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Supervised learning of analysis-sparsity priors with
automatic differentiation

Hashem Ghanem, Joseph Salmon, Nicolas Keriven, and Samuel Vaiter

Abstract—Sparsity priors are commonly used in denoising and
image reconstruction. For analysis-type priors, a dictionary
defines a representation of signals that is likely to be sparse.
In most situations, this dictionary is not known, and is to be re-
covered from pairs of ground-truth signals and measurements, by
minimizing the reconstruction error. This defines a hierarchical
optimization problem, which can be cast as a bi-level optimiza-
tion. Yet, this problem is unsolvable, as reconstructions and their
derivative w.r.t. the dictionary have no closed-form expression.
However, reconstructions can be iteratively computed using the
Forward-Backward splitting (FB) algorithm. In this paper, we
approximate reconstructions by the output of the aforementioned
FB algorithm. Then, we leverage automatic differentiation to
evaluate the gradient of this output w.r.t. the dictionary, which
we learn with projected gradient descent. Experiments show that
our algorithm successfully learns the 1D Total Variation (TV)
dictionary from piecewise constant signals. For the same case
study, we propose to constrain our search to dictionaries of 0-
centered columns, which removes undesired local minima and
improves numerical stability.

Index Terms—Sparsity, dictionary learning, total variation, bi-
level optimization, automatic differentiation.

I. INTRODUCTION

DENOISING is a widely-tackled problem that emerges in
many fields, where the goal is to restore signals from

noisy observations. This includes that the model of the imaging
system is a priori known: y = w + ε, where w,y ∈ Rp are
the true and the measured signals, respectively, and ε ∈ Rp
is additive noise. In addition, a prior hypothesis on the nature
of the signal, or an embedding of it, might be available, like
sparsity [10]. Such extra knowledge can be incorporated in
the optimization process to get better reconstructions (e.g., a
higher Signal to Noise Ratio (SNR)).

Sparsity priors exist in two forms [6]: i) synthesis (traditional)
sparsity where w = Du, D is a linear operator, and u is
sparse; ii) analysis sparsity where v = D>w ∈ Rm is sparse.
This paper is interested in the latter. As a convex surrogate,
this prior is enforced on w by adding the term ‖D>w‖1 to
the (generally quadratic) loss function [9], where ‖ · ‖1 is the
`1 norm. Putting all together, the problem consists in finding:
ŵ = arg minw ‖y−w‖22+λ‖D>w‖1 for some regularization
amplitude parameter λ ≥ 0. The linear operator D is either
user-defined, or learnt directly from data.

The main problem we tackle in this work is to extract both
D and λ from data with supervised learning. Having that
λ‖D>w‖1 = ‖(λD)>w‖1, this problem is equivalent to
extracting the product λD as one object, thus we stop notating
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λ explicitly from now on and keep D. To avoid trivial
solutions and undesired local minima, it is common to restrict
the search space to an admissible set C ⊂ Rp×m, where
dictionaries have a specific property. In [12] for instance, D
is forced to be orthogonal, i.e., C = {D;DD> = Ip}. In
[11], D is constrained to be a convolution dictionary. However,
it is still challenging to find an admissible set that performs
well in all applications of this problem [17]. In this work,
we don’t commit to find such universal set. Formally, we
suppose we have a dataset (yl,wl)

L
l=1, that includes L pairs

of measurements and their associated ground truth signals.
Knowing such pairs, our task is to find the operator D that
minimizes the mean squared error between reconstructions and
ground truth signals:

D̂ ∈ arg min
D∈Rp×m

E(D) =

L∑
l=1

∥∥ŵ (D,yl)−wl

∥∥2
2

+ ιC(D) (1a)

s.t.

ŵ(D,y) = arg min
w∈Rp

1

2
‖y −w‖22 + ‖D>w‖1 , (1b)

where C is an admissible set of dictionaries, and ιC is the
indicator function: ιC(D) = 0 if D ∈ C and +∞ otherwise.

One can recast Equation (1) as a bilevel optimization problem:
in the outer problem, we learn the model D as in Eq. (1a)
while in the inner problem, we denoise measurements follow-
ing Eq. (1b). We already know that the inner part can be solved
applying the Forward-Backward splitting (FB) algorithm on
the dual problem [5]. However, due to the `1 norm, neither the
solution nor its gradient w.r.t. D have closed-form expressions.
Thus, the minimizer D̂ cannot be derived analytically nor
obtained with gradient-based methods.

To illustrate how our algorithm can recover a dictionary D̂,
we consider the well-known problem of 1D piecewise constant
signals reconstruction as a case-study [5], where this prior
indicates that (w2−w1, . . . , w1−wp)> is sparse. The estimator
is often written as an instance of Eq. (1b), with D = DTV

is the dictionary associated to the 1D Total Variation (TV)
regularization: for all i ∈ {1, . . . , p};Di,i = −1,Di+1,i = 1,
and 0 otherwise, up to rescaling.

Contribution We approximately recover the analysis-
sparsity operator D̂ by: i) replacing the true minimizer
ŵ(D,y) by the output of the FB algorithm applied on the dual
problem; ii) deploying automatic differentiation, a technique
capable of evaluating the gradient of an algorithm w.r.t. input
variables, to solve Eq. (1a) with projected gradient descent. We
empirically show that our method recovers the TV dictionary
DTV from piecewise constant signals. Finally, for the same
case study, we reduce the admissible set C to dictionaries with
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columns summing up to zero, and empirically prove that this
increases stability and extracts the TV operator with higher
quality than previous methods.

Related work The bilevel problem was first posed in
[11], where the authors smoothed the `1 norm so that the
derivative of ŵ(D,y) w.r.t. D has a closed-form expression.
Then, they applied gradient descent to find a local minimizer
D. However, the sought for sparsity is degraded with this
methodology. In [14], a relaxation regime of `1 with the
smooth `2 norm is adopted, with a relaxation parameter easy
to assign. Recently in [10], a formula of ŵ(D,y) is obtained
under some conditions. This formula includes inverting a
large matrix, which is computed iteratively while Automatic
Differentiation (AD) is used to evaluate gradients. In [16],
and without a proof of convergence, they restrict D to have
unit columns norm, that also satisfy DD> = I , in order to
avoid trivial solutions (e.g., repeated columns). The work in [4]
solves the 2D piecewise signals reconstruction problem using
AD, constrained by learning convolution-type dictionaries of
kernels with small support, which improves the quality of
standard 2D TV. Such strong constraints are not considered in
our work, however we will see that simple column-centering
suffices to learn a high-quality dictionary in the 1D version of
this problem.

II. AUTOMATIC DIFFERENTIATION (AD)

To compute gradients, one often manually writes down its
analytical expression. Yet, this can only be performed for
functions with closed-form expression, which is not the case in
Eq. (1b). An alternative is symbolic differentiation, automati-
cally performed by computer tools like Mathematica [7] when
dealing with syntax tree expressions. A third approach consists
in approximating gradients using numerical differentiation. It
is easy to implement though exposed to round-off errors [8]
and expensive in case of a high number of variables (here
p×m).

Automatic Differentiation (AD), that is of interest in this work,
mitigates the previous drawbacks. AD manipulates computa-
tion flow in a computer program, with all numerical com-
putations reduced to compositions of elementary operations,
for which derivative rules are known [15]. In such computer
programs, a value must be assigned to each input variable,
thus, any operation in the code will result in a variable with
a numerical value. During the execution of the program, AD
consists in [1]: 1) keeping a trace to all intermediate variables
that are dependent on the ones we want to differentiate for; 2)
once an operation is performed on a dependent variable, say
vi, to evaluate another vj , directly computing the derivative
value dvj/dvi; 3) accumulating derivatives in step 2 through
the chain rule. This gives the derivative value of the whole
composition w.r.t. a chosen variable. AD can trace numerical
computations in recursion functions and in control-flow (if,
while, for) statements. Thus, AD efficiently differentiates not
only closed-form formulas, but also implemented algorithms.
This makes AD suitable for gradient-based optimization. AD
can be implemented in two ways: forward mode and reverse

mode. In our work, we adopt the reverse mode1. Let us
assume having y = (y1, . . . , ym) as a function of the variable
x = (x1, . . . , xn), with v as an intermediate variable. The
backward scheme takes in input the vector ȳ = (ȳ1, . . . , ȳm),
and accumulates gradients as follows: first v̄ = J>y (v)ȳ, then
x̄ = J>v (x)v̄, where (Jy(v))i,j = dyi/dvj . The output x̄ is
nothing but the transpose Jacobian-vector product J>y (x)ȳ.

III. PROPOSED ALGORITHM

We solve the dual problem of Eq. (1b) with Forward-Backward
splitting (FB). Using Automatic Differentiation, we obtain gra-
dients of the previous FB algorithm w.r.t. D. These gradients
are used to learn a local minimum D̂ using gradient descent,
while projecting D on the admissible set C at every iteration.

A. Deriving the dual problem of Eq. (1b)

The term ‖D>w‖1 in Eq. (1b) is neither differentiable
w.r.t. w, nor has a simple proximal operator that can be
efficiently performed. Hence, we cannot apply the gradient
descent or the FB algorithm directly to evaluate ŵ(D,y).
However, the latter is possible if we tackle this optimization
from the dual perspective [13]. In fact, one can prove that
Eq. (1b) is equivalent to its dual problem [5]:

ẑ(D,y) = arg min
z∈Rm

1

2

∥∥Dz − y
∥∥2
2

+ ιB∞(z) , (2)

where B∞ = {z ∈ Rm; |zi| ≤ 1, ∀i ∈ [m]} is the unit ball
of the `∞ norm. The target recovery ŵ is then given by:

ŵ(D,y) = y −D ẑ(D,y). (3)

B. Solving the dual problem with the FB algorithm

Fortunately, the term ιB∞(z) has a simple proximal function
given by ΠB∞ : the orthogonal projection on the ball B∞. So
indeed, we solve Eq. (2) with an accelerated FB algorithm,
namely the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [2]. At each iteration we update z as follows:

zi+1 = proxιB∞

(
qi − η1∇(

1

2

∥∥Dqi − y
∥∥2
2
)
)

= ΠB∞

(
qi − η1D

>(Dqi − y)
) (4)

s.t. q1 = z0 is the initialization of z, η1 is the step size, and:

qi+1 = zi +
ti − 1

ti+1
(zi − zi−1)

ti+1 =
1

2
(1 +

√
1 + 4t2i ) ; t1 = 1.

(5)

To conclude with the inner part: having the matrix D and the
vector y as input, one can compute ẑ(D,y) with a sufficient
number of updates as in Eq. (4), then get ŵ(D,y) in output
using Eq. (3).

1this is the mode implemented in the PyTorch framework
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Fig. 1: Performance of our projected gradient descent algorithm 1, w.r.t. to noise level. We plot a sorted view of the dictionary D̂. We rescale
all dictionaries to [−1, 1] for a better visualization of the structure recovered in D̂ . (a) DTV our algorithm is expected to learn. From (b)
to (f): D̂ for different values of σ, the standard deviation of noise. Jumps in the dataset have the same amplitude: 0→ 10 or 10→ 0.

C. Outer loop design to learn the dictionary

Let us first notice that when the admissible set C = Rp×m, the
solution D̂ is not unique as ‖·‖1 is invariant to the coefficients
order in a vector, e.g., ‖(u1, u2)>‖1 = ‖(u2, u1)>‖1. Thus,
permuting columns in D will lead to the same ŵ(D,y) in
Eq. (1b), which means the same cost E(D). In this paper,
we consider any solution that is a minimizer of E(D). We
also assume that the second dimension of D is given, while
optimizing for it might be the subject of a future work.

Towards our goal, we use AD to get the gradient of the
mean squared error (MSE) term in E(D), by tracing the FB
algorithm that solves Eq. (1b). In fact, to reduce computational
cost, we do not compute the full MSE but sample a batch of
training signals at each iteration (see Alg. 1). We denote this
term by EMSE(D). Since proving the convergence of AD’s
Jacobian to the variational one is complicated in such non-
smooth setting, we replace the true reconstruction ŵ(D,y)
with the output produced by the FB algorithm, and empirically
show that it is a good proxy. For simplicity, we keep the same
notation for this output. We randomly initialize D0, then we
start each iteration t by setting PyTorch AD framework to
record operations on Dt. We can then compute the output
ŵ(Dt,y), and EMSE(Dt). Now, we use the PyTorch AD to
get the gradient ∇EMSE(Dt), and we update the estimated
dictionary as

Dt+1 = Dt − η2∇EMSE(Dt) , (6)

where η2 > 0 is a step size. Lastly, we project Dt on the ad-
missible set C by computing ΠC(Dt). We obtain Algorithm 1.

IV. EXPERIMENTS

We consider the 1D piecewise constant signals reconstruction
problem, with p = m = 64 in all experiments. Ground-truth
examples w are generated s.t. they have 4 discontinuities, thus
4 constant pieces. The coefficients where discontinuities take
place are randomly chosen in each w. Their amplitude is either
fixed (0 → 10 or 10 → 0), or randomly sampled s.t. they
happen between two values in [0, 10], to be mentioned when
necessary. Observations y are constructed by adding a noise
vector to each ground-truth signal, such vector is sampled
from N (0, σ2Ip), where σ varies through experiments. The
“true” underlying dictionary DTV is shown in Fig. 1 (a), up
to permuting its columns, and to rescaling with λ, which we
compute in each experiment with a grid search solving Eq. (1a)

Algorithm 1: AD-based projected gradient descent
Input: {(wl,yl)}l∈{1,...,L}: dataset.
Output: D̂: minimizer to E(D) in Eq. (1a).
Params: m, η1, η2,max itr1,max itr2, batch sz
Algorithm:
Initialize D iid from N (0, 10−4).
Set PyTorch AD to track computations on D.
for t in {0, . . . ,max itr2− 1}:
do
EMSE(D)← 0
for l ∈ {t ∗ batch sz, . . . , (t+ 1) ∗ batch sz − 1}
do

Initialize q iid from N (0, 1).
for i in {1, . . . ,max itr1}:
do

z ← ΠB∞

(
q − η1D>(Dq − yl)

)
.

Update q as in Eq. (5).
ŵ(D,yl)← yl −Dz.

EMSE(D)← EMSE(D) +
∥∥ŵ (D,yl)−wl

∥∥2
2
.

∇EMSE(D)← PyTorch AD gradient.
D ← ΠC

(
D − η2

batch sz∇EMSE(D)
)
.

Return D̂ = D
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Fig. 2: Performance curves of the learnt D̂ in the case σ = 1 in Fig. 1.
Left: training and validation losses as in Eq. (1a) as a function of the
iteration index. We plot the loss incurred by DTV and D = 0 on
the validation set. Right: Recovered signals with DTV , D = 0 and
D̂ as in Eq. (1b) from a random signal y from the validation set.

w.r.t. λ. Matrices D̂ shown in this section have their columns
sorted by magnitudes, to ease the comparison with DTV . We
consider stochastic gradient descent updates with batch size
64. Training set size: 640000, validation set size: 256. We
adopt random white noise initialization with varying variance.

Denoiser setup: The value of η1 in Eq. (4) is assigned auto-
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Fig. 3: Showing the difference made by our proposed admissible set
C. We plot D̂ produced by our algorithm. Left: with our proposed C.
Right: with C = Rp×p. Dataset: Jumps in the dataset can randomly
occur between any two values in [0, 10], thus they have random
amplitudes. σ = 0.5.
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Fig. 4: Benchmark against the unconstrained optimization with `1-
smoothening proposed in [11], with identical problem setting to
Fig. 3. Left: training loss curves of different algorithms. Right: D̂
produced by the algorithm in [11]. Dataset: same as in Fig. 3.

matically while guaranteeing convergence of zi. This value is
η1 = 0.95/‖D>D‖2, where ‖D>D‖2 is the Lipschitz con-
stant of ∇ 1

2

∥∥Dz−y
∥∥2
2
. In all experiments, a tolerance thresh-

old is used to determine the number of iterations, specifically,
we assume convergence if ‖zi+1 − zi‖∞/‖zi‖∞ < 10−4.

A. Projection proposed for this case study

We reduce the admissible set C in our proposed algorithm
1 to dictionaries whose columns sum up to zero, i.e., C =
{D|1>p D = 0m}. This property is seen in the prior operator
DTV our algorithm is expected to learn, and in the more
general family of problems known as graph total variation [3].
This very simple prior greatly improves the results by filtering
out many local minima. Different priors for other cases will be
the goal of future investigations. Referring to the c-th column
of D by D[:, c], and by mean(D[:, c]) to the mean value of
this column, we project Dt+1 as follows:

Dt+1[:, c] = Dt+1[:, c]−mean
(
Dt+1[:, c]

)
, ∀c ∈ [m]. (7)

In Fig. 3 and Fig. 4(left), we show the essential role of
the centering projection in our proposed algorithm. We run
our algorithm twice: i) with the projection; ii) ignoring the
projection step; on the same dataset, and we plot the learned
dictionary D̂ in both cases. Discontinuities in the used dataset
are of random magnitudes (between any two values in [0,10]),
and the noise has a standard deviation σ = 0.5. Our algorithm
coupled with the projection successfully captures DTV -like
structure from the dataset, unlike when the projection is not
considered, which shows its capability in this problem setting.

B. Sensitivity w.r.t. to the noise level

When our observations are noise-free, i.e., σ = 0 and y = w,
it is clear D = 0 is the optimal dictionary, as no regularization
is required to retrieve the true signal. Therefore, when σ is
small, we don’t expect our algorithm to learn the structure in
DTV , since in such case, its magnitude is of the same level
as numerical errors, see Fig. 1 (b).

On the other hand, when the noise level is high, the piecewise
constant prior is degraded and is poorly seen in observations.
As a result, the learnt dictionary is a distorted version of DTV ,
as in Fig. 1 (f).

In between, it is important to verify that our algorithm is stable,
and can extract DTV out from data. As shown in Fig. 1 (c-e),
this is indeed true when σ ∈ [0.75, 2], which spans a non-
trivial range in SNR scale [12, 89], given that our signals w
take values in {0, 10}.

For σ = 1, we show in Fig. 2 the evolution of train-
ing/validation losses as a function of the batch index through
training, while benchmarking it against the same loss incurred
when D = DTV with optimal λ and D = 0 as a reference.
We also present the same benchmark but w.r.t. the denoising
performance, as in Eq. (1b), applied on a signal from the
validation set.

C. Benchmark against the algorithm proposed in [11]

In Fig. 4, we compare our output to the one produced by the
unconstrained learning algorithm based on smoothening `1 in
[11]. We fix the `1-smoothening parameter ε = 10−3. The
dataset has discontinuities of random magnitudes in [0,10],
and the noise standard deviation σ = 0.5, i.e., same setup as
in Fig. 3. Unlike our projected gradient descent, the opponent
algorithm fails to inspect the DTV structure from data.

V. CONCLUSION AND FUTURE WORK

To alleviate the difficulty of deriving gradients to learn
analysis-sparsity dictionaries, that are optimized through a
bilevel problem, we proposed to make use of automatic
differentiation, a technique shown to have high proficiency
in machine learning and deep learning. In the absence of a
theoretical link between the automatic differentiation and the
analytical one in our setting, our experiments on the piecewise
constant signals reconstruction problem showed a proof-of-
concept, and a promising methodology that can be applied
in other problems setting. For the same case study, we also
incorporated a simple column-wise centering projection, which
significantly increased the stability of the algorithm and the
quality of the learned dictionary.

Further investigations can be done to generalize our algorithm
to 2D signals, particularly the 2D piecewise constant signals
reconstruction, while trying to combine other constraints.
Moreover, it would be interesting to study the problem again
when the dimensions of the dictionary are not given, for
instance to learn graph incidence matrices.
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