicate [20,45] or create as many replicas as possible [42,49]. We have seen,

especially in the replication strategies that target bandwidth hierarchy, the economic

aspect of the assumptions is taken into account, e.g. bandwidth cost difference between

different network regions. However, there still is an open research issue that consid-

ers other aspects, e.g. cost of storage and cost of utilizing more nodes, especially

for the economy-based systems. An example case is when a traditional strategy aims

to increase availability by filling all of the available storage. Considering the cost

of increased storage capacity, it is apparent that replication strategies that create as

many replicas as possible will create economic burden for both the consumer and the

provider.

We believe that another open problem in dynamic replication strategies is accom-

plishing the performance goals while maintaining a certain degree of replication, i.e.

a certain number of replicas. Dynamically adjusting the optimal number of replicas

with economic consideration presents new research challenges [38]. Finding optimal

number of replicas puts emphasis on replica placement as well. Studying the combined

effectiveness of the optimal number of replicas and strategically placing them is still

an open issue and plays a key role in achieving optimality for both consumers and

providers of the resources.

6 Conclusion

In this paper we presented a survey of dynamic replication strategies for data grid

systems. Only few works classified dynamic data replication by taking data grid archi-

tecture as one of the classification criteria. Also, these works did not provide any

performance evaluation. We have studied and classified recent dynamic replication

strategies only according to data grid architecture and discussed their contributions.

Furthermore, we performed a simulation study to investigate the impact of data grid

architecture on data replication performance. Our simulations evaluate a number of

replication strategies on different architectures. We highlighted how key aspects of

each data grid architecture impact the performance. The simulation study indicates

that more relaxed architectures yield better response times while keeping relatively

similar levels of effective network use. As a result, we regard these relaxed architec-

tures, e.g. general graphs, as the most interesting and realistic representation of the data

grid systems. The simulation study can be further expanded in the future to include

more recent replication strategies. Following the simulation study, we discussed some

open problems in dynamic replication strategies, including finding the optimal number

of replicas.

Acknowledgments The work presented in this paper is supported in part by TUBITAK.

References

1. Abdullah A, Othman M, Ibrahim H, Sulaiman MN, Othman AT (2008) Decentralized replication

strategies for P2P based scientific data grid. In: International symposium on information technology

(ITSim 2008), vol 3, pp 1–8. IEEE

2. Abdurrab AR, Xie T (2010) FIRE: a file reunion based data replication strategy for data grids. In: 10th

IEEE/ACM international conference on cluster, cloud and grid computing, pp 215–223. IEEE

3. Adamic L, Huberman B (2002) Zipf’s law and the Internet. Glottometrics 3(1):143–150

4. Amjad T, Sher M, Daud A (2012) A survey of dynamic replication strategies for improving data

availability in data grids. Future Gener Comput Syst 28(2):337–349

5. Andronikou V, Mamouras K, Tserpes K, Kyriazis D, Varvarigou T (2012) Dynamic QoS-aware data

replication in grid environments based on data importance. Future Gener Comput Syst 28(3):544–553

6. Arlitt M, Cherkasova L, Dilley J, Friedrich R, Jin T (2000) Evaluating content management techniques

for web proxy caches. ACM SIGMETRICS Perform Eval Rev 27(4):3–11

7. Bell WH, Cameron DG, Capozza L, Millar AP, Stockinger K, Zini F (2012) Simulation of dynamic

grid replication strategies in optorsim. In: IEEE workshop on grid computing (Grid’2002), pp 46–57

8. Bell WH, Cameron DG, Carvajal-Schiaffino R, Millar AP, Stockinger K, Zini F (2003) Evaluation

of an economy-based file replication strategy for a data grid. In: Proceedings of the 3rd IEEE/ACM

international symposium on cluster computing and the grid (CCGRID’03), pp 661–668. IEEE

9. Bsoul M, Al-Khasawneh A, Abdallah EE, Kilani Y (2011) Enhanced fast spread replication strategy

for data grid. J Netw Comput Appl 34(2):575–580

10. Challal Z, Bouabana-Tebibel T (2010) A priori replica placement strategy in data grid. In: International

conference on machine and web intelligence, pp 402–406. IEEE

11. Chang RS, Chang HP (2008) A dynamic data replication strategy using access-weights in data grids.

J Supercomput 45(3):277–295

12. Chen D, Zhou S, Ren X, Kong Q (2010) Method for replica creation in data grids based on complex

networks. J China Univ Posts Telecommun 17(4):110–115

13. Chervenak A, Deelman E, Foster I, Guy L, Hoschek W, Iamnitchi A, Kesselman C, Kunszt P, Ripeanu

M, Schwartzkopf B, Stockinger H, Stockinger K, Tierney B (2002) Giggle: a framework for construct-

ing scalable replica location services. Proc ACM/IEEE Conf Supercomput 3:1–17

14. Chervenak A, Deelman E, Kesselman C, Allcock B, Foster I, Nefedova V, Lee J, Sim A, Shoshani

A, Drach B, Williams D, Middleton D (2003) High-performance remote access to climate simulation

data: a challenge problem for data grid technologies. Parallel Comput 29(10):1335–1356

15. Chervenak A, Foster I, Kesselman C, Salisbury C, Tuecke S (2000) The data grid: towards an archi-

tecture for the distributed management and analysis of large scientific datasets. J Netw Comput Appl

23(3):187–200

16. Chervenak A, Schuler R, Kesselman C, Koranda S (2008) Wide area data replication for scientific

collaborations. Int J High Perform Comput Netw 5(3):124–134

17. Chettaoui H, Charrada FB (2014) A new decentralized periodic replication strategy for dynamic data

grids. Scalable Comput: Pract Exp 15(1):101–119

18. Cibej U, Slivnik B, Robic B (2005) The complexity of static data replication in data grids. Parallel

Comput 31(8–9):900–912

19. Deelman E, Kesselman C, Mehta G, Meshkat L, Pearlman L, Blackburn K, Ehrens P, Lazzarini A,

Williams R, Koranda S (2002) GriPhyN and LIGO, building a virtual data grid for gravitational wave

scientists. In: Proceedings of the 11 th IEEE international symposium on high performance distributed

computing (HPDC02), pp 225–234

20. Dogan A (2009) A study on performance of dynamic file replication algorithms for real-time file access

in data grids. Future Gener Comput Syst 25(8):829–839

21. Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree compared.

In: 2008 grid computing environments workshop, pp 1–10. IEEE

22. Fu X, xin Zhu X, yuhan J, chuan Wang R (2013) QoS-aware replica placement for data intensive

applications. J China Univ Posts Telecommun 20(3):43–47

23. Goel S, Buyya R (2006) Data replication strategies in wide area distributed systems. In: Enterprise

service computing: from concept to deployment, p 17

24. Horri A, Sepahvand R, Dastghaibyfard GH (2008) A hierarchical scheduling and replication strategy.

Int J Comput Sci Netw Secur 8(8):30–35

25. Hoschek W, Jaen-martinez J, Samar A, Stockinger H, Stockinger K (2000) Data management in an

international data grid project. In: IEEE, ACM international workshop on grid computing, pp 77–90

26. International Organization Of Standardization (2011) ISO/IEC/IEEE 42010:2011—systems and soft-

ware engineering–architecture description. Technical report

27. Khanli LM, Isazadeh A, Shishavan TN (2011) PHFS: a dynamic replication method, to decrease access

latency in the multi-tier data grid. Future Gener Comput Syst 27(3):233–244

28. Kingsy Grace R, Manimegalai R (2014) Dynamic replica placement and selection strategies in data

grids. A comprehensive survey. J Parallel Distrib Comput 74(2):2099–2108

29. Lamehamedi H, Szymanski B, Shentu Z, Deelman E (2002) Data replication strategies in grid envi-

ronments. In: Proceedings of 5th international conference on algorithms and architectures for parallel

processing, pp 378–383. IEEE Comput Soc

30. Lee MC, Leu FY, Chen YP (2012) PFRF: an adaptive data replication algorithm based on star-topology

data grids. Future Gener Comput Syst 28(7):1045–1057

31. Lei M, Vrbsky SV, Hong X (2008) An on-line replication strategy to increase availability in data grids.

Future Gener Comput Syst 24(2):85–98

32. Loukopoulos T, Ahmad I (2004) Static and adaptive distributed data replication using genetic algo-

rithms. J Parallel Distrib Comput 64(11):1270–1285

33. Ma J, Liu W, Glatard T (2013) A classification of file placement and replication methods on grids.

Future Gener Comput Syst 29(6):1395–1406

34. Maltsev N, Glass E, Sulakhe D, Rodriguez A, Syed MH, Bompada T, Zhang Y, D’Souza M (2006)

PUMA2—grid-based high-throughput analysis of genomes and metabolic pathways. Nucleic acids

Res 34(Database issue):D369–D372

35. Mansouri N, Dastghaibyfard GH (2012) A dynamic replica management strategy in data grid. J Netw

Comput Appl 35(4):1297–1303

36. Mansouri N, Dastghaibyfard GH (2013) Enhanced dynamic hierarchical replication and weighted

scheduling strategy in data grid. J Parallel Distrib Comput 73(4):534–543

37. Mansouri N, Dastghaibyfard GH, Mansouri E (2013) Combination of data replication and scheduling

algorithm for improving data availability in data grids. J Netw Comput Appl 36(2):711–722

38. Mansouri Y, Azad ST, Chamkori A (2014) Minimizing cost of K-replica in hierarchical data grid envi-

ronment. In: IEEE 28th international conference on advanced information networking and applications

(AINA), pp 1073–1080. IEEE

39. Meroufel B, Belalem G (2013) Managing data replication and placement based on availability. AASRI

Procedia 5:147–155

40. Mokadem R, Hameurlain A (2015) Data replication strategies with performance objective in data grid

systems: a survey. Int J Grid Util Comput 6(1):30–46

41. Nicholson C, Cameron DG, Doyle AT, Millar AP, Stockinger K (2008) Dynamic data replication in

lcg 2008. Concurr Comput: Pract Exp 20(11):1259–1271

42. Park SM, Kim JH, Ko YB, Yoon WS (2004) Dynamic data grid replication strategy based on Internet

hierarchy. Grid and cooperative computing. Springer, Berlin Heidelberg, pp 838–846

43. Pérez JM, García-Carballeira F, Carretero J, Calderón A, Fernández J (2010) Branch replication

scheme: a new model for data replication in large scale data grids. Future Gener Comput Syst 26(1):12–

20

44. Rahman R, Barker K, Alhajj R (2005) Replica placement in data grid: a multi-objective approach. In:

Zhuge H, Geoffrey CF (eds) Grid and cooperative computing-GCC 2005. Springer, Berlin Heidelberg,

pp 645–656

45. Ranganathan K, Foster I (2001) Identifying dynamic replication strategies for a high-performance data

grid. In: Proceedings of the international grid computing workshop, vol 2242, Springer, pp 75–86

46. Ranganathan K, Iamnitchi A, Foster I (2002) Improving data availability through dynamic model-driven

replication in large peer-to-peer communities. In: Proceedings of the 2nd IEEE/ACM international

symposium on cluster computing and the grid (CCGRID’02), pp 376–381

47. Rasool Q, Li J, Zhang S (2009) Replica placement in multi-tier data grid. In: 8th IEEE international

conference on dependable, autonomic and secure computing, pp 103–108. IEEE

48. Saadat N, Rahmani AM (2012) PDDRA: a new pre-fetching based dynamic data replication algorithm

in data grids. Future Gener Comput Syst 28(4):666–681

49. Sashi K, Thanamani AS (2011) Dynamic replication in a data grid using a modified BHR region based

algorithm. Future Gener Comput Syst 27(2):202–210

50. Segal B (2000) Grid computing: the European data grid project. IEEE Nucl Sci Symp Med Imaging

Conf 1:15–20

51. Shorfuzzaman M, Graham P, Eskicioglu R (2009) Adaptive popularity-driven replica placement in

hierarchical data grids. J Supercomput 51(3):374–392

52. Steen MV, Pierre G (2010) Replicating for performance: case studies. In: Charron-Bost B, Pedone F,

Schiper A (eds) Replication. Lecture Notes in Computer Science, vol 5959. Springer, Berlin Heidelberg,

pp 73–89

53. Takefusa A, Tatebe O, Matsuoka S, Morita Y (2003) Performance analysis of scheduling and replication

algorithms on grid datafarm architecture for high-energy physics applications. In: Proceedings of the

12th IEEE international symposium on high performance distributed computing (HPDC03), pp 34–43

54. Tang M, Lee BS, Yeo CK, Tang X (2005) Dynamic replication algorithms for the multi-tier data grid.

Future Gener Comput Syst 21(5):775–790

55. Tang X, Xu J (2005) QoS-aware replica placement for content distribution. IEEE Trans Parallel Distrib

Syst 16:921–932

56. Tatebe O, Morita Y, Matsuoka S (2002) Grid datafarm architecture for petascale data intensive com-

puting. In: International symposium on cluster computing and the grid (CCGRID02), pp 102–110

57. Xhafa F, Kolici V, Potlog AD, Spaho E, Barolli L, Takizawa M (2012) Data replication in P2P col-

laborative systems. In: 2012 7th international conference on P2P, parallel, grid, cloud and internet

computing, pp 49–57. IEEE

58. Zhao W, Xu X, Wang Z, Zhang Y, He S (2010) A dynamic optimal replication strategy in data grid

environment. In: International conference on internet technology and applications, pp 2–5

