Solving elliptic problems with discontinuities on irregular domains – the Voronoi Interface Method. - Archive ouverte HAL
Article Dans Une Revue Journal of Computational Physics Année : 2015

Solving elliptic problems with discontinuities on irregular domains – the Voronoi Interface Method.

Résumé

We introduce a simple method, dubbed the Voronoi Interface Method, to solve Elliptic problems with discontinuities across the interface of irregular domains. This method produces a linear system that is symmetric positive definite with only its right-hand-side affected by the jump conditions. The solution and the solution's gradients are second-order accurate and first-order accurate, respectively, in the L∞L∞ norm, even in the case of large ratios in the diffusion coefficient. This approach is also applicable to arbitrary meshes. Additional degrees of freedom are placed close to the interface and a Voronoi partition centered at each of these points is used to discretize the equations in a finite volume approach. Both the locations of the additional degrees of freedom and their Voronoi discretizations are straightforward in two and three spatial dimensions.
Fichier principal
Vignette du fichier
guittet_15779.pdf (3.26 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03518817 , version 1 (10-01-2022)

Identifiants

Citer

Arthur Guittet, Mathieu Lepilliez, Sébastien Tanguy, Frédéric Gibou. Solving elliptic problems with discontinuities on irregular domains – the Voronoi Interface Method.. Journal of Computational Physics, 2015, 298, pp.747-765. ⟨10.1016/j.jcp.2015.06.026⟩. ⟨hal-03518817⟩
21 Consultations
47 Téléchargements

Altmetric

Partager

More