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ABSTRACT 
The economie returns of cluster policies have been recently called into 
question. Based on a "one size fits ali" approach consisting in boosting 
R&D collaborations and reinforcing network density, cluster policies are 
suspected to have failed in reaching their objectives. The paper 
proposes to go back to the micro foundations of clusters in arder to 
disentangle the links between the long run performance of clusters and 
their structural properties. We use a simple agent-based madel to shed 
light on how individual motives to build knowledge relationships can 
give rise to emerging structures with different properties, which imply 
different innovation and renewal capacities. The simulation results are 
discussed in a micro-macro perspective, and motivate suggestions to 
recrient cluster policy guidelines towards more targeted public-funded 
incentives for R&D collaboration. 

1. Introduction 

During the two last decades, Regional science and Economie geography, as weil as Management 
Science and Economie Sociology, have underlined the role of clusters in the innovative capabilities 
of regions. While interacting little at the beginning, these researches rapidly converge on the critical 
role of knowledge exchanges, collaborations and networks, in the formation and development of 
clusters (Saxenian 1990; Audretsch and Feldman 1996; Cooke, G6mez Uranga, and Etxebarria 1997; 
Porter 1998; Breschi and Lissoni 2001 ). Consequently, during the 2000s, increasing local knowledge col­

laborations and densifying networks have progressively become the central focus of cluster policy 
guidelines and the main objective for cluster policy-makers. But later in the 201 Os, in hindsight, scholars 
started to question the economie return of these policies. Sorne of them have shown a growing skepti­
cism regarding the real contribution of network-based cluster policies to innovative outputs and 
regional growth (Du ranton 2011 ; Martin, Mayer, and Mayne ris 2011 ; Brakman and Marrewijk 2013). 

Nevertheless, such skepticism is not sufficient to reject as a whole the network-based incentives 
that nurture many cluster policy guidelines (Woolthuis, Lankhuizen, and Gilsing 2005; Boschma 2008; 
Nishimura and Okamuro 2011 ; McCann and Ortega-Argilés 2013; Vicente 2014). As a matter of fact, 

the policy transposition of academie conclusions has somehow stopped in the halfway. Policy-makers 
have focused on cluster relational density, and have put aside researches stressing on more complex 



structural properties. Using basics of network theories from economies (Jackson and Wolinsky 1996), 
sociology (Burt 1992; Granovetter 2005) and physics (Barabasi and Albert 1999; Brede and Vries 2009), 
these researches have captured the role of particular micro-founded structural properties of clusters, 
such as 'small worlds' (Fleming, King, and Juda 2007; Breschi and Lenzi 2015), triadic closure (Balland, 
Su ire, and Vicente 2013; Ter Wal 2014), network centralization and connectedness (Owen-Smith and 
Powell 2004; Cantner and Graf 2006; Casper 2007; Vicente, Balla nd, and Brossard 2011 ) or network 
assortativity (Crespo, Suire, and Vicente 2014). However, policy-makers have ignored these recent 
advances when designing their policies. They have aimed at increasing relational thickness of clusters 
in a 'one size fits ali' scheme (Todtling and Trippl 2005). ln doing so, these policies have been sus­
pected to reinforce dysfunctioning structures or to sclerose emerging ones, with risks of crowding­
out effects and misallocation of public resources (Du ranton 2011 ). 

Structural properties of networks emerge over time through the cumulative aggregation of indi­
vidual decisions to create (or not) knowledge relationships. Thus, expecting a higher return of cluster 
policies in the future requires a better understanding of the micro-motives for knowledge collabor­
ations in clusters. Consequently, the aim of the paper is to analyze how different motivations behind 
partners' selection result in networks with different structural properties. To do so, following Axelrod 
(2007), we propose to capture micro-macro aggregation processes by an agent-based model. lt 
allows us to link network structural evolution to simple individual relational rules. This provides 
new insights on the types of collaborations policy-makers should incentive to make emerge not 
only networks, but networks with the structural properties that have been identified to matter for 
cluster long-run dynamics. The remaining of the paper is structured as follows. ln Section 2, we 
review the main network properties that the literature has identified as important for cluster perform­
ance. ln Section 3, we discuss the micro-motives to enter a cluster and interact with others, as weil as 
the expected consequences on the cluster structural properties. ln Section 4, we explain the simu­
lation model we have developed to capture the structural patterns of clusters, while Section 5 dis­
eusses the implications of the findings in a policy-oriented perspective. 

2. Structural properties of knowledge networks and cluster long-run dynamics 

Literature on economie geography has largely admitted that the benefit regions draw from the geo­
graphical concentration of innovative activities are due to the existence of voluntary knowledge 
relationships and networks development rather than to the geographical bound of knowledge spil­
lovers (Breschi and Lissoni 2001 ; Boschma 2005). ln innovation studies as weil, literature provides 
empirical evidences of the positive effects of network embeddedness on the firm's innovative capabili­
ties (Walker, Kogut, and Shan 1997). Considering the complex dimension of knowledge creation and 
promotion on markets, firms innovate through recombination processes between separated pieces 
of existing knowledge (Fleming and Sorenson 2001 ), and for that purpose create and maintain collab­
orations, for which sometimes geographical proximity matters (Sorenson, Rivkin, and Fleming 2006). 

These literatures have both contributed to a growing number of cluster analyses. They show that 
boosting firm's innovative capabilities was not just a matter of being on the right place, but a Iso of 
being on the right network. Th us, the adoption of a network perspective to study clusters has become 
quite popular in the last decade (Owen-Smith and Powell 2004; Giuliani and Bell 2005; Boschma and 
ter Wal 2007; Casper 2007). lt has joined the so-called relational turn of economie geography (Bathelt 
and Glückler 2003), and the broader movement towards research on complex systems that has 
reached innovation studies (Frenken 2006), and economie geography as weil (Martin and Sunley 
2007). 

Mixing the micro-level (the individual incentives to create or not knowledge relationships and 
select partners) and the macro-level (the resulting network structures), network-based analyses of 
clusters can provide useful methods to assess individual performance with regard to the position 
into networks. ln economies, as weil as in management science, network position of agents 
has been largely explored as a source of increasing payoffs or long-run performance (Goyal and 



Vega-Redondo 2007; Cattani and Ferriani 2008). But these analyses can also provide useful means to 
measure the aggregate performance of a cluster as a whole with regard to its structural properties. As 
a matter of fact, the main findings in the literature clearly show that if networks matter for innovation 
in clusters, their emerging structural properties may differ, and they are not neutral for cluster long­
run performance. 

2.1. Small worlds 

Among this growing literature, the study of the role of small-world properties (Watts and Strogatz 
1998) for innovation in clusters has occupied a central position. Small-world knowledge networks 
combine two properties that at first glanee might seem contradictory to each other. On the one 
side, small-world networks display a low path length, meaning that knowledge always find short 
channels to flow between any actors. On the other side, they are typified by a high-clustering coeffi­
cient, favoring trust in cohesive cliques of interacting actors. As reviewed by Uzzi, Amaral, and Reed­
Tsochas (2007), small worlds appear as a regular property of persona! (co-authorship and inventors) 
and organizational (R&D alliances and interlocks) networks. Beyond their empirical identification, 
several researches have argued that small-world networks, by mixing cohesiveness in cliques and 
connectedness between cliques, exhibit high innovative performance.1 By boosting ideas circulation 
from one specialized clique to another, cliques 'break out their chambers and mix into new and novel 
combinations' (Uzzi, Amaral, and Reed-Tsochas 2007, 78). Cowan and Jonard (2004) use simulation 
models to find that knowledge production is maximal when networks exhibit small-world properties. 
Breschi and Lenzi (2015) use patent data to show that US cities' innovations are positively affected by 
small-world networks? Moreover, they display robustness across time, as evidenced by Kogut and 
Walker (2001 ) and Davis, Yoo, and Baker (2003), according to whom a great amount of transformation 
is necessary to change a small world into a network of different types. 

2.2. Network hierarchy 

Recently, other properties have been put ahead to study the long-run performance of clusters. 
Small-world approaches, based on random graph models (Erdôs et Renyi 1959), fail in capturing 
one of the most important regular structures of real clusters related to the strong hierarchy in 
the relational capabilities of actors. Former fieldwork analysis has stressed on the hierarchical struc­
ture of knowledge relationships in industrial districts (Storper and Harisson 1991 ; Markusen 1996), 
with the role of hub companies that connects, through spokes, many other actors in the industrial 
production system. More recent researches have also captured this pattern using a centralization 
index to assess the innovative capabilities of clusters (Cantner and Graf 2006; Graf 2011 ; Cres po, 
Suire, and Vicente 2015). Based on the so-called scale-free networks of Barabasi and Albert 
(1999), these works enable to better capture the heterogeneous actual relational capabilities of 
organizations in clusters, which can be measured by the slope of the network's degree distribution. 
This scale-free property reflects a core/periphery structure in which the core is composed of a set of 
high-degree organizations - the hubs - and a periphery or more loosely connected ones3 

- the 
spokes (Borgatti and Everett 1999). If ali organizations in a particular cluster have a similar 
degree, there is no hierarchy and no leading organizations appear. If organizations with high 
and low degree coexist in the network, the cluster displays a high level of hierarchy and a core/per­
iphery structure. While flat hierarchy can be the sign of an emerging cluster with a scattered struc­
ture of burgeoning or small organizations (Audretsch and Feldman 1996; Klepper 1996), its growing 
maturity and effectiveness typically goes with a growing hierarchy, through an ossification process 
around leading hub companies (Ter Wal and Boschma 2011 ; Crespo, Suire, and Vicente 2014). As a 
matter of fact, clusters that succeed in establishing themselves as leading places in a particular 
technological and market domain are those that succeed in defining well-integrated products 
and winning the battle of standards (Suire and Vicente 2014). Such an increasing hierarchy in 



clusters is the sign of a consistent ability for sorne core organizations to coordinate complex inno­
vative processes integrating separated pieces of knowledge, and which require a high level of com­
patibility and interoperability (David and Greenstein 1990; Moore 1991 ; Shapiro and Varian 1999). 
Concerning the robustness of hierarchical networks across time, ambivalent effects are underlined 
in engineering sciences (Albert, Jeong, and Barabasi 2000; Brede and Vries 2009). On the one ha nd, 
scale-free networks exhibit strong resistance to perturbations when the core nodes are not 
affected. ln that case, cohesion and connectivity are both maintained wh ile the most central organ­
izations keep exploiting their position. At the reverse, targeted attacks on hubs can have strong 
consequences on the whole functioning of networks. The disruption of only few central nodes, 
for instance, the relocation of one of the leading regional companies, can compromise the 
cluster long-run sustainability, as evidenced by Vicente, Balland, and Brossard (2011 ). 

2.3. Network assortativity 

Since clusters host poorly and highly connected nodes, the question that naturally arises is whether 
or not highly (poorly) connected nodes tend to interact with other highly (poorly) connected nodes. 
Network assortativity captures these patterns (Newman 2002). Assortative networks are those that 
display a positive degree correlation, meaning a tendency of nodes to interact with others that 
have a similar degree, while disassortative networks are featured by a negative degree correlation, 
implying more heterophilic social interactions (Watts 2004; Rivera, Soderstrom, and Uzzi 201 0). There­
fore, network assortativity provides a useful representation of the knowledge pathways between 
central and peripheral organizations in clusters. The expected effects of network assortativity on clus­
ters performance are partly ambivalent. On the one side, as for high-clustering coefficients, structural 
homophily in clusters reduces uncertainty in collaborative research projects and favors trust in the 
production of norms and technological standards within the core component of networks (Ter 
Wal 2014). On the other side, these effects of structural homophily can provoke an excessive redun­
dancy of knowledge flows. The result, for a fixed amount of ties, is a lack of openness of this core 
component towards peripheral organizations (Ahuja, Polodiro, and Mitchell 2009); generally, the 
ones that provide explorative and fresh ideas which need to connect the leading organizations to 
be turned into future markets (Almeida and Kogut 1997). Without a certain degree of disassortativity 
of knowledge networks, clusters can face conformity and negative lock-in, in particular when markets 
for mature technologies start to decline. At the reverse, in disassortative networks, core and periphery 
are better connected. The core is more open, and peripheral organizations, holding new and disrup­
tive knowledge, can benefit in a larger extent from the well-experienced core organizations to find 
opportunities of knowledge combinations for new markets. As evidenced by Crespo, Suire, and 
Vicente (2015) for the long-run analysis of clusters dynamics in the European mobile phone industry, 
hierarchical and disassortative knowledge networks match better with clusters able to combine tech­
nological performance and structural change capabilities. 

To su rn up and togo beyond the rather simplistic but well-installed idea that clusters grow in per­
formance with their relational density, we state that the more knowledge networks in clusters are 
featured by low path length, high clustering,4 high hierarchy and disassortativity, the more clusters 
will be able to establish themselves as leading places and to adapt and renew over time. 

3. The micro-motives of entry and knowledge relationships in clusters 

Designing policies that consider structural properties require setting the appropriate collaborative 
incentives. Thus, they should rely on a good understanding of the micro-motives for organizations 
to join (or not) networks and build (or not) knowledge relationships. Economie literature on networks 
generally converges on the idea that agents expect shared surpluses from the construction of ties 
(Jackson and Wolinsky 1996; Dutta and Mutuswami 1997). ln innovation studies, these shared sur­
pluses are related to the fact that organizations form relationships to gain access to external and 



complementary pieces of knowledge. But ali relationships are not efficient for them. On the one side, 
organizations, according to their particular model of knowledge promotion, will weigh the expected 
benefits from external knowledge accessibility with the risks of under-appropriation of their own 
knowledge (Antonelli 2006). On the other side, relationships building and maintenance being 
costly, organizations will li mit the extent of the ir relational space in accordance to their capa city con­
straints on links (Goyal and Vega-Redondo 2007), which is usually supposed to be partly constrained 
by their size (Gulati 1995). Therefore, the aggregative mechanisms of dyadic relationships give rise to 
networks that evolve according to mechanisms of node entry (or exit) and ties rewiring. The first one 
will play on the evolving network size (demography), while the second one will play on its evolving 
structural properties (topology). 

3.1. Nades entries 

Concerning entry, network literature has defined two opposite mechanisms. New entering nodes 
may connect to existing ones either at random or by preferential attachment (Barabasi and Albert 
1999). For nodes following random attachment mechanism, network joining prevails over the pos­
ition in the structure. New entrants draw their payoffs from the structure belonging and not necess­
arily from targeted connections. For clusters dynamics, random attachment can be associated with 
locational cascades (Suire and Vicente 2009). The motives for entering the regional innovation 
system rely on the willingness to benefit from the external audience and geographical charisma of 
the place (Appold 2005; Romanelli and Khessina 2005). For randomly attached organizations, the 
purpose is not to target particular organizations in clusters, but just to be connected to the right 
and successful place, and benefit from the positive signal such a location can imply. Owen-Smith 
and Powell (2004) have found positive effects of network membership for the biotech cluster in 
Boston, while centrality has no significant influence. With preferential attachment, the driving 
force of an organization looking for a partner is not just "being on the right place", but also "being 
connected to the right partners". ln preferential attachment processes, the attractiveness of an organ­
ization increases with its degree. Seing connected to highly connected organizations increases new 
entrants' payoffs. Firstly, they are seen as richer sources of information due to the diversity of their 
connections. Secondly, connecting leading organizations brings benefits for new entrants, in particu­
lar when technological compositeness and compatibility matters for market exploitation. ln that case, 
new entrants find strong incentives to target relationships with leading companies, those getting the 
control of standards and larger installed bases (Farrell and Saloner 1986; Arthur 1989). Moreover, 
interactions with leading organizations may be the source of status for new entrants (Balland, 
Belso-Martfnez, and Morrison 2015). Finally, it is also consistent with the relational behavior of 
spin-offs that tend to connect to their often highly connected parent's company (Buenstorf and 
Fornahl 2009; Vicente, Balla nd, and Brossard 2011 ). 

From a structural point of view, both preferential and random attachment increase the connec­
tivity of the network, by creating shortcuts and through the role of super-connectors. Similarly, 
since these two mechanisms are associated with new entrants, they are the source of new relation­
ships, creating new potential triangles but not closing them. Therefore, both of them are expected 
to favor low clustering. However, the impact of preferential and random attachment differs when 
we look at the degree distribution (network hierarchy) and the degree correlation (network assor­
tativity). Preferential attachment leads to hierarchical networks: more central nodes become more 
attractive for new entrants, while peripheral nodes receive little attention. As time goes, these 
differences are reinforced, and network hierarchy increases. Concerning degree correlation, the 
structural consequences of preferential and random attachment are different too. With preferential 
attachment, the new entrants, by definition with few relationships, interact with the most con­
nected ones to benefit of their status, influence and large knowledge sources. Thus, they 
produce disassortatitve networks. On the contrary, with random attachment, no leaders come 



out. Ali organizations have more or less the same number of relationships. Thus, we expect more 
assortative structures to emerge. 

3.2. Ties rewiring 

Even if inter-organizational networks usually display strong path dependency (Gulati 1998; Sydow, 
Schreyogg, and Koch 2009), knowledge networks evolve not only through entries and exits, but 
also through the propensity of organizations to change their partners' portfolio (Powell, Koput, 
and Smith-Doerr 1996). Ties rewiring indicates the capability to disrupt and recreates knowledge 
relationships. Disruption of ties and creation of new ones are driven by cognitive and strategie pur­
poses. They occur when organizations have exhausted collaborative opportunities and look for new 
partners to access new cognitive resources orto better secure their network position. The level at 
which this continuous process of dissolution and creation of knowledge relationships in clusters 
occurs will also have structural consequences. 

From this perspective, following literature on social capital and embeddedness in economie soci­
ology (Coleman 1988; Burt 1992; Granovetter 2005), researches on clusters in regional science have 
identified two main strategies: closure and bridging (Cassi and Plunket 2015). Triadic closure implies 
that an organization with links to two other organizations increases the probability for these two 
organizations to create a tie between them. Such an argument is grounded on the process of trust con­
struction that grows between two related nodes, because it fosters cooperation and knowledge 
integration within groups of nodes. Closure in knowledge networks strengthens the mutual monitoring 
capability of organizations. lndeed, it decreases the possibilities of opportunistic behaviors, and, by 
increasing trust and conformity, it favors coordination in the mutual design of technological standards 
(Ter Wal 2014). Bridging relates to more disruptive and entrepreneurial relational behaviors. Organiz­
ations are supposed to adopt bridging strategies when they decide to connect unconnected organiz­
ations or groups of organizations. Firstly, in cognitive terms, this relational behavior allows organizations 
accessing to new and non-redundant knowledge and thus new opportunities of knowledge combi­
nation (McEvily and Zaheer 1999). Secondly, in strategie terms, this particular tertius gaudens strategy 
(Burt 1992) provides intermediation rents for agents (Goyal and Vega-Redondo 2007), and a particular 
influence and control of the knowledge flows in networks (Ahuja 2000; Baum, McEvily, and Rowley 
2012). ln cluster analysis, literature has underlined the role of bridging organizations in the long-run 
dynamics of clusters (ter Wal and Bosch ma 2009; Eisingerich, Bell, and Tracey 201 0). 

From a structural point of view, bridging and closure relational mechanisms are not neutral. Their 
effects on small-world properties of networks are opposed. On the one hand, closure is, by definition, 
closing triads and so increasing the clustering coefficient. On the other hand, the focus on close 
neighbors reduces connectivity. Organizations connect to neighbors of their neighbors, creating 
dense and cohesive groups, but few between-group links are created. As a consequence, beyond 
a certain threshold, the whole network connectivity can be reduced (Watts and Strogatz 1998; 
Gulati, Sytch, and Tatarynowicz 2012). On the contrary, with bridging behaviors, organizations look 
for partners in distant parts of the network. Then, less cohesive groups will emerge, decreasing clus­
tering coefficient, but the whole network will have a better connectivity, that is, a lower path length, 
thanks to the multiplication of shortcuts. The effects of bridging and closure on degree distribution 
and degree correlation are less clear. Concerning degree distribution, no clear eut expectations may 
be formulated. The increase or decrease in hierarchy with any of the rewire mechanisms depends on 
the position of the organization driving the rewire, the type of link that is disrupted, and the position 
of the new partners towards whom the new relationship is oriented. Similarly, concerning degree cor­
relation, many possible cases exist. However, in this case, we expect closure to increase assortativity 
and bridging to increase disassortativity. We ground our expectations on the assumption that closure 
represents a tendency to interact with similar peers, while bridging represents a tendency to interact 
with dissimilar peers. So, with closure, highly connected organizations rewire their relationships 
towards highly connected ones, and poorly connected organizations rewire their relationships 



towards poorly connected ones. This will increase assortativity. On the contrary, with bridging, highly 
connected organizations will try to fi nd new partners in the periphery and conversely, increasing the 
disassortativity of the network. 

Based on the previous discussion, and in contrast to the (sometimes excessively beatifie) view of 
knowledge networks in many cluster policy guidelines, an increase in relational density should not be 
viewed as a panacea of cluster success. More complex structural properties have to be reached for 
clusters to establish themselves as leading places. ln particular, clusters mixing a certain amount of 
cohesiveness while shortening knowledge paths, and making core organizations emerge wh ile main­
taining channels for non-assortative knowledge relations are expected to be more efficient in the 
long run. Table 1 summarizes the expected consequences relational micro-motives on the clusters 
structural properties. If we set a part entry and rewiring mechanisms, the topological forms of clusters 
would be possible to anticipate. On the contrary, considering them together increases complexity. As 
for many micro-macro processes in social sciences for which the links between social structures and 
individual behaviors are not directly observable, the use of simulations can be helpful (Axelrod 2007). 

4. The model 

To do so, we develop an agent-based model to shed light on how individual motives to build knowl­
edge relationships can give rise to emerging structures with different properties. ln order to design 
the experiment setting of the micro-macro dynamics of cluster structuring, we model population 
dynamics and relational mechanisms in the lines of the basic principles previously presented in 
Section 3. ln the same vein, we propose simple measures of the structural properties of knowledge 
networks discussed in Section 2. Finally, we run simulations and discuss the findings. 

4.1. Population dynamics 

To take into account the population evolution, we define a macro rule that expresses the number of 
entries per period. The number of entries E in period t is computed by comparing the number of 
organizations P existing in t- 1 and a su peri or threshold M 

( Pt-1) Et = rPt-l 1 - M . 

This threshold M is defined as a load capacity of the system and represents the maximal number of 
organizations that can be in the cluster. When the current population is below this threshold, the 
market for technology is not yet saturated and opportunities and niches for new organizations still 
remain. On the contrary, when the current population is close to the maximum threshold, new oppor­
tunities become scarce, the competition is too fierce and the entry barriers become too high. No new 
entries are possible. ris an additional parameter that accounts for the speed of convergence between 
the population at t- 1 and the maximal number of organizations. lt ranges between 0 and 1, where 0 
means no population growth and 1 instantaneous adjustment. Concerning exit, we define a non­
parametric rule consisting in removing nodes when they become isolated. Thus, we assume that 
without relationships, an organization is not able to get complementary knowledge, loses its capacity 
to compete and dies. 

Table 1. Structural consequences of relational mechanisms. 

Path length 
Clustering 
Degree distribution 
Degree correlation 

Entry mechanisms 

Preferential attachment Random attachment 

Low path length Low path length 
Low clustering coef Low clustering coef 
High hierarchy Flat hierarchy 
Negative (disassortativity) Positive (assortativity) 

Ties rewiring mechanisms 

Closure Bridging 

lncreases Decreases 
lncreases Decreases 
Undefined Undefined 
lncreases assortativity lncreases disassortativity 



4.2. Relational mechanisms 

As described in Section 3, organizations in networks are not definitively fixed on a collaborative port­
folio. Through time, organizations can decide to create and disrupt relationships to access new cog­
nitive resources or secure their network position. We model the creation of relationships through four 
different mechanisms working two by two at different moments in time. On the one hand, when 
organizations enter, they chose their partner either by preferential or by random attachment 
(cluster growth mechanisms). On the other hand, once already in the network, organizations may 
try to find new partners and connect to them either by bridging or by closure (cluster structuring 
mechanisms). 

4.2.1. Relationship at entry 
At each step, a number Et of organizations enter the cluster and connect to one of the previously 
entered organization. They can connect either by preferential attachment or by random attachment. 
The selection process is a probabilistic choice defined by the parameter a E [0, 1 ]. When a= 0, organ­
izations exclusively enter the network through preferential attachment and through random attach­
ment when a = 1. 

When a new organization enters the network by random attachment, the probability of an existing 
organization to receive a new relationship is random and uniform. On the contrary, when an organ­
ization connects by preferential attachment, existing organizations with more relationships are more 
attractive. The probability of existing organizations to receive new ties is not uniformly distributed, 
but it depends on the degree k of the organization i. The bigger the k;, the more likely the organiz­
ation i to receive a new tie: 

4.2.2. Relationships rewiring 

k; 
II(k;) = Lj kj. 

Additionally, at each step, a certain amou nt of ties are rewired. This a mount is defined as a proportion 
À E [0, 1] of the existing nod es. We randomly select the ti es to be disrupted and the extreme of the tie 
that will act as a rewiring agent. This organization destroys the selected tie, and then proceeds to re­
build with a new partner by closure or by bridging. The selection of one or the other mechanism is a 
probabilistic choice defined by the parameter f3 E [0, 1 ]. When f3 = 0, organizations exclusively rewire 
by bridging, and by closure for f3 = 1. As bridging strategy consists in spanning structural holes to 
connect disconnected parts in the network, we model bridging ties by randomly choosing a 
partner out of the rank-2 neighborhood of the rewiring organization. ln contrast, as closure strategy 
consists in exploiting the information and trust of direct partners to fi nd new ones, we consider that 
an organization rewiring a relationship by closure will build a new partnership by randomly selecting 
an organization in his rank-2 neighborhood to whom it is not connected yet.5 

4.2.3. Structural measures 
Through simulation runs, entry mechanisms and relationships rewiring at the individuallevel will give 
rise to networks. For each of these networks, we compute a set of relevant structural properties. 
Beyond the most elementary properties and basic statistics related to the network size (number of 
organizations and density6

), Section 2 discussed important properties for clusters. 
The first ones relate to small-world properties. We compute the clustering coefficient of network g 

as the proportion of fully connected triples over the potential on es. Following Jackson (2008), we look 
at ali situations in which two links emanate from the sa me node i towards nod es j and k, and we cou nt 



the number of times the tie jk is also present in the network 

Cl(g) = L7=~;j#i;k~j;k~i 9ij9ik9jk 

Li=l;j#i;k~j;k~i 9ij9ik 

Secondly, we compute reachability. The traditional average path length is not useful when networks 
have seve rai components due to infinite distances.lnstead, we compute a measure of reachability R(g), 

as a weighted average of 1/djk, where djk is the geodesie distance between organizations j and k, and n 
the number of nodes in the network g. Then, the higher the value of R(g) measure, the higher the 
connectivity of the network. Following Breschi and Lenzi (2015), we compute it as follows: 

L'J=, LZ=,;j# 1/djk 
R(g) = . 

n 

Thirdly, the level of network hierarchy of network gis captured by the degree distribution (DD(g)). Fol­
lowing Cres po, Sui re, and Vicente (2014), we compute it as the slope of the relation (in log-log scale) 
between the organization degree k; and his ranking position k;: 

log(k;) = log(C) +a log(k!), 

where C is a constant. Th us, DD{g) =a, the higher the value of the slope, in absolute terms, the higher 
the hierarchy of the network. 

Finally, we measure network assortativity as the degree correlation of the network (DC(g)). Follow­
ing Crespo, Suire, and Vicente (2014), we compute it as the slope ofthe relation between the degree 
of node i (k;) and the average degree (k;) of the nodes in his neighborhood (V;): 

- 1'"' 
k; =k-~kj. 

1 jEV; 

Thus, the estimated relationship is k; = D + bk;, where D is a constant and b our measure of DC(g). If 
b > 0, the network is assortative, and if b < 0, the network is disassortative. 

4.4. &periment setting 

The simulation protocol is designed as follows: at each step of time, a number Et of organizations, 
depending on the distance to the load capacity of the system M, enter the network. The entrants 
connect either by preferential or by random attachment according to a probabilistic choice 
defined by a E [0, 1 ]. At each step of ti me, a proportion À E [0, 1] of ti es are disrupted and recreated 
either by bridging or by closure, as a probabilistic choice defined by {3 E [0, 1 ]. After the rewiring 
process, the organizations that become isolated exit? We use Netlogo to build the model and run 
the simulations. 

To explore the link between the relational mechanisms at a micro-level and the feature of the 
network structure at a macro-level, we run multiple simulations with different parameter settings 
to explore the whole parameters space: 
• Initial conditions: a random network with 50 nodes and 50 ties. When not specified otherwise, the 

results are based on a random distribution of these ties. 
• Load capacity of the network M of 500 organizations. 
• Speed of convergence r at 0.1. 
• a parameter from 0 to 1 by 0.1. 
• {3 parameter from 0 to 1 by 0.1. 
• À parameter from 0 to 0.2 by 0.025. If not specified otherwise, the results are presented for À= 0.05 
• Each simulation runs for 500 steps and then stops. The network measures are computed at this last 

ste p. 
• Each parameter setting is run 20 times8 



4.5. Results 

4.5.1. Relational mechanisms and network growth 
Given the population dynamics rule of the model, wh en r > 0.05, the number of organizations in the 
simulations always converges to M. This holds whatever the parameter setting and the initial con­
ditions. As expected, the higher the value of r, the faster the convergence towards the threshold 
(Figure 1). 

However, this convergence occurs with different entry/exit turnover depending on the value of 
the {3 and A parameters (Figure 2). Without ties rewiring (A= 0), the population stabilizes once the 
maximum threshold is reached. ln contrast, wh en rewiring is introduced (A > 0), the destruction of 
ties increases the risks of isolation and exit. The exit of nodes being compensated by new entries, 
the population remains at its superior threshold, but with a higher nodes' turnover. This turnover 
is also affected by {3. When closure prevails over bridging (high values of {3), the network breaks 
up in an increasing but a smaller number of disconnect components. Exits by isolation increase, 
and they are again compensated by the population dynamics rule. 

4.5.2. Relational mechanisms and network density 
Concerning network density (Figure 3(b)), the relational mechanisms at rewire seem to play more 
significantly than relational mechanisms at entry. While the effect of entry (a) on density is weak, 
density increases with {3, that is, the dominance of closure over bridging. The amount of change in 
density is only explained by the fact that at each step the amount of rewiring strategies is higher 
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Figure 1. Evolution of the number of organizations across time. 
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than the amount of entries. Therefore, density increases with the dominance of closure over brid­
ging. With closure, the probability of node exit by isolation increases. However, nodes exit does 
not imply losing links, since the disrupted link can be recreated by the other organization of the 
old dyad. The exited node will open the opportunity of connection for newcomers. They will enter 
the network by adding a new link. As a result, the network has the same number of nodes but 
more links, and even more since entries by preferential attachment prevails over random 
connections. 

Such a pattern works only under a {3 threshold ({3 < 0.9). Above it, only closure is considered in the 
rewiring mechanisms, and the network splits into several highly cliquished components. Therefore, 
the more the number of these cliquished components increases, the more the possibility for a dis­
rupted tie to be replaced by a new one decreases. This reduces the network density. 

The effects of different combinations of a and {3 on network density are robust across different 
initial conditions of the networks and different r. Only the amount of rewiring matters, since 
closure and bridging do not play any role when À = 0 (Figure 3(a)). 

4.5.3. Relational mechanisms and sma/1 world 
Concerning the small-world properties of networks, the simulation results show that clustering and 
reachability are highly sensitive to micro-behaviors. 

Firstly, as expected from the discussion of Section 3, clustering increases with {3, that is, when 
closure prevails over bridging9 (Figure 4(a)). However, clustering coefficients do not significantly 
change with the different values of a, balancing between preferential and random attachment. Posi­
tive and increasing values of À (beyond the value 0.05 displayed in Figure 4(a)) do not change these 
conclusions. Similarly, these results do not change for different population dynamics settings (M and 
r), or for different initial conditions.10 When rewiring strategies are not considered (A= 0, not dis­
played here), no triangles can appear and so clustering isO. 

Secondly, results a Iso match, although partially, our expectations concerning reachability (Figure 4 
(b)). Firstly, for 0 < {3 < 0.9, reachability is high, meaning that bridging micro-behaviors contribute to 
the global reachability of the network by creating between-group shortcuts. When a bridging 
relationship is created, it increases not only the reachability of the newly connected nodes, but 
also the reachability of ali their neighbors. This slight increase in reachability contrasts with the 
slight decrease in small-world patterns but does not contradict them. lndeed, such a difference 
can be explained by the fact that small-world properties in Watts and Strogatz (1998) are computed 
from a fixed number of links, wh ile in our model, the number of links depends on the distribution of 
rewiring strategies. Since the number of links strongly increases with closure behaviors in our 
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simulations (Figure 3(a)), it naturally increases the reachability. Secondly, in contrast, for (/3 > 0.9), 
closure prevails and drastically decreases the number of between-group links and then increases 
the number of separated network components. As a result, there is a radical eut dawn in reachability, 
a Iso observable in Watts and Strogatz (1 998). 

4.5.4. Re/ational mechanisms, degree distribution and correlation 
Degree distribution and correlation have also been identified as crucial properties for cluster perform­
ance. Figure S(a) and (b) shows the variation of degree distribution across different cam bi nations of a 
and f3 values.11 

As expected, when there is no rewire (A= 0), micro-behaviors at entry by preferential attachment 
result in more hierarchical structure than random attachment cnes (Figure S(a)). This effect partially 
remains when rewiring behaviors are introduced (Figure S(b), with A= 0.05). lndeed, the higher fre­
quency of rewire events over entry cnes blurs the structural effects of preferential and random 
attachment mechanisms. However, this does not occur in an even way. When bridging dominates 
over closure (law {3), the entry mechanism becomes irrelevant. But when closure dominates (high 
{3), the effects of entry mechanisms on network hierarchy remain as expected. However, more out­
standing is the direct impact of rewiring on degree distribution. Figure S(b) shows that along the 
{3-axis, as closure dominates over bridging, the network becomes more and more hierarchical.12 

Figure S(c) and (d) shows how the different relational mechanisms interplay on degree corre­
lation.13 ln case of no rewire (A= 0), as expected, the emerging structure is more and more disassor­
tative when preferential attachment prevails (Figure S(c)). When organizations take rewire decisions 
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(À> 0), two main changes appear (Figure 5(d)). On the one hand, as with degree distribution, the 
effects of entry mechanisms slightly erode. On the other hand, there is a shift up of the whole 
results surface, that is, network structures become more assortative. Nevertheless, the variations of 
degree correlation along the axis support our expectations. The network becomes more and more 
assortative when closure dominates over bridging. The results on degree distribution and degree cor­
relation hold for different parameter settings on the population dynamics (M and r), and different 
initial conditions of the network. 

5. Discussion 

Which implications on cluster policy design can we draw from these results? Several aspects may 
make the organization of clusters significantly different, such as their organizational ecology, their 
degree of industrial compositeness, their size or their R&D intensity. Here, the aim was to stress on 
their structural dimensions in order to contribute to the literature that tries to link the performance 
of innovative clusters to their internai structural features (Markusen 1996; Owen-Smith and Powell 
2004; Broekel and Graf 2011 ). ln particular, a better understanding of the interplay between relational 
behaviors and aggregate structures may contribute to improve cluster policy design. 

Our findings offer an embryonic but promising perspective for that purpose. As a matter of fact, 
policy-makers have long been limited to support collaborative R&D in clusters for the sole purpose of 
increasing relational density as a mean to boost their innovative performance. Such a 'one size fits ali' 
approach of clusters policies (Tôdtling and Trippl 2005) has been progressively suspected to be coun­
terproductive, engendering crowding-out effects on public expenses and a weak economie return 
(Du ranton 2011 ). By connecting micro and macro-levels of knowledge networks, the simulation 
results suggest incentivizing collaborations in a more surgical manner. Policy-makers should orient 
their action toward targeted distortions of the existing knowledge networks, when these latter do 
not match the structural properties positively affecting cluster performance and trajectories. ln 
that respect, our findings will make ali the more sense as they are related to the development 
stages of clusters and to the degree of maturity in their technological and market demains. 
lndeed, since simulation results show that entry and rewiring mechanisms may play as opposing 
forces in the formation of clusters structural properties, the design of public incentives has at the 
sa me ti me to rely on the position of clusters in the cycle of markets (Brenner and Schlump 2011 ), 
and to pay attention to the risks of irreversible trap sorne extreme incentives could produce when 
networks end up splitting themselves into separated components. 

Firstly, we consider immature clusters, when technologies and markets are far from being stabil­
ized. The challenge for these clusters is to ossify the structure of interactions. So, ali means to support 
the emergence of super-connectors can be useful to favor the cluster development. The simulation 
results show that public collaborative incentives have to be oriented toward preferential attachment 
and closure. This should help the cluster to reach the maturity stage by developing focal points and 
positive synergies (Menzel and Fornahl 201 0). By inciting newcomers to connect to the mostly con­
nected organizations, policy-makers will favor the centralization of the knowledge integration 
process and thus allow clusters better securing the setting of technological standards. Figure 5(b) 
shows that prevalence of closure (under a certain threshold), favors the emergence of hierarchical 
structures. If policy-makers do not target incentives towards the aim of increasing hierarchy, clusters 
will display a lack of control of the composite knowledge process (Levy and Talbot 2015), weakening 
their ability to produce well-performing dominant design (Crespo, Suire, and Vicente 2015). At the 
same time, the capacity of clusters to produce tradable technological standard needs (i) a high 
level of interoperability and compatibility supported by a high level of cohesion between interacting 
organizations, and (ii) short knowledge paths between them. Both allow increasing the systemic 
integrity of the collective process of innovation observed in many high-tech clusters and networks 
(Aoki and Takizawa 2002; Balland, Suire, and Vicente 2013). For that purpose, Figures 5(b), 4(a) and 
4(b) provide interesting findings for policy design and targeted incentives for knowledge 



collaborations. Under a certain threshold of closure where networks remain fully connected, hierar­
chy increases with closure behaviors. This secures the control of knowledge integration around a 
couple of leading organizations. Additionally, under the same closure threshold, networks' clustering 
increases and networks' internai reachability remains high. Therefore, one of the challenges for 
cluster policy-makers is to go through this window by targeting public collaborative incentives 
that allow organizations reinforcing their relational cohesion without compromising the overall con­
nectedness of the network and favoring the structuration of a core. Consequently, when clusters just 
start to structure themselves, policy-makers can help them play the battle of places by boosting 
knowledge relationships. lncentives for collaborations should be oriented towards the development 
of an attractive core of connected organizations able to drive the coordination process by which a 
collection of separated pieces of explorative knowledge can be turned into dominant designs on 
markets. 

Secondly, in contrast, when clusters have reached maturity in their technological domain, the 
structural properties ensuring performance are different. Then, from the perspective of a surgical 
cluster policy, the target of incentives will also change. The challenge for policy-makers is to favor 
capabilities of structural change of clusters. They should provide incentives that allow clustered 
organizations to overlap mature and emerging markets. As a matter of fact, the risk for mature clus­
ters is that their core organizations enter a critical phase where growing worldwide competition over­
shadows local exploration and weakens their ability to reorganize knowledge networks towards new 
technologies and related markets. This risk will increase if closure behaviors, crucial to secure tech­
nological standards during the growing phase, produce too many disconnections between core 
and peripheral organizations when market maturity arises. As displayed in Figure S(b) and (d), 
under a threshold where networks remain connected, clusters grow in hierarchy with closure at 
the same time as they grow in assortativity. These related network patterns show that, when 
closure behaviors prevail over bridging ones, an increase in hierarchy goes with a tendency of 
core organizations to mutually interact, in particular when random entries prevail over preferential 
attachments. Consequently, for mature clusters to maintain innovative and structural change capa­
bilities (Boschma 2015), incentives oriented toward connections by preferential attachment and brid­
ging behaviors should be preferred. They will avoid conformism in clusters core component, 
regenerate it, and favor a better flowing of fresh and explorative ideas from peripheral organizations 
toward more central and well-experienced ones. Such bridging behaviors in clusters explain why 
sorne clusters succeed in overlapping mature markets and related emerging ones, through the 
process by which core organizations owning transversal technologies diversify their network portfo­
lio and continuously find opportunities to absorb knowledge from new entrants. lnvestigating the 
renewal of the Silicon Valley du ring the 1980s, Saxenian (1990) evidences the se findings. She explains 
how networks restructuring between well-performing organizations of the semi-conductor mature 
industry and start-ups providing innovative and fast-changing components and applications has 
led the cluster to develop, and control later in the 1990s, the worldwide computer industry. 

But this network structural change process is not always self-evident, because assortativity gener­
ally appears as a natural tendency of growing social networks (Newman 2002; Watts 2004). Breaking 
assortative paths can be done by the support of public collaborative incentives aiming at connecting 
peripheral and core organizations in clusters. For that, policy-makers have to accept higher risks than 
the ones they take when they reinforce collaborations between previously connected organizations. 
ln that sense, the archetypal system of calls for collaborative proposai that typifies many cluster pol­
ides is highly responsible ofthese difficulties for policy-makers to favor more disassortative structures 
in clusters. lndeed, public subsidizers that launch these calls are trapped in informational asymme­
tries vis-à-vis the applicants. They may be tempted to reduce the risk relying on successful past col­
laborations to select new collaborative projects. But by increasing network assortativity and 
reinforcing closure behaviors, they do not appropriately help clusters continuously regenerate them­
selves. For mature clusters, targeted inducements towards bridging collaborations and more disas­
sortative relational behaviors will be expected to engender higher economie returns. 



6. Conclusion 

This paper has tried to provide a better understanding of the micro-foundations of clusters, stressing 
on the links between the relational strategies of agents and the resulting structural properties of 
knowledge networks. Using a (tao) simple simulation madel for that purpose, our findings offer 
imperfect but promising perspectives to better grasp the reasons why sorne clusters perform 
better than others in the long run. ln particular, results shed light on the relational behaviors that 
can give rise to clusters able to establish themselves as a leading place in their technological 
domain, and to continuously renew themselves by overlapping mature and emerging markets. 

ln cluster analysis based on small-world properties, it has been supported that knowledge net­
works succeeding in maintaining a high level of closure while decreasing the path length for a 
better knowledge circulation would be more likely to be able to corn pete in innovation. Nevertheless, 
these properties remain discussed (Fleming, King, and Juda 2007). lntroducing the properties of 
degree distribution (hierarchy) and correlation (assortativity) allow going one step beyond. They 
provide interesting insights to disentangle the combined effects of networks cohesiveness and open­
ness on cluster performance (Eisingerich, Bell, and Tracey 201 0). lndeed, by considering hierarchy of 
local knowledge networks, our contribution allows linking effective clusters to the process of rela­
tional ossification which favars the coordination process between separated organizations, and 
without which emerging clusters could experience difficulties to cross the chasm between early 
markets and mass-markets (Moore 1991 ; Su ire and Vicente 2014). Cluster entries by preferential 
attachments affect such an ossification process, in particular in the growing phase of clusters. Rewir­
ing by closure complements this process. lt improves the systemic integrity generally required in 
composite technological fields. Nevertheless, once clusters have reached maturity, closure behaviors 
can hamper their capacity to react and resist to declining markets. Systemic integrity can be turned 
into systemic conformism during the mature phase of markets. Th us, it can weaken the capabilities of 
structural change of clusters. To remain competitive on the long run, entries by preferential attach­
ments in clusters need to play with more heterophilic relational behaviors in the existing core of 
leading organizations. These latter have to reorient their relationships' portfolio towards peripheral 
organizations, in arder to facilitate new knowledge corn bi nations and the ra ising of new knowledge 
towards the core of experienced organizations. Consequently, for clusters having reached maturity, 
network-brokers matter (Gayal and Vega-Redonda 2007; Buskens and van de Rijt 2008). They will 
help clusters reaching more disassortative structures of knowledge interactions, which is a crucial 
condition of their self-sustaining growth path. Therefore, identifying potential knowledge brokers 
in mature clusters remains one the most important challenges for an expected higher economie 
return of cluster policies. For that, public collaborative incentives should be based on a robust exper­
tise of the phase of the technological cycle and the related supporting cluster structure. Such an 
expertise will allow policy-makers being smarter when dealing with incentives for explorative and 
reinforcing ties, in arder to boast together cluster efficiency and renewal capabilities. 

Obviously, this contribution remains an academie exercise, and the attempt of policy implications 
previously done is not free of limitations. Firstly, for the sake of clarity, the madel has only focused on 
structural mechanisms and has deliberately ignored the cognitive and institutional attributes of 
organizations. lndeed, at the micro-level, the motives to shape or not knowledge relationships also 
depend on these attributes. To be improved, further extensions of the madel should consider that 
organizations in clusters a Iso select partners depending on the features of these partners, and disen­
tangle how cognitive and relational characteristics play together in shaping particular structural prop­
erties.14 Secondly, to be tractable for policy design, cluster diagnoses on existing relational structures 
have to be systematically implemented. Such a task can be costly and not necessarily reliable, due to 
the difficulties to gather relational data and to capture the market cycles. Nevertheless, by stressing 
on the necessity to develop targeted and surgi cal incentives for knowledge collaborations, this study 
provides a better significance ofwhat network failures in clusters actually are. ln that respect, it makes 



a small step which can help policy-makers to expect a better policy return, by taking better informed 
decisions about the structural consequences of their public-funded networking incentives. 
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Notes 

1. Other papers have also found positive effects of small worlds on individual performance (Verspagen and Duysters 
2004; Uzzi and Spiro 2005; Schilling and Phelps 2007). 

2. However, the work of Fleming, King, and Juda (2007) fails in finding such evidence. 
3. Scale-free networks echo one of the forgotten results of Milgram experiments in small-world analysis: the role of 

super-connectors. 
4. Sorne authors have shawn that thresholds in the small worldness may exist (Uzzi and Spiro 2005). 
S. If this condition cannat be matched, the disrupted relationship is not recreated and the tie definitively dies. 
6. Density of a network refers to the ratio between the existing number of ties and the number of potential ties in a 

network. 
7. Along each simulation step, entry and rewire mechanisms are simultaneously activated, but in a cumulatively unba­

lanced proportion. On the one side, the number of entries decreases as the population cornes close to its maximum 
threshold (M). Therefore, preferential or random attachment mechanisms play only few times in each step. On the 
ether side, the number of rewired links, defined as proportion À of the existing population, increases when the popu­
lation cornes close to M. Consequently, the number of times bridging and closure are activated becomes higher. 
Since this unbalance is reproduced at each step, the effect of entry mechanisms tends to smooth, while the 
effect of rewire tends to be enforced. 

8. The results presented are the average values of these 20 runs for each parameter setting. 
9. When f3 goes from 0.9 to 1, the increase in clustering coefficient accelerates. Once aga in, the splitting of the network 

of several components explains this pattern. 
1 O. When rewiring strategies are not considered (À = 0, not displayed here), no triangles can appear and so clustering is O. 
11. Degree distribution is computed in absolute terms, so higher (lower) values mean more (less) hierarchical networks. 
12. As for density and reachability, the effect of {3 on degree distribution a Iso exhibits a trend reversai when above a very 

high level of closure, the network splits into several components. 
13. Recall that assortative networks are characterized by positive degree correlation. Disassortative networks are charac­

terized by negative degree correlation. 
14. The same limitation concerns the locational attributes. The madel could be extended introducing a distinction 

between local and non-local nades in networks in arder to study how and for what purpose organizations shape 
knowledge relationships with local and non-local organizations. See Fitjar and Rodrfguez-Pose (2011 ) and 
Balland, Suire, and Vicente (2013). 
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