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We introduce a simple method, dubbed the Voronoi Interface Method, to solve Elliptic
problems with discontinuities across the interface of irregular domains. This method
produces a linear system that is symmetric positive definite with only its right-hand-side
affected by the jump conditions. The solution and the solution’s gradients are second-
order accurate and first-order accurate, respectively, in the L∞ norm, even in the case 
of large ratios in the diffusion coefficient. This approach is also applicable to arbitrary
meshes. Additional degrees of freedom are placed close to the interface and a Voronoi
partition centered at each of these points is used to discretize the equations in a finite
volume approach. Both the locations of the additional degrees of freedom and their Voronoi
discretizations are straightforward in two and three spatial dimensions.

1. Introduction

We focus on the class of Elliptic problems that can be written as:

∇ · (β∇u) + ku = f in �− ∪ �+,

[u] = g on �,

[β∇u · n�] = h on �, (1)

where the computational domain � is composed of two subdomains, �− and �+ , separated by a co-dimension one in-
terface � (see Fig. 1), with n� the outward normal. Here, β = β(x), with x ∈ R

n (n ∈ N), is bounded from below by a 
positive constant and [q] = q+

� − q−
� indicates a discontinuity in the quantity q across �, f is in L2, g , h and k are given. 

Note that this general formulation includes possible discontinuities in the diffusion coefficient β and in the gradient of the 
solution ∇u. Dirichlet or Neumann boundary conditions are applied on the boundary of �, denoted by ∂�. This class of 
equations, where some or all of the jump conditions are non-zero, is a corner stone in the modeling of the dynamics of 
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Fig. 1. Geometry of the problem.

important physical and biological phenomena as diverse as multiphase flows with and without phase change, biomolecules’ 
electrostatics, electrokinetics (Poisson–Nerntz–Planck) models with source term or electroporation models.

Given the importance of this class of equations, several approaches have been pursued to computationally approximate 
their solutions, each with their own pros and cons. The finite element method (FEM) is one of the earliest approaches to 
solve this problem [4,10,12,19,32,35] and has the advantage of providing a simple discretization formalism that guarantees 
the symmetry and definite positiveness of the corresponding linear system, even in the case of unstructured grids. It also 
provides a framework where a priori error estimates can be used to best adapt the mesh in order to capture small scale 
details. However, the FEM is based on the generation of meshes that must conform to the irregular domain’s boundary and 
must satisfy some restrictive quality criteria, a task that is difficult, especially in three spatial dimensions. The difficulty 
is exacerbated when the domain’s boundary evolves during the course of a computation, as it is the case for most of the 
applications modeled by these equations. Mesh generation is the focus of intense research [58], as the creation of unwanted 
sliver elements can deteriorate the accuracy of the solution.

Methods based on capturing the jump conditions do not depend on the generation of a mesh that conforms to the 
domain’s boundary, hence avoiding the mesh generation difficulty altogether. However, they must impose the boundary 
conditions implicitly, which is a non-trivial task. A popular approach is the Immersed Interface Method (IIM) of Leveque 
and Li [36], and the more recent development of Immersed Finite Element Method (IFEM) and Immersed Finite Volume 
Method (IFVM) [40,27,23]. The basis of the IIM is to use Taylor expansions of the solution on each side of the interface 
and modify the stencils local to the interface in order to impose the jump conditions. As such, solutions can be obtained on 
simple Cartesian grids and the solution is second-order accurate in the L∞ norm. The corresponding linear system, however, 
is asymmetric unless the coefficient β has no jump across the interface. Another difficulty is the need to approximate surface 
derivatives along � as well as the evaluation of high-order jump conditions. These difficulties have been addressed in the 
Piecewise-polynomial Interface Method of Chen and Strain [11] and several other approaches have improved the efficacy 
of the IMM [38,39,64,9,1–3]. We note also that the earliest approach on Cartesian grid is that of Mayo [43], who derived 
an integral equation to solve the Poisson and the bi-harmonic problems with piecewise constant coefficients on irregular 
domains; the solution is second-order accurate in the L∞ norm. We also refer the interested researcher to the matched 
interface and boundary (MIB) method [66,65].

The finite element community has also proposed embedded interface approaches, including discontinuous Galerkin and 
the eXtended Finite Element Method (XFEM) [37,29,48,17,8,47,33,22,28,62]. The basic idea is to introduce additional degrees 
of freedom1 near the interface and augment the standard basis functions on these elements with basis functions that are 
combined with a Heaviside function in order to help capture the jump conditions.

In [16], the authors introduce a second-order accurate discretization in the case of, possibly adaptive, Cartesian meshes 
using a cut-cell approach. The jump condition is imposed by determining the fluxes on both side of the interface, which 
are constructed from a combination of least squares and quadratic approximations. In [51], the authors also use a cut cell 
approach but impose the jump with the help of a compact 27-point stencil.

The Ghost Fluid Method (GFM), originally introduced to approximate two-phase compressible flows [21], has been ap-
plied to the system problem (1) in [41]. The basic idea is to consider fictitious domains and ghost values that capture the 
jump conditions in the discretization at grid nodes near the interface. An advantage of this approach is that only the right-
hand-side of the linear system is affected by the jump conditions. However, in order to propose a dimension-by-dimension 
approach, the projection of the normal jump conditions must be projected onto the Cartesian directions. As a consequence, 
the tangential component of the jump is ignored. Nonetheless, the method has been shown to be convergent with first-
order accuracy [42]. The GFM was also shown to produce symmetric positive definite second-order accuracy [25] and even 
fourth-order accuracy [24], but for a different class of problem, namely for solving Elliptic problems on irregular domains 
with Dirichlet boundary conditions. In fact, symmetric positive definite second-order accurate solutions can also be obtained 
in the case where Neumann or Robin boundary conditions are imposed on irregular domains [55,50,53,54]. These methods 
can be trivially extended to the case of adaptive Cartesian grids and we refer the interested readers to the review of Gibou, 
Min and Fedkiw [26] for more details. In the case of jump conditions, Coco and Russo [14] have also used a fictitious domain 

1 We understand by degrees of freedom the set of locations at which the solution is sampled.



approach, where a relaxation scheme is used to impose the boundary condition; the solution is second-order accurate. The 
same authors have also introduced a method to consider Dirichlet, Neumann and Robin boundary conditions on an irregular 
interface [15]. Latige et al. [46] have also presented a method based on fictitious domains using a piecewise polynomial 
representation of the solution on a dual grid, also obtaining second-order accurate solutions. Finally, [31] have applied the 
ghost fluid idea in a variational framework.

Related ideas are used in methods combining fictitious domains and variational formulations [49,7], dubbed virtual nodes 
approaches. Some of these approaches can be considered similar to XFEM methods [30,60,18], while others are different and 
offer advantages when considering under-resolved, possibly non-smooth, interfaces [49,59,56]. This philosophy has been 
used in [34], which introduces a virtual node algorithm for solving Elliptic problems on irregular geometries with jump 
conditions as well as Dirichlet or Neumann boundary conditions imposed on �. The solutions are second-order accurate 
in the L∞ norm and the approach provides a unifying treatment for Dirichlet, Neumann and jump boundary conditions; 
however sacrificing simplicity.

Rather recently, Cisternino and Weynans [13] introduced a second-order accurate method that uses additional degrees of 
freedom on the domain’s boundary and use them to discretize the Poisson operator with jump conditions in a dimension-
by-dimension framework. The authors also present how to carefully approximate the gradients. The method produces 
second-order accurate solutions and a nonsymmetric linear system in part because of the need to change the size of the 
stencil for nodes adjacent to the domain’s boundary.

We introduce a capturing computational approach, the Voronoi Interface Method, that produces second-order accurate 
solutions in the L∞ norm. This approach is based on building a Voronoi diagram local to the interface, which enables the 
direct discretization of the jump conditions in the normal direction. The linear system is symmetric positive definite and 
the jump conditions only influence the right-hand-side. The construction of the local Voronoi mesh is a straightforward 
and parallelizable process and can be built with existing libraries that are freely available. In the present work, we use the 
excellent Voro++ library in three spatial dimensions [57]. This method is different from body-fitted methods in that it relies 
on the post-processing of an existing background mesh, thus avoiding the standard difficulties associated with body-fitted 
approaches. We note that previous works have developed solvers for the Poisson equation on Voronoi diagrams (see [63,61]
and the references therein); however discontinuities across an irregular interface were not considered.

2. The geometrical tools

2.1. The level-set method

The level-set method [52] is a powerful way of representing irregular interfaces as the zero contour of a continuous 
function. This representation is convenient in that it can be applied to the case of moving boundaries that can change their 
topology. It also provides a framework that lends itself to design sharp discretizations.

We use the level-set set framework to capture the irregular interface on which the discontinuities are enforced. We 
define a level-set function φ on the domain � such that the irregular interface � is described by � = {x ∈R

n ∈ � | φ(x) = 0}
and φ is negative on one side of the interface and positive on the other side, as pictured in Fig. 1. Even though infinitely 
many functions satisfy this criteria, it is convenient to work with a signed distance function to the irregular interface, i.e. a 
function that is negative on one side of the interface, positive on the other side and such that its magnitude at every point 
is the distance from the point to the interface. Constructing a signed distance function from an arbitrary function can be 
done for example by following the procedure explained in [44]. The normal to the interface is then obtained as

n = ∇φ

‖∇φ‖ ,

and the curvature as

κ = ∇ · n.

Note that if the level-set function is a signed distance function, ‖∇φ‖ = 1, and the projection onto � of any given point x
is easily computed as:

x� = x − φ(x)∇φ(x). (2)

2.2. Voronoi diagrams

The solver we present is based on Voronoi diagrams, which can be generated locally with existing procedures and freely 
available libraries. In this work, we use the excellent Voro++ library [57]. For the sake of clarity, we introduce the Voronoi 
diagram: given a set of points, which we call seeds, the Voronoi cell of a given seed consists of all the points of the domain 
that are closer to that seed than to any other seed. Hence, the collection of all the Voronoi cells of a set of seeds is a 
tessellation of the domain, i.e. a tiling that fills the domain and does not contain any overlaps.

Given a computational mesh, which we consider to be uniform in this section for clarity, we propose to modify the mesh 
so that the irregular interface coincides with the edges of the new mesh and the degrees of freedom close to the interface 
are all located at the same distance from the interface.



Fig. 2. Illustration of the procedure for generating a Voronoi diagram based computational mesh. The left figure presents the original uniform mesh and the
right figure shows the final computational mesh. The purple square degrees of freedom have been removed and the orange dots degrees of freedom have
been added close to the interface �.

Fig. 3. Example of a Voronoi mesh where a degree of freedom is connected to more than one other degree of freedom located on the other side of the
irregular interface. The smoothing procedure is illustrated on the right.

The procedure is illustrated in Fig. 2. Starting from a uniform grid, we find the projection of the degrees of freedom 
whose control volume is crossed by the irregular interface onto the interface using (2), and we remove those degrees of 
freedom from the original list of unknowns. If a projected point is within diag/5 of a previously computed projected 
point, where diag is the length of the diagonal of the smallest grid cell, we skip this point. Otherwise, we add two new 
degrees of freedom located at a distance d� of the interface in the normal direction on either side of the interface. We 
repeat this procedure for all projected points. The new set of degrees of freedom is therefore made up of the original 
degrees of freedom whose control volume is not crossed by the interface and of the new degrees of freedom added next 
to the interface. This constitutes the set of seeds for the Voronoi diagram computational mesh on which we perform the 
computations. Each Voronoi cell can then be generated independently based on the local neighborhood of each degree of 
freedom, making the generation of the Voronoi mesh embarrassingly parallel.

Note that all the new degrees of freedom are placed at the same distance d� from the interface. This is a free parameter 
of our method, and experimenting with various reasonable values shows little impact on the numerical results. We choose 
d� = diag/5. This simple procedure will be shown in Sections 4.1 and 4.2 to be sufficient to construct second-order 
accurate solutions in the L∞ norm.

2.3. Smoothing the mesh

The algorithm described in the previous section can lead to undesirable geometrical configurations in the case when the 
interface is not sufficiently resolved. Fig. 3 presents one such configuration. The control volumes of some of the degrees of 
freedom are connected by a face that is not capturing properly the interface.

It is possible to remediate this issue by modifying the Voronoi partition in a post-processing step. The control volume 
of any degree of freedom that has been added next to the interface should be connected to exactly one control volume 
associated to a degree of freedom on the other side of the irregular interface. Consequently, if more than one neighbor is 
found across the interface, we disconnect the undesired ones by removing the connecting edge as shown in Fig. 3. The edge 
and its two associated vertices are then replaced by a single vertex located in the middle of the removed edge. The control 
volume of all the degrees of freedom of the resulting mesh are connected to at most one control volume on the other side 
of the interface and the interface is captured properly.



Fig. 4. Nomenclature for the finite volume discretization for the degree of freedom i. For each neighboring degree of freedom j, we call dij the distance
between i and j, si j the length of the edge (or surface of the polygon in three spatial dimensions) connecting i and j, and uij the value of u at the middle
of the segment [i, j]. Note that by construction uij can be considered to be exactly on the irregular interface �, in which case we define u+

i j and u−
i j .

However, this procedure alters the mesh which is no longer a Voronoi diagram, and the edge between two degrees 
of freedom is not guaranteed to be orthogonal to the line connecting the two degrees of freedom. The impact of this 
post-processing algorithm is analyzed in Sections 4.1 and 4.2 and does not seem to improve the method, we therefore 
recommend not using it.

2.4. Interpolating back to the original mesh

In general, if solving a diffusion equation with discontinuities is part of a larger solver, it is necessary to interpolate the 
solution from the Voronoi mesh back to the original mesh. This is an easy task given some basic bookkeeping information 
linking the original degrees of freedom to the ones generated for the Voronoi mesh. With this information, the solution 
on the Voronoi mesh can be accessed for the same cost than accessing the data on the original mesh. The algorithm to 
interpolate the solution at a given point (x, y) from the Voronoi mesh is then as follows:

1. locate the cell of the original mesh containing (x, y),
2. using the bookkeeping information, identify the Voronoi degree of freedom v(x, y) closest to (x, y),
3. find the two neighbors of v(x, y) closest to (x, y) and on the same side of the interface,
4. compute the multilinear interpolation of the solution using those three degrees of freedom and evaluate it at (x, y).

This simple procedure produces a second-order interpolation at any given point (x, y).

3. Solving a Poisson equation on Voronoi diagrams

We discretize equation (1) with a finite volume approach on the Voronoi diagram introduced in Section 2.2. We use the
notations from Fig. 4. We consider the degree of freedom i with the set of Voronoi neighbors { j}. Applying a finite volume 
approach to the problem at i, we can write∫

C

∇ · (β∇u) dV =
∫
∂C

(β∇u) · nC dl ≈
∑

j

si jβi
ui j − ui

di j/2
,

where nC is the outer normal to the face of C connecting i and j, si j is the length of that face (or area of the surface in 
three spatial dimensions) and dij is the distance between the degrees of freedom i and j. For the case when i and j are on 
either side of the interface with φi > 0, where φi is the value of the level-set function at the degree of freedom i, we can 
match the flux at the irregular interface as follows,

si jβi

u+
i j − ui

di j/2
= si jβ j

u j − u−
i j

di j/2
− si j

[
β∇u · n�

]
.

We also know that u+
i j = u−

i j + [u]. Injecting this into the previous expression gives

si jβi

u+
i j − ui

di j/2
= si jβ j

u j − u+
i j + [u]

dij/2
− si j

[
β∇u · n�

]
⇔ u+

i j (βi + β j) = β ju j + βiui + β j[u] − dij

2

[
β∇u · n�

]
⇔ u+

i j = 1

β + β

(
β ju j + βiui + β j[u] − dij

2

[
β∇u · n�

])
.

i j



In the case when i and j are on the same side of the interface, the derivation is the same but the contributions from the 
discontinuities vanish. The contribution from the interaction between the degrees of freedom i and j, in the case when 
φi > 0, to the finite volume discretization of (1) can then be written

βi si j

u+
i j − ui

di j/2
= 2βi

βi + β j

si j

di j

(
β ju j + βiui − (βi + β j)ui + β j[u] − dij

2

[
β∇u · n�

])

= 2βiβ j

βi + β j
si j

u j − ui

di j
− 2βiβ j

βi + β j

si j

di j

(
−[u] + dij

2β j

[
β∇u · n�

])

= β̃i j si j
u j − ui

di j
− β̃i j

si j

di j

(
−[u] + dij

2β j

[
β∇u · n�

])
,

where β̃i j is the harmonic mean between βi and β j , i.e.

β̃i j = |φi| + |φ j|
|φi|/βi + |φ j|/β j

= 2βiβ j

βi + β j
.

The contribution of the interaction between the degrees of freedom i and j to the linear system is therefore

β̃i j si j
u j − ui

di j
,

while the contribution to the right-hand side is

β̃i j
si j

di j

(
−[u] + dij

2β j

[
β∇u · n�

])
.

Note that we made use of the fact that φ is a distance function and uij is midway between i and j to simplify the 
expression. Similarly, we can derive the contribution of the interaction between i and j for the case when φi < 0 and obtain 
the general expression for the interaction between any degrees of freedom i and j

β̃i j si j
u j − ui

di j
+ Vol(C) · ki · ui = β̃i j

si j

di j

(
−sign(φi)[u] + dij

2β j

[
β∇u · n�

]) + Vol(C) · f i,

where Vol(C) is the volume of the Voronoi cell associated to the degree of freedom i and ki and f i are the respective 
values of k and f at the degree of freedom i. This discretization is entirely implicit and leads to a symmetric positive 
definite matrix. The discontinuities contribute only to the right-hand side of the linear system. Note that this formulation 
is identical to the Ghost Fluid Method of [41] in the case where the irregular interface is orthogonal to the flux between 
the two degrees of freedom and located midway. In fact, the Voronoi Interface Method can be interpreted as a Ghost 
Fluid Method where the flux between two degrees of freedom is guaranteed to be orthogonal to the face connecting their 
respective control volumes. We solve the linear system with the Conjugate Gradient iterative solver provided by the Petsc 
libraries [5,6] and preconditioned with the Hypre multigrid [20]. We enforce Dirichlet boundary conditions on ∂�.

4. Numerical validation on uniform meshes

In this section, we validate the addition of the degrees of freedom along the irregular interface and analyze the conver-
gence of our method on various examples. In order to demonstrate that our solver captures the discontinuities properly, all 
the results in this section are presented on meshes that are uniform away from the interface. Doing so, we make sure that 
the error on the interface dominates the overall error. Since the degrees of freedom are the seeds of the Voronoi cells, it 
is convenient to compute the gradient of the solution at every point located in the middle of two degrees of freedom, i.e. 
∇uij · ni j = (u j − ui)/dij where ni j is the normal to the edge of the Voronoi cell connecting the degrees of freedom i and j. 
The errors presented are normalized.

4.1. Validation of the construction of the Voronoi diagrams close to the interface

In this first example, we are interested in the influence of the quality of the mesh close to the interface. We consider 
three different possibilities, represented in Fig. 5 for a circular irregular interface described by φ(x, y) = −√

x2 + y2 + r0, 
with r0 = 0.5, in a domain � = [−1, 1]2.

For the first case, we place the new degrees of freedom at regular intervals on the irregular interface, making use of 
the explicit parametric expression available for a circle. We choose to place N = 1.5	 2πr0

min(xmin,ymin)

 new degrees of freedom 

on either side of the interface, at a distance diag/5 from the interface with diag =
√

x2
min + y2

min . For the second case, 
we place the new degrees of freedom according to the procedure described in Section 2.2, at a distance diag from the 
5



Fig. 5. Visualization of the three different meshes on a resolution 24 × 24 for Section 4.1.

Fig. 6. Left: representation of the solution for Example 4.1. Right: visualization of the localization of the error on a non-smoothed mesh (case 2) of resolution
27 × 27.

Table 1
Convergence of the error on the solution in the L∞ norm for Example 4.1. The first case corresponds to the degrees of freedom placed along the interface 
using the explicit parametrization, the second case corresponds to the mesh obtained following the method described in Section 2.2, and the third case is
the smoothed version of case 2.

Resolution Explicit Non-smoothed Smoothed

Solution Order Solution Order Solution Order

23 3.66 · 10−3 – 1.27 · 10−2 – 1.20 · 10−2 –
24 1.79 · 10−3 1.03 2.34 · 10−3 2.44 2.20 · 10−3 2.45
25 5.77 · 10−4 1.63 6.17 · 10−4 1.92 6.02 · 10−4 1.87
26 1.56 · 10−4 1.89 1.62 · 10−4 1.93 1.61 · 10−4 1.91
27 4.32 · 10−5 1.86 4.45 · 10−5 1.87 4.23 · 10−5 1.86
28 1.13 · 10−5 1.94 1.14 · 10−5 1.97 1.14 · 10−5 1.96
29 2.83 · 10−6 1.99 2.96 · 10−6 1.95 2.95 · 10−6 1.94
210 7.19 · 10−7 1.98 7.46 · 10−7 1.99 7.45 · 10−7 1.98

interface. Finally, for the third case, we start from the partition obtained with the second case and modify it according to 
the procedure described in Section 2.3 to obtain a smoothed mesh.

We monitor the convergence of our method on these three meshes for the following solution taken from [64],

u(x, y) =
{

1 + log(2
√

x2 + y2) if φ(x, y) < 0,

1 if φ(x, y) > 0,

and β(x, y) = 1. Note that for this case we have [u] = 0 and [∇u · n] = 2, with continuous β and a discontinuity in the flux 
across the interface. A representation of the solution is given in Fig. 6 together with a visualization of the localization of the 
error. We report the convergence of the solver on this example for the three different meshes in Tables 1 and 2. We observe 
second-order convergence for the solution and first-order convergence for the gradient of the solution, and very similar 
errors for all three meshes. We conclude that smoothing the mesh obtained with the procedure explained in Section 2.3
does not seem to improve the accuracy of the solver.

4.2. Influence of the smoothing of the mesh

We further consider the influence of the smoothing procedure described in Section 2.3. This time, we consider an inter-
face described by φ(x, y) = −√

x2 + y2 + r0 + r1 cos(5θ), with r0 = 0.5, r1 = 0.15 and θ the angle between (x, y) and (1, 0), 



Table 2
Convergence of the error on the gradient of the solution in the L∞ norm for Example 4.1. The first case corresponds to the degrees of freedom placed 
along the interface using the explicit parametrization, the second case corresponds to the mesh obtained following the method described in Section 2.2,
and the third case corresponds to its smoothed version.

Resolution Explicit Non-smoothed Smoothed

Gradient Order Gradient Order Gradient Order

23 4.60 · 10−2 – 4.71 · 10−2 – 4.24 · 10−2 –
24 3.28 · 10−2 0.49 2.40 · 10−2 0.98 2.36 · 10−2 0.84
25 1.79 · 10−2 0.87 1.23 · 10−2 0.96 1.23 · 10−2 0.94
26 9.56 · 10−3 0.91 8.34 · 10−3 0.56 8.35 · 10−3 0.56
27 5.15 · 10−3 0.89 3.94 · 10−3 1.08 3.94 · 10−3 1.08
28 2.56 · 10−3 1.01 2.12 · 10−3 0.90 2.12 · 10−3 0.90
29 1.30 · 10−3 0.98 1.12 · 10−3 0.92 1.12 · 10−3 0.92
210 6.61 · 10−4 0.98 5.61 · 10−4 1.00 5.61 · 10−4 1.00

Fig. 7. Visualization of the non-smoothed (left) and smoothed (right) meshes on a resolution 24 × 24 for Section 4.2.

Fig. 8. Left: representation of the solution for Example 4.2. Right: visualization of the error on a non-smoothed mesh and for a resolution 27 × 27.

in a domain � = [−1, 1]2. Since we do not have an explicit parametrization of the interface that would enable to place the 
degrees of freedom at regular intervals, we only consider the mesh generated form the procedure described in Section 2.2
and its smoothed version obtained by applying the procedure described in Section 2.3. Fig. 7 gives a visualization of the 
meshes obtained.

For this section, we choose to work with the exact solution taken from [9]

u(x, y) =
{

0 if φ(x, y) < 0,

ex cos(y) if φ(x, y) > 0,

with β− = β+ = 1. The solution is represented in Fig. 8. We monitor the convergence of the solver in Table 3 and observe 
second-order convergence for the solution and first-order convergence for the gradient of the solution in both cases. Given 
that the smoothing algorithm requires additional processing and does not seem to improve the accuracy (in fact, we notice 
for this particular example that the non-smoothed results are more accurate), we choose to work with the non-smoothed 
mesh constructed as described in Section 2.2 for the remaining of this article.



Table 3
Convergence of the error on the solution and its gradient in the L∞ norm for Example 4.2.

Resolution Non-smoothed Smoothed

Solution Order Gradient Order Solution Order Gradient Order

23 2.39 · 10−3 – 3.01 · 10−2 – 2.00 · 10−2 – 1.06 · 10−1 –
24 1.06 · 10−3 1.17 5.08 · 10−1 −4.07 1.44 · 10−2 0.47 5.27 · 10−1 −2.32
25 3.43 · 10−4 1.63 8.42 · 10−3 5.91 4.21 · 10−3 1.78 2.84 · 10−2 4.21
26 6.82 · 10−5 2.33 3.95 · 10−3 1.09 1.62 · 10−3 1.38 1.66 · 10−2 0.78
27 2.79 · 10−5 1.29 2.93 · 10−3 0.43 4.55 · 10−4 1.83 8.03 · 10−3 1.04
28 7.35 · 10−6 1.92 1.40 · 10−3 1.06 1.11 · 10−4 2.03 2.66 · 10−3 1.59
29 1.89 · 10−6 1.96 6.31 · 10−4 1.15 2.76 · 10−5 2.01 9.62 · 10−4 1.47
210 4.75 · 10−7 1.99 3.28 · 10−4 0.94 6.86 · 10−6 2.01 3.34 · 10−4 1.53

Fig. 9. Two examples of solutions for Example 4.3. Left: β− = 1 and β+ = 10. Right: β− = 10 and β+ = 1.

4.3. Example with a discontinuity in the diffusion coefficient

We now consider the exact solution

u(x, y) =
⎧⎨
⎩

x(ρ+1)−x(ρ−1)r2
0/r2

ρ+1+r2
0(ρ−1)

if φ(x, y) < 0,

2x
ρ+1+r2

0(ρ−1)
if φ(x, y) > 0,

with r0 = .5, r = √
x2 + y2, φ(x, y) = −r2 + r2

0 and ρ = β+/β− in the domain � = [−1, 1]2. This corresponds to Example 7.3 
from [64]. In this case, u is continuous, but the diffusion coefficient β experiences a large jump across the irregular inter-
face �. We also have [∇u · n] �= 0. A visualization of the solution is given in Fig. 9. The gradient of the solution is given 
by

∇u(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
ρ+1+r2

0(ρ−1)

(
ρ + 1 − r2

0(ρ − 1)
y2−x2

(x2+y2)2

r2
0(ρ − 1)

2xy
(x2+y2)2

)
if φ(x, y) < 0,

1
ρ+1+r2

0(ρ−1)

(
2
0

)
if φ(x, y) > 0.

The errors on the solution and its gradient are monitored in Table 4 which shows second-order convergence on the 
solution and first-order convergence on its gradient. Fig. 10 provides a visualization of the localization of the error. We also 
monitor the evolution of the 1-norm condition number of the matrix of the linear system as the mesh is refined in and 
present the results in Table 5. The condition number depends on the mesh resolution and on the diffusion coefficient. When 
the diffusion coefficient is large, the condition number gets large rapidly. However, the discontinuities at the interface are 
entirely captured by the right hand side and therefore do not affect the conditioning of the matrix.

4.4. A complete example

This example is meant to test our method to its full capacity, with discontinuities in all four quantities (the solution, its 
gradient, the diffusion coefficient and the flux across the interface), and with a complex irregular interface. We choose the 
exact solution

u(x, y) =
{

ex if φ(x, y) < 0,

cos(x) sin(y) if φ(x, y) > 0,



Table 4
Convergence on the solution and its gradient for Example 4.3, for two different combinations of diffusion coefficients.

Resolution β− = 1, β+ = 105 β− = 105, β+ = 1

Solution Order Gradient Order Solution Order Gradient Order

23 1.10 · 10−2 – 3.84 · 10−2 – 1.74 · 10−2 – 1.14 · 10−1 –
24 3.42 · 10−3 1.68 1.93 · 10−2 1.00 4.70 · 10−3 1.89 5.65 · 10−2 1.01
25 1.39 · 10−3 1.30 1.17 · 10−2 0.72 1.26 · 10−3 1.90 2.54 · 10−2 1.15
26 3.82 · 10−4 1.86 6.19 · 10−3 0.92 3.39 · 10−4 1.90 1.77 · 10−2 0.53
27 1.34 · 10−4 1.51 3.59 · 10−3 0.79 1.05 · 10−4 1.69 8.06 · 10−3 1.13
28 3.43 · 10−5 1.97 1.84 · 10−3 0.96 2.67 · 10−5 1.98 4.87 · 10−3 0.73
29 9.76 · 10−6 1.81 1.05 · 10−3 0.82 7.55 · 10−6 1.82 2.40 · 10−3 1.02
210 2.58 · 10−6 1.92 5.41 · 10−4 0.95 1.96 · 10−6 1.95 1.25 · 10−3 0.94

Table 5
Evolution of the condition number as the mesh is refined for Example 4.3. The condition number depends solely on the diffusion coefficient β and on the
resolution on the mesh since the discontinuities are captured by the right hand side of the linear system.

Resolution β− = 1, β+ = 105 β− = 105, β+ = 1 β− = β+ = 105 β− = β+ = 1

23 2.38 · 106 2.02 · 106 5.59 · 106 1.72 · 102

24 1.17 · 107 5.09 · 106 1.23 · 107 8.11 · 102

25 4.86 · 107 1.57 · 107 2.69 · 107 3.66 · 103

26 2.09 · 108 7.18 · 107 5.72 · 107 1.58 · 104

27 8.52 · 108 3.14 · 108 1.19 · 108 6.59 · 104

28 3.86 · 109 1.32 · 109 2.42 · 108 2.70 · 105

29 1.48 · 1010 5.43 · 109 4.89 · 108 1.09 · 106

210 6.59 · 1010 2.20 · 1010 9.84 · 108 4.39 · 106

Fig. 10. Visualization of the localization of the error in the L∞ norm on a grid of resolution 27 × 27 for Example 4.3. Left: β− = 1 and β+ = 105. Right: 
β− = 105 and β+ = 1.

in a domain � = [−1, 1]2 with φ(x, y) = −√
x2 + y2 + r0 + r1 cos(nθ), where r0 = 0.5, r1 = 0.15 and n = 5, and we define 

the diffusion coefficient as

β(x, y) =
{

y2 ln(x + 2) + 4 if φ(x, y) < 0,

e−y if φ(x, y) > 0.

Note that with our method, each degree of freedom has a control volume that is entirely on one side of the irregular 
interface, and therefore we can easily define a forcing term for any analytical solution. The exact solution and the diffusion 
coefficient are represented in Fig. 11. The convergence is summarized in Table 6 and once again indicates second-order 
convergence for the solution and first-order convergence for the gradient of the solution. A visualization of the localization 
of the error on the solution is given in Fig. 12.

Fig. 13 presents the percentage of the runtime consumed by the four principal components of the algorithm, i.e con-
structing the Voronoi mesh, assembling the matrix, computing the right hand side and solving the linear system. For coarse 
grids, the bottleneck of the computation is the construction of the Voronoi mesh, but for high resolution we observe that 
inverting the linear system is the costliest. These results correspond to our implementation in the absence of parallelization. 
The finest resolution of 1024 × 1024 takes 18 s on a single core of an Intel i7-2600 3.40 GHz cpu.

4.5. Adding subdomains

We now propose an example with multiple subdomains. Note that the method we propose leads naturally to a linear 
system with N rows, the number of degrees of freedom. This number increases slightly as the number of subdomains 
increases and additional degrees of freedom are added next to the irregular interfaces.



Fig. 11. Left: visualization of the solution u for Example 4.4. Right: visualization of the diffusion coefficient β .

Fig. 12. Visualization of the localization of the error for Example 4.4 on a resolution of 27 × 27.

Table 6
Convergence on the solution and its gradient for Example 4.4.

Resolution Solution Order Gradient Order

23 3.97 · 10−3 – 4.37 · 10−1 –
24 9.98 · 10−4 1.99 5.01 · 10−1 −0.20
25 2.90 · 10−4 1.78 3.67 · 10−3 7.09
26 8.84 · 10−5 1.71 1.73 · 10−3 1.09
27 2.06 · 10−5 2.10 9.84 · 10−4 0.81
28 5.22 · 10−6 1.98 4.77 · 10−4 1.05
29 1.33 · 10−6 1.97 2.45 · 10−4 0.96
210 3.39 · 10−7 1.97 1.23 · 10−4 0.99

For simplicity, we choose to work with non-intersecting irregular interfaces, but our method is suited for any general 
configuration. We divide the computational domain � = [−1, 1]2 in 4 subdomains represented in Fig. 14 and separated by 
the three contours defined by

�0 =
{
(x, y), φ0(x, y) =

√
x2 + y2 − 0.2

}
,

�1 =
{
(x, y), φ1(x, y) =

√
x2 + y2 − 0.5 + 0.1 cos(5θ)

}
,

�2 =
{
(x, y), φ2(x, y) =

√
x2 + y2 − 0.8

}
,

where θ is the angle between (x, y) and the x-axis. We choose the exact solution

u(x, y) =

⎧⎪⎨
⎪⎩

ex + 1.3 if (x, y) ∈ �0,

cos(y) + 1.8 if (x, y) ∈ �1,

sin(x) + 0.5 if (x, y) ∈ �2,
3
−x + ln(y + 2) if (x, y) ∈ � ,



Fig. 13. Representation of the computation time consumed by the four main sections of our implementation, constructing the mesh, assembling the matrix,
computing the right hand side and solving the linear system for Example 4.4. For coarse grids, building the Voronoi partition takes the most time, but as
the resolution of the grid increases, the inversion of the linear system becomes the costliest.

Fig. 14. Illustration of the division of the computational domain into four subdomains, together with the Voronoi mesh generated, for Example 4.5.

and the diffusion coefficient

β(x, y) =

⎧⎪⎨
⎪⎩

y2 + 1 if (x, y) ∈ �0,

ex if (x, y) ∈ �1,

y + 1 if (x, y) ∈ �2,

x2 + 1 if (x, y) ∈ �3.

The solution and the diffusion coefficient are represented in Fig. 15.
The convergence of the solver is presented in Table 7. We observe second order convergence for the solution and first 

order convergence for its gradient.

4.6. Application to three spatial dimensions

We now present an example in three spatial dimensions and with a spherical interface of radius 0.5 in a domain 
� = [−1, 1]3. We work with the exact solution

u(x, y, z) =
{

ez if φ(x, y, z) < 0,

cos(x) sin(y) if φ(x, y, z) > 0,

and the diffusion coefficient

β(x, y, z) =
{

y2 ln(x + 2) + 4 if φ(x, y, z) < 0,

e−z if φ(x, y, z) > 0.

The geometry, together with a slice of the solution and of the diffusion coefficient, is represented in Fig. 16. Table 8 presents 
the numerical results and indicates second-order convergence for the solution and first-order convergence for its gradient.



Fig. 15. Visualization of the solution (left) and the diffusion coefficient (right) for Example 4.5.

Table 7
Convergence on the solution and its gradient in the L∞ norm for Example 4.5.

Resolution Solution Order Gradient Order

24 1.00 · 10−3 – 3.33 · 10−3 –
25 2.33 · 10−4 2.11 1.01 · 10−3 1.72
26 6.23 · 10−5 1.90 3.46 · 10−4 1.54
27 1.56 · 10−5 2.00 1.59 · 10−4 1.12
28 4.00 · 10−6 1.96 6.82 · 10−5 1.22
29 1.01 · 10−6 1.99 4.00 · 10−5 0.77
210 2.55 · 10−7 1.99 2.24 · 10−5 0.84

Fig. 16. Left: representation of the irregular interface and the associated Voronoi mesh on a resolution 24 × 24 × 24 for Example 4.6. Center: visualization
of the solution on the slice x = 0. Right: visualization of the diffusion coefficient on the slice x = 0. Note that the surfaces have been translated to facilitate
the visualization.

Table 8
Convergence on the solution and its gradient in the L∞ norm on a sphere (Example 4.6).

Resolution Solution Order Gradient Order

23 3.61 · 10−3 – 1.13 · 10−2 –
24 1.21 · 10−3 1.58 7.69 · 10−3 0.56
25 3.04 · 10−4 1.99 3.83 · 10−3 1.01
26 7.74 · 10−5 1.98 2.43 · 10−3 0.66
27 1.97 · 10−5 1.98 1.24 · 10−3 0.98



Fig. 17. Representation of the irregular interface and the associated Voronoi mesh on a resolution 24 × 24 × 24 for Example 4.7.

4.7. A complex geometry in three spatial dimensions

For a more complicated geometry, we select the intricate contour borrowed from [34] and parametrized by

�trefoil =
{

R

3

(
(2 + cos(3t)) cos(2t)
(2 + cos(3t)) sin(2t)

sin(3t)

)
, t ∈ [0,2π ]

}
,

where R = 0.7 is the major radius of the trefoil. We then define

�+ =
{

x ∈R, min
y∈�trefoil

‖x − y‖2 < r

}
,

with r = 0.15 the minor radius of the trefoil. The contour is represented in Fig. 17.
For this example, we use the exact solution

u(x, y, z) =
{

yz sin(x) if φ(x, y, z) < 0,

xy2 + z3 if φ(x, y, z) > 0,

and the diffusion coefficient

β(x, y, z) =
{

y2 + 1 if φ(x, y, z) < 0,

ex+z if φ(x, y, z) > 0.

Slices of the solution and of the diffusion coefficient are displayed in Fig. 18. The convergence of our method on this 
complex irregular interface is reported in Table 9 and once more indicates second order convergence for the solution and 
first order convergence for its gradient.

4.8. The screened Poisson equation

This example and the following one add a non-zero k to the previous Example 4.7. In this example, we choose k < 0 as

k(x, y, z) =
{−ex if φ(x, y, z) < 0,

− cos(y) sin(z) − 2 if φ(x, y, z) > 0.

The convergence results are presented in Table 10 and show second order convergence with errors very similar to the ones 
obtained when k = 0.

4.9. The Helmholtz equation case

Our last example on a uniform base mesh is exactly the same than the one from the previous section but for the 
Helmholtz equation case, i.e. k(x, y, z) > 0. We set

k(x, y, z) =
{

e y if φ(x, y, z) < 0,

cos(x) sin(z) + 2 if φ(x, y, z) > 0.

In this case, the linear system obtained is more complicated to solve because the matrix is no longer diagonally dominant, 
meaning that the problem is not convex and iterative solvers such as the Conjugate Gradient used so far are not guaranteed 
to converge. Instead, we solve the linear directly with an LU decomposition. The numerical results are presented in Table 11
and are almost identical to the results from the previous section, illustrating the second order convergence of our method 
for the Helmholtz equation.



Fig. 18. Visualization of the solution (top row) and the diffusion coefficient (bottom row) on three slices for Example 4.7. The slices are taken, from left to
right, at x = 0.3, x = −0.3 and x = −0.5. Note that the surfaces of the diffusion coefficient have been translated to facilitate the visualization.

Table 9
Convergence on the solution and its gradient in the L∞ norm on a complex three-dimensional contour (Example 4.7).

Resolution Solution Order Gradient Order

24 3.89 · 10−3 – 1.44 · 10−1 –
25 1.34 · 10−3 1.54 2.56 · 10−2 2.67
26 3.45 · 10−4 1.96 9.75 · 10−3 1.21
27 8.25 · 10−5 2.07 5.04 · 10−3 0.95

Table 10
Convergence on the solution and its gradient in the L∞ norm on a complex three-dimensional contour for the screened Poisson 
equation (Example 4.8).

Resolution Solution Order Gradient Order

24 3.87 · 10−3 – 1.44 · 10−1 –
25 1.34 · 10−3 1.53 2.25 · 10−2 2.67
26 3.44 · 10−4 1.96 9.74 · 10−3 1.21
27 8.22 · 10−5 2.06 5.04 · 10−3 0.95

Table 11
Convergence on the solution and its gradient in the L∞ norm on a complex three-dimensional contour for the Helmholtz equation 
(Example 4.9).

Resolution Solution Order Gradient Order

24 3.91 · 10−3 – 1.44 · 10−1 –
25 1.35 · 10−3 1.54 2.26 · 10−2 2.67
26 3.46 · 10−4 1.96 9.75 · 10−3 1.21
27 8.27 · 10−5 2.06 5.05 · 10−3 0.95



Fig. 19. Example of a Quadtree grid.

Fig. 20. Left: visualization of the solution for Example 5.2 with α = 10. Higher values of α narrow the peaks. Right: representation of the error interpolated
on the base Quadtree mesh of level 8/10 for α = 50.

5. Extension to adaptive meshes

In the previous section we demonstrated the efficiency of our method based on uniform meshes in both two and three
spatial dimensions. However, it can be applied straightforwardly to any mesh and in this section we propose an implemen-
tation on Quad/Oc-trees.

5.1. Introduction to the Quad/Oc-tree data structure

A Quad/Oc-tree grid refers to a Cartesian grid that uses the Quad/Oc-tree data structure for its storage in two/three 
spatial dimensions. Starting from a root cell corresponding to the entire domain, four (eight in three spatial dimensions) 
children are created if the cell satisfies a given splitting criterion. The process is iterated recursively until the maximum 
allowed level is reached. The root cell has level 0 and the finest cells have the maximum level allowed. We denote a tree 
with coarsest level n and finest level m by level n/m. The process is illustrated in Fig. 19. This data structure provides an
O (ln(n)) access to the data stored at the leaves. We refer the reader to [45] for further details on the Quad/Oc-tree data 
structure and the associated discretization techniques.

Since this article is a proof of concept and we know the exact solution in all the numerical example we propose, we 
make use of this knowledge in the construction of the tree. We will use solutions of the form

u(x) = e−α‖x−x0‖2
2 ,

and any given leaf L of the tree with center coordinates xc is split if ‖x0 − xc‖2 < λ · diag, where diag is the length of 
the diagonal of L and λ controls the spread of the mesh around the peaks of the solution.

5.2. Solution on a Quadtree mesh

For this example, we consider the exact solution, represented in Fig. 20,

u(x, y) =
{

e−50((x+0.7)2+(y−0.7)2) if φ(x, y) < 0,

e−50((x−0.1)2+(y+0.1)2) if φ(x, y) > 0,

with β− = β+ = 1 and on the domain � = [−1, 1]2. We use the same geometry as in Section 4.4, i.e. φ(x, y) = −√
x2 + y2 +

0.5 + 0.15 cos(5θ).



Fig. 21. Left: the initial level 5/7 Quadtree mesh generated for Example 5.2. The irregular interface � is represented in red. Right: the corresponding Voronoi
mesh. Note that the mesh is not uniform along �. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Table 12
Convergence on the solution and its gradient in the L∞ norm on a Quadtree-based Voronoi mesh (Example 5.2).

Resolution Solution Order Gradient Order

5/7 2.56 · 10−3 – 8.89 · 10−3 –
6/8 6.48 · 10−4 1.98 5.14 · 10−3 0.79
7/9 1.69 · 10−4 1.94 2.52 · 10−3 1.03
8/10 4.30 · 10−5 1.97 1.33 · 10−3 0.92
9/11 1.09 · 10−5 1.99 6.84 · 10−4 0.96

Fig. 22. Left: representation of the geometry together with the Voronoi mesh on the initial mesh of resolution 3/5 for Example 5.3. Note that the mesh is
not uniform along �. Right: visualization of the solution on the y = −0.1 slice and after applying three successive refinement operations to the original
mesh.

We start by constructing a mesh of level 5/7 with the criteria described in the previous section and with λ = 8. A visu-
alization of this initial mesh is given in Fig. 21. Note that the mesh is not uniform close to the interface. We then split every 
cell of the mesh to monitor the convergence of the solver. The results are presented in Table 12 and show second-order 
convergence for the solution and first-order convergence for its gradient.

5.3. Solution on an Octree mesh

For this last example, we work with the exact solution

u(x, y, z) =
{

e−50((x+0.7)2+(y−0.7)2+(z−.5)2) if φ(x, y, z) < 0,

e−50((x−0.1)2+(y+0.1)2+(z+.3)2) if φ(x, y, z) > 0,

and on the irregular interface described by

φ(x, y, z) = −
√

x2 + y2 + z2 + r0 + r1 cos(5θ) cos(
2π

r0
z),

with r0 = 0.25 and r1 = r0/3, and rotated around the z-axis, y-axis and x-axis by respectively 0.6 radians, 0.2 radians and 
0.9 radians. We set β− = β+ = 1. The geometry and the Voronoi mesh generated for the initial level 3/5 are represented 



Table 13
Convergence on the solution and its gradient in the L∞ norm on star shaped irregular interface and on an Octree base mesh 
(Example 5.3).

Resolution Solution Order Gradient Order

3/5 6.76 · 10−2 – 6.54 · 10−2 –
4/6 1.47 · 10−2 2.20 1.97 · 10−2 1.73
5/7 3.58 · 10−3 2.04 7.04 · 10−3 1.49
6/8 8.96 · 10−4 2.00 4.24 · 10−3 0.73

in Fig. 22. The convergence is presented in Table 13 and shows second-order convergence for the solution and first-order 
convergence for its gradient.

6. Summary

We have presented a novel fully implicit approach based on Voronoi diagrams for solving an Elliptic equation with
discontinuities in the solution, its gradient, the diffusion coefficient and the flux across an irregular interface. The interface 
was captured through a level-set framework, and the equation was discretized with a finite volumes approach on the 
local Voronoi mesh. The contributions from the discontinuities were included naturally in the right-hand-side of the linear 
system, preserving its positive symmetric definiteness. We demonstrated second-order convergence of the solution and 
first-order convergence of its gradient, in the L∞ norm, in both two and three spatial dimensions and on both uniform 
and adaptive Quad/Oc-tree base meshes. Large ratios in the diffusion coefficients are readily considered. We believe this 
approach could be utilized for numerous physical applications including those mentioned in the introduction.
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