
HAL Id: hal-03518569
https://hal.science/hal-03518569

Submitted on 10 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representing Non-Affine Parallel Algorithms by means
of Recursive Polyhedral Equations

Patrice Quinton, Tomofumi Yuki

To cite this version:
Patrice Quinton, Tomofumi Yuki. Representing Non-Affine Parallel Algorithms by means of Recursive
Polyhedral Equations. IMPACT 2021 - International Microsystems, Packaging, Assembly and Circuits
Technology conference, Hipeac 2021, Jan 2021, Budapest, Hungary. pp.1-11. �hal-03518569�

https://hal.science/hal-03518569
https://hal.archives-ouvertes.fr

Representing Non-Affine Parallel Algorithms by
means of Recursive Polyhedral Equations

PatriceQuinton
ENS Rennes

France
patrice.quinton@ens-rennes.fr

Tomofumi Yuki
Inria, Univ Rennes, CNRS, IRISA

France
tomofumi.yuki@inria.fr

Abstract
Polyhedral equations allow parallel program to be ex-
pressed, analyzed, and compiled automatically, but they
cannot express divide-and-conquer approaches. This li-
mitation is basically due to the affine nature of the de-
pendence functions imposed by the model. In this pa-
per, we describe how this limitation can be overcome by
extending a structured polyhedral equational language
to recursive calls of polyhedral programs. Doing so, we
preserve the affine property inside a given call, whereas
the non-affine part is carried by the recursive expres-
sion of subsystem calls. We describe the basic mech-
anisms of this extension, show that the fundamental
results of polyhedral equations hold, in particular, the
schedule of such a system can be found automatically.
We illustrate this approach on several well known algo-
rithms, including the FFT.

Note: this paper is a corrected version of the initial pa-
per that was accepted and presented in the Impact 2021
workshop. The difference between this version and the
initial concern section 5.4 and 5.5 uniquely, and are ex-
plained in Appendix A.

1 Introduction
The polyhedral model is a framework for representing
and transforming computationswith regularity that has
seen many successes in automatic parallelization. The
core of the framework is in the compact representations
of families of parameterized program instances as inte-
ger polyhedra. The rich set of properties provided by
mathematical representations of computations enables
many desirable features for automatic parallelization,
such as composable transformations and exploration of
schedules with ILP.
The powerful representation as polyhedral objects al-

so limits the class of programs to computations that
can be expressed as systems of affine recurrence equa-
tions [18, 22, 26], or loops with static/affine control [8].
Despite many extensions proposed over the last few

Impact 2021, January 18–20, 2021, Virtual event
2021.

decades [2, 3, 11, 12, 21, 25], expanding the applicability
of polyhedral techniques is still a topic of interest.
In this paper, we discuss an extension of the poly-

hedral representation of computations to handle recur-
sive algorithms. Divide-and-conquer algorithms, such
as the Fast Fourier Transform, have been known as ex-
amples of regular, statically controlled, programs that
are not compatible with the polyhedral formalism. The
main difficulty is due to non-affine control in recursion—
a typical divide-and-conquer takes 𝑙𝑜𝑔𝑁 recursive steps.
We show that a structured system of affine recur-

rences is able to represent such recursive algorithms
while preserving the important properties in polyhe-
dral representation. The main challenge is in the sche-
duling of such structured systems that necessitates the
handling of some non-affine terms when computing a
complete schedule. We believe that being able to repre-
sent such programs within the polyhedral framework
is an important step towards exploring algebraic trans-
formations involving recursions, similar to decomposi-
tions of linear transforms explored with SPIRAL [10].
In the following, we first illustrate the intuitions of

our ideas in Section 2. Then, we introduce the Alpha
language and the extensions we use to represent recur-
sive polyhedral programs in Sections 3 and 4. We pre-
sent a preliminary scheduling algorithm for recursive
programs in Section 5 and discuss some of the remain-
ing challenges in Section 6. Finally, we discuss related
work in Section 7 and then conclude in Section 8.

2 Intuition with an Example
Fig. 1 displays an Alpha program to compute the min-
imum value of 𝑁 numbers. A detailed presentation of
Alpha and its syntax is postponed to Section 3, but this
program is simple enough to be understood without de-
tailed explanations.
The recurrence equation that does the computation

traverses the 𝑁 numbers and updates a variable𝑋 with
the current minimum value.

This program is obviously sequential and takes 𝑁
time units to execute. Actually, if we let 𝑡𝑋 = 𝑎𝑖 + 𝑏
denote the schedule of 𝑋 , then it is easy to discover

1

Impact 2021, January 18–20, 2021, Virtual event Patrice Quinton and Tomofumi Yuki

affine minValue[𝑁] → {: 1 ≤ 𝑁 }
in

array : {[𝑖] : 1 ≤ 𝑖 ≤ 𝑁 };
out

minimum : {};
local

X : {[𝑖] : 0 ≤ 𝑖 ≤ 𝑁 };
let

X[𝑖] = case {
{: 𝑖 = 0} : 0[];
{: 0 < 𝑖} : min (X[𝑖 − 1], array[𝑖]);

};
minimum = X[𝑁];

.

(1)

Figure 1. Alpha program to compute the minimum of
𝑁 numbers.

that computing 𝑋 at time 𝑖 allows the recurrence to be
solved. Then, the schedule of the output 𝑡minimum is 𝑁 .

minRec(A[N]) = {

if (N==1) return A[0];

left = minRec(A[0:N/2]);

right = minRec(A[N/2:N]);

return min(left , right);

}

Figure 2. Recursive computation of minimum

Fig. 2 is an informal description of a recursive pro-
gram for computing the minimum. It looks for the mini-
mum value of the left and right halves of an array, and
returns the smallest one of the two results. There are
𝑂 (𝑁) instances of the function minRec over 𝑙𝑜𝑔𝑁 recur-
sive steps to compute the minimum of 𝑁 values. In this
simple example, the only computation performed by an
instance of minRec is a comparison of the two results.
Assuming that this takes unit time, a valid schedule for
the min operation in all instances of this recursive pro-
gram is 𝑙𝑜𝑔𝑁 − 1 (see Fig. 3 for a graphical illustration).

Such a program cannot be expressed in Alpha, and
in general, does not fit in the polyhedral model.The pur-
pose of our work is to show how one can extend the
model to recursive computations, in such a way that
the basic properties of the model still hold. In particu-
lar, we concentrate on how to schedule automatically a
program, as it is the basis for the analysis and synthesis
or parallel implementations.
Scheduling in the polyhedral model consists in find-

ing out an affine function that stamps the time instants
of computation of the variables. The schedule depends

linearly on the size parameter–here the number of ele-
ments 𝑁–of the program.
In the recursive program, we are interested in finding

a schedule that is legal for a collection of instances that
have inter-instance dependences due to recursive calls.
In our recursive program, a constant schedule, 𝑡left =
𝑡right = 0; 𝑡min = 1, is a valid schedule (for an instance)
that does not violate intra-instance dependences. In our
work, we conceptually separate the schedule into two
components, one for intra-instance dependences, and
another for placement of instances in the global time
while respecting inter-instance dependences. The intra-
instance dependences add additional constraints for glo-
bal scheduling, which is calculated by solving recursive
equations leading to the log𝑁 term (for methods to
solve recursive equations, see [5] and [4]).

Being able to find an explicit schedule for such a pro-
gram is interesting for two reasons. The first one is to
provide a complexity measure of a parallel implementa-
tion of the algorithm, which is always interesting. The
second one, less general, is related to the use of an equa-
tional polyhedral language to express calculations, ei-
ther to produce parallel code, or to generate a hardware
architecture. In the case of Alpha, both outcomes are
considered: the alphaZ approach [27] is meant to pro-
duce loop nests amenable to efficient parallel implemen-
tation, whereas the MMAlpha approach [19] rewrites
the program in order to ultimately obtain an equivalent
program that can be translated into a hardware descrip-
tion language such as vhdl.

3 Background: Alpha
In this section we describe the Alpha language used
in this paper, which is a slight syntactic variant of the
original language [16]. In addition, an extension to the
language to represent while loops and indirect accesses,
called alphabets [21], may be used in conjunctionwith
our extensions proposed in this paper.
We use Alpha as a representation of the complete

computation and not just the dependences; it may be
viewed as glorified recurrence equations with a bit of
extra information. The main ideas in this paper do not
require the program to be represented in Alpha; re-
duced dependence graphs could be used, provided some
metadata regarding the structure of the program (e.g.,
subsystem calls) are kept.

2

Recursive Polyhedral Equations Impact 2021, January 18–20, 2021, Virtual event

minRec N=8
min

minRec N=4
min

minRec N=4
min

minRec N=2
min

minRec N=2
min

minRec N=2
min

minRec N=2
min

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7]

t=0

t=1

t=2

Figure 3.Call structure of recursive min when𝑁 = 8.The min operations performed at each instance of the recursive
calls may be given a time stamp as a function of the size parameter, 𝑁 : 𝑙𝑜𝑔𝑁 − 1.

3.1 Affine Systems
An Alpha program consists of one or more affine sys-
tems that have the following structure:

affine < name >< parameters >
in

(< name > : < domain >)∗
out

(< name > : < domain >)+
let

(< name > = < expr >;)+
.

Each system corresponds to a System of Affine Re-
currence Equations (SARE), which consists of the two
main components: (i) interface definition, i.e., the do-
main of inputs and outputs, and (ii) the expressions that
define the value of outputs in a purely functional man-
ner. The parameters of a system are given as a parame-
ter domain, which is common for all domains within a
system (Parameters represent size parameters of algo-
rithms, such as the sizes 𝑁 of an array.).

For the sake of simplicity, scalar types of the vari-
ables are not described here, and we assume that they
are “numbers” with the associated domains being the
primary type information. In addition to inputs and out-
puts, local variables for storing intermediate resultsmay
be declared through the keyword local.

3.2 Alpha Expressions
The core of an Alpha program is the set of equations
that follow the let keyword. Such equations have the
form X = e where e is an expression which represents
a function from the points of the domain of X to some
value set–here, “numbers.” In general, we would write
such an equation

X[i,j,…] = e[i,j, …] ,

where indexes i and j would represents points in the
domain of X. Parameters are considered asmute indexes

of the variables, and are supposed to belong to a poly-
hedral domain denoted D𝑃 .

In fact, Alpha expressions are built using a few func-
tional operators combining integral functions, as des-
cribed in Table 1. To each operator corresponds a do-
main transformation, which assigns a polyhedral do-
main to the expression from the domains of its con-
stituents. These domains denote where the expression
is defined and could be computed.
The semantics of each expression when evaluated at

a point 𝑧 in its domain is defined as follows:

• A constant expression evaluates to the associated
constant.

• A variable expression is its value at 𝑧, either pro-
vided as input or computed through its definition
(an equation).

• An operator expression is the result of applying
a strict point-wise operator, op, on the values of
its arguments at 𝑧.

• A case expression is the value at 𝑧 of the branch
whose domain contains 𝑧. Branches of a case ex-
pression are defined over disjoint domains to en-
sure that the case expression is uniquely defined.

• An if expression if 𝐸𝐶 then 𝐸1 else 𝐸2 is the
value of 𝐸1 at 𝑧 if the value of 𝐸𝐶 at 𝑧 is true, and
the value of 𝐸2 at 𝑧 otherwise. 𝐸𝐶 must evaluate
to a boolean value. Note that the else clause is
required. In fact, an if-then-else expression in Al-
pha is just a special (strict) point-wise operator.

• A restriction of 𝐸 is the value of 𝐸 at 𝑧.
• A dependence expression 𝑓@𝐸 is the value of 𝐸
at 𝑓 (𝑧).The dependence expression in our variant
of Alpha uses function joins instead of composi-
tions. For example, 𝑓@𝑔@𝐸 is the value of 𝐸 at
𝑔(𝑓 (𝑧)), whereas the original language [16] used
𝐸.𝑔.𝑓 .

• An index expression val(𝑓) is the value of 𝑓 eval-
uated at point 𝑧.

3

Impact 2021, January 18–20, 2021, Virtual event Patrice Quinton and Tomofumi Yuki
Table 1. Alpha expressions and their domains. Constants and indexed expressions are defined on the parameter
domain. Variables are defined on their declaration domain. The domain of other expressions is obtained using the
rules shown in the Expression Domain column.

Expression Syntax Expression Domain
Constants Constant name or symbol D𝑃

Variables V (variable name) DV

Operators op(Expr1, . . . , Expr𝑀)
𝑀∩
𝑖=1

DExpr𝑖

Case case{Expr1; . . . ; Expr𝑀 }
𝑀⊎
𝑖=1

DExpr𝑖

If if Expr1 then Expr2 else Expr3 DExpr1 ∩ DExpr2 ∩ DExpr3

Restriction D ′ : Expr D ′ ∩ DExpr

Dependence 𝑓 @Expr 𝑓 −1 (DExpr)
Index Expression val(𝑓) (range of 𝑓 must be Z1) D𝑃

Reductions reduce(⊕, 𝑓 , Expr) 𝑓 (DExpr)

• reduce(⊕, 𝑓 , 𝐸) is the application of ⊕ on the val-
ues of 𝐸 at all points in its domain D𝐸 that map
to 𝑧 by 𝑓 . Since ⊕ is an associative and commu-
tative binary operator, we may choose any order
of application of ⊕.

Mauras [17] has shown that any expression can be
rewritten, thanks to a set of axiomatic transformation
rules, in the form X[z] = f(…). This array notation,
easier to read than the pure functional one, will be used
in the following.

3.3 Context Domain
Each expression is associated with a domain where the
expression is defined, but the expression may not need
to be evaluated at all points in its domain. Context do-
main is another expression attribute, denoting the set of
points where the expression must be evaluated [6]. The
context domain of an expression 𝐸 is computed from its
domain and the context domain of its parent.
The context domain XE of the expression E is:

• DV ∩ DE if the parent is an equation for V.
• 𝑓 (X𝐸′) if 𝐸 ′ is 𝐸.𝑓 .
• 𝑓 −1𝑝 (X𝐸′) ∩ D𝐸 if 𝐸 ′ is reduce(⊕, 𝑓𝑝 , 𝐸).
• XE′ ∩DE′ if the parent E′ is any other expression.

This distinction of what must be computed and what
can be computed is important when the domain and
context domain are used to analyze the computational
complexity of a program.

3.4 Synthesis of Alpha Programs
The standard flow for Alpha programs [19] is as fol-
lows:

• A static semantic analysis checks that the Alpha
program is well-defined.This is essentially a form
of type checking verifying that the domain dimen-
sions are compatible and expression domains co-
ver corresponding context domains.

• A schedule for the program is sought. There are
various ways of scheduling an Alpha program,
but in this paper, we shall restrict ourselves to
unidimensional, affine schedules. Simply speak-
ing, a variable X[𝑖] in a program of parameter 𝑁
shall be scheduled at a time 𝑡𝑋 (𝑖, 𝑁) = 𝑎𝑖 +𝑏𝑁 +𝑐 .

• Once a schedule is found, a code generator is used
to produce an implementation of the computa-
tion with a specified schedule for the target plat-
form. The target platform (and hence the gener-
ated language) may range from parallel loops for
CPUs/GPUs to hardware description languages
for FPGAs/ASICs. An important transformation
used during this step, especially for HDL genera-
tion, is the change of basis, which rewrites the pro-
gram by applying affine transforms to domains of
variables.

When extendingAlpha to handle recursive programs,
wewould like this flow, called synthesis, to be preserved.
That is, we need to ensure that the three key compo-
nents are also extended: (i) expression/context domain
calculation, (ii) scheduling, and (iii) change of basis.

4 Language Extensions
In this section, we describe the language extensions to
the core Alpha for supporting recursive programs.

4

Recursive Polyhedral Equations Impact 2021, January 18–20, 2021, Virtual event

4.1 Subsystem calls
Alpha programs are also structured (modularized) at
the granularity of systems. A subsystem call is an alter-
native way to define the values of Alpha variables by
invoking instances of another system [7].
A subsystem call is specified as the following:

(𝑌1, 𝑌2, ..., 𝑌𝑚) = < name >[𝑓] (𝑋1, 𝑋2, ..., 𝑋𝑛)

where 𝑓 is an affine function that maps parameters of
the caller to those of the callee. Its semantics are that
variables 𝑌1, 𝑌2, ..., 𝑌𝑚 are the outputs of the callee sys-
tem, identified by its name, given 𝑋1, 𝑋2, ..., 𝑋𝑛 , which
are Alpha expressions, as inputs. The original version
contains subsystem calls to define variables through a
collective invocation of multiple instances of the callee
system. We omit this feature in this paper, and assume
that a subsystem call equation corresponds to a single
invocation of the callee system.

4.2 When Construct
We propose a minor extension to the Alpha language
to allow recursive definitions. The main observation is
that the language is lacking a clean syntax to specify re-
cursive steps and the base case within a single system.
Thus, we extend Alpha by adding a construct to sup-
port a top-level case expression over the parameters.

This is achieved by adding a when construct to the
let clause in the original syntax, and allowing multiple
let clauses to exist in a single system:

when < domain > let

The different let clauses may now specify a different
way to compute the outputs depending on the parame-
ter values. How the system interacts with other systems
remains unchanged, since the interface (inputs and out-
puts) is still common among the differentwhen clauses.

4.3 Extending Consistency Check
How context domain calculation can be extended to Al-
pha programs with subsystem calls has been discussed
by de Dinechin et al. [7]. The two important steps in
extending the context domain calculation are:

• Extend the parameter space to be the product of
parameters in both (caller and callee) systems.The
two sets of parameters are connected via equali-
ties corresponding to the affine functionmapping
one set to the other.

• Extend the context domain for input expressions
in subsystem calls from the corresponding input
variables in the callee.

This extension can be applied as is for recursive Alpha,
since the domain calculations only concerns the two di-
rectly interacting systems. However, the semantic ana-
lysis at the beginning of synthesis needs to ensure that
there is no infinite loop. We currently perform a sim-
ple test to detect trivial loops, but we believe that exist-
ing techniques for termination proof of affine transition
systems can be directly used to perform this check [1].

4.4 Influence on Change of Basis
In the typical synthesis explained in Section 3.4 target-
ing hardware designs, the change of basis (CoB) trans-
formation is used to reflect the schedule—one of the di-
mensions becomes the time after CoB. With recursive
programs, this step does not directly apply for two rea-
sons: (i) multiple instances of a system are used for a
given computation, and (ii) the schedules are no longer
affine.
However, the schedules for recursive systems are split

into two components: intra-system and inter-system.
Only the inter-system component may be non-affine in
our approach. Thus, we may apply CoB for the intra-
system component of the schedule as usual. The inter-
system component may either be (i) reflected for fixed
size parameters (i.e., equivalent to inlining of the sub-
systems) since the values would then be constants, or
(ii) implicitly reflected through recursion, e.g., by mod-
ule instantiation in case of VHDL.

4.5 minRec Example in Alpha
Fig. 4 shows an Alpha recursive program that corre-
sponds to the example discussed in Section 2.
The program has two parts (when clauses). The first

part holds when the parameter𝑁 is equal to 1, and then,
the output of the program is just the single element
array[1] of the input array.
When 𝑁 is not 1, the definition is more involved.

Variables array1 and array2 are meant to contain each
one half of the input array, as described by the first two
equations after the let . Variables min1 and min2 are
defined recursively by a call to the minRec program op-
erating respectively on array1 and array2, and where
the parameter 𝑁 is set to 𝑁 /2.
Although context domain calculation and change of

basis carry over to recursive programs almost seamless-
ly, this is not the case for scheduling. Indeed, we do not
know the scheduling of a called system when comput-
ing that of the calling system, since the program is re-
cursive.
Moreover, the schedule of a variable X[𝑖] in a sys-

tem of parameter 𝑁 will not have the form 𝑡𝑋 (𝑖, 𝑁) =
𝑎𝑖 + 𝑏𝑁 + 𝑐 , otherwise, we would loose the nice divide-
and-conquer property of this writing. Instead, we must

5

Impact 2021, January 18–20, 2021, Virtual event Patrice Quinton and Tomofumi Yuki

affine minRec[𝑁] → {: 1 ≤ 𝑁 }
in

array : {[𝑖] : 1 ≤ 𝑖 ≤ 𝑁 }
out

minimum : {}
when {: 𝑁 = 1}
let

minimum = array[1];

when {: 𝑁 ≥ 2}
local

min1 : {}
min2 : {}
array1 : {[𝑖] : 1 ≤ 𝑖 and 2𝑖 ≤ 𝑁 }
array2 : {[𝑖] : 1 ≤ 𝑖 and 2𝑖 ≤ 𝑁 }

let
array1[𝑖] = array[𝑖];
array2[𝑖] = array[𝑖 + 𝑁 /2];
(min1) = minRec[𝑁 /2] (array1);
(min2) = minRec[𝑁 /2] (array2);
minimum = min (min1,min2);

.

(2)

Figure 4. Recursive Alpha program for a divide-and-
conquer search of the minimum of 𝑁 numbers.

look for a synthesis that will, explicitly or implicitly, re-
sult in a scheduling where the 𝑏𝑁 part is replaced by a
function log𝑁 .
To simplify matter, assume that 𝑁 is a power of 2–

we shall see in the following that one can infer easily,
at least in such an example, that this constraint is met,
during the static semantic analysis.

5 Scheduling Recursive Alpha
In this section, we recall results relative to scheduling
affine recurrences (See for example [20].) Scheduling an
Alpha program means finding, for each variable 𝑉 , an
integral function of the indexes, say 𝑧, of this variable
such that for all 𝑧, this function is greater than that of ex-
pressions of which𝑉 depends. Such a function is called
a schedule. Say that 𝑉 (𝑧) depends on𝑊 (𝑧 ′), and let us
denote 𝑡𝑉 (𝑧) the schedule of 𝑉 and 𝑡𝑊 (𝑧 ′) that of𝑊 .
Then, if 𝑉 (𝑧) depends on𝑊 (𝑧 ′) we must have

𝑡𝑉 (𝑧) > 𝑡𝑊 (𝑧 ′) . (3)

Before explaining how schedules can be found, we
make two remarks. First, a schedule need not necessary
be an integral function–i.e, 𝑡𝑉 (𝑧) ∈ Z. It is sufficient
that the schedule values belong to a totally ordered set,
and that the values of 𝑡 are ordered according to the

dependences in the Alpha program. Second, the strict-
ness of the condition may be relaxed: actually, what is
needed is that no dependence cycle may exist in the Al-
pha program, and provided this condition ismet, depen-
dent expressions may be scheduled at the same time.

For the sake of simplicity, we present our scheduling
method in the restricted case when 𝑡 belongs to Z and
with a strict order condition as shown in (3).

5.1 The Elementary Vertex Method
An Alpha program consists in a set of equations𝑉 = 𝑒 ,
where 𝑉 is a variable and 𝑒 an expression. The domain
of 𝑉 , denoted 𝐷 (𝑉), is a polyhedron of Z𝑛 . Expression
𝑒 contains occurrences of variables𝑊 (𝑧 ′), where 𝑧 ′ is
an affine expression of 𝑧.

Assuming that schedules are affine functions of their
indexes, denote 𝑡𝑉 (𝑧) = 𝜏𝑉 .𝑧+𝛼𝑍 this function¹. In order
for 𝑡𝑉 (𝑧) to meet condition of equation (3), it is neces-
sary and sufficient to check this property on the gener-
ating system of 𝐷 (𝑉), i.e., its vertices and rays. In this
way, we can replace the potentially infinite number of
inequalities by a finite set, leading to solving an ILP.
To illustrate this on simple example, let

𝑉 (𝑖) =𝑊 (𝑖 − 1) + 𝑍 (𝑖 − 2) (4)
be an equation of an Alpha program, and assume that
𝑉 is defined on the set 𝐷𝑉 = {𝑖 | 𝑖 ≥ 0}. We then must
have

𝑡𝑉 (𝑖) > 𝑡𝑊 (𝑖 − 1) (5)
𝑡𝑉 (𝑖) > 𝑡𝑍 (𝑖 − 2) (6)

for all 𝑖 , it suffices to show that this property is true on
the unique vertex of 𝐷𝑉 , i.e., 0, and that the function is
not decreasing along the unique ray 𝑟 = 1 of 𝐷𝑉 . We
are therefore led to the following inequalities

𝛼𝑉 − 𝛼𝑊 > 0 (7)
𝛼𝑉 − 𝛼𝑍 > 0 (8)
𝜏𝑉 .1 ≥ 0 . (9)

With this method, schedules for Alpha programs can
be obtained by gathering such inequalities, for all pairs
of dependent variables. In practice, the ILP to solve con-
tains a few hundreds of linear equalities, that can be
solved in a few tens of a second.

5.2 Alpha Program with Parameters
InterestingAlpha programmake use of size parameters,
as shown in example of Fig. 4, where the parameter 𝑁
represents the number of elements where theminimum
value is sought.

A simple way of finding schedules for parameterized
Alpha programs is to make the assumption that the
¹𝜏 is a vector, and 𝜏 .𝑧 represents the dot product of 𝜏 and 𝑧.

6

Recursive Polyhedral Equations Impact 2021, January 18–20, 2021, Virtual event

schedule depends on the parameter through an affine
relation. Thus, if 𝑝 represents the vector of parameters,
then:

𝑡𝑉 (𝑧) = 𝜏𝑉 .𝑧 + 𝛼𝑉 + 𝜎𝑉 .𝑝 . (10)
Obviously, this extension does not change in a fun-

damental way the vertex method shown in 5.1.

5.3 Alpha Programs with Sub-Systems
The above method can be extended to the scheduling
of Alpha programs including calls to sub-systems. The
simplest way to handle this situation–(See [20])–is to
assume that the sub-system has already an affine sche-
dule, and to combine this schedule with that of the call-
ing system.
To be explicit, let

(𝑉1, . . . ,𝑉𝑘) = Callee[𝑓 (𝑝)] (𝑊1, . . . ,𝑊𝑙) (11)

be a call to a subsystem, named here Callee, with in-
puts𝑊𝑙 and outputs 𝑉𝑘 (here, we simplify the type of
calls, as in general, inputs could be any Alpha expres-
sion).The value of the parameters 𝑝 in the callee system
is expressed by an affine function 𝑓 (𝑝) shown between
square brackets.
Since Callee has already a schedule, each one of its

inputs or outputs has a schedule function 𝑡𝑉 or 𝑡𝑊 . The
schedule depends on the parameter vector, say 𝑞, of the
called system Callee.

Inside the calling system, the schedule of inputs and
outputs must correspond to that of the Callee subsys-
tem. This, therefore, imposes constraints on the linear
part of the schedule of the inputs 𝑉 or𝑊 , 𝜏𝑉 and 𝜏𝑊 .
Only the affine constants 𝛼𝑉 can be modified to adapt
the schedule to the context of the call. Finally, the part
𝜎𝑉 of the scheduling function, related to parameter 𝑞,
has to be adjusted to the value 𝑓 (𝑝) of the call.

In equation (11), let for example 𝑉 be the formal pa-
rameter of subsystem Callee, corresponding to the ac-
tual parameter, say 𝑉1. Let

𝜏𝑉 .𝑧 + 𝛼𝑉 + 𝜎𝑉 .𝑞 (12)

be the schedule of𝑉 in Callee, then the schedule of𝑉1

must have the form

𝜏𝑉1
.𝑧 + 𝛼𝑉1

+ 𝜎𝑉1
.𝑝 . (13)

Therefore, 𝜏𝑉 = 𝜏𝑉1
, 𝜎𝑉 (𝑞) = 𝜎𝑉1

.𝑓 (𝑝).
Using such a method, described informally here, we

understand that the vertex method can be extended to
subsystem calls: subsystems are scheduled in a bottom-
up way, and their schedules are used in calling systems.
Two remarks. First, one may use approaches that do

not impose a priori as here, the schedule of subsystems
(See [9]). Second, Alpha contains also more elaborated

calls to subsystems, called mapped calls; we do not elab-
orate on this, since recursive calls do not fall under this
situation.

5.4 Recursive Alpha
In a recursive Alpha program, we cannot apply directly
the method explained in Section 5.3, since the schedule
of a called subsystem is not known. However, as we
shall see now, scheduling the computations is still pos-
sible.
To explain how, we restrict ourselves to the situation

that happens in the examples that we consider in this
paper, and we assume the following properties:

1. The program contains twowhen clauses, one cor-
responding to the base part, and the other one to
the recursive part.

2. The base part contains no subsystem call, and its
parameter domain is reduced to a single point,
that we denote 𝑝0.

3. The recursive part contains only plain equations
and recursive subsystem calls.

4. In the recursive part, there is no direct dependen-
ce path between an input 𝑌 of the system and an
output 𝑋 (i.e., such a path always goes through a
subsystem call).

5. In the recursive part, there exists no dependence
between an output of a subsystem call and the
input of another subsystem call.

These properties can be easily checked statically. The
analysis of programs that do not meet these properties
is beyond the scope of this paper.

In the base part program, the scheduling is found in
the same way as in standard Alpha. We thus concen-
trate on the schedule analysis of variables in the recur-
sive part. We do this by considering successively the
latency of a call to the recursive system, then by ana-
lyzing its internal delays, and finally, by looking at the
schedule of the variables.

5.4.1 Latency of a call. Thanks to properties 4 and
5, the equations of a system can be separated into pre-
lude calculations, when they are computed before a re-
cursive subsystem call, and postlude calculations, when
they are computed after a call to the subsystem.

Let us denote by 𝜙 (𝑝) the latency of a subsystem call
with parameter values 𝑝 , i.e., the maximum number of
time instants between its first input and its last output.
Then, the latency must be higher or equal to the delay
between any input𝑌 and any other output𝑋 of the sys-
tem. However, thanks to properties 4 and 5, any path
from 𝑌 to 𝑋 contains a prelude path, a path through a
subsystem call, and a postlude path. Let 𝛿 be the maxi-
mum duration of any prelude path, and𝛾 the maximum

7

Impact 2021, January 18–20, 2021, Virtual event Patrice Quinton and Tomofumi Yuki

duration of any postlude path, we thus have:

𝜙 (𝑝) ≥ 𝛿 + 𝛾 + 𝜙 (𝑓 (𝑝)) . (14)

This inequality con be combined with that giving the
latency of the base case, which can be computed inde-
pendently. Let us denote by 𝜙0 the latency of the base
case.

5.4.2 Delays. Consider now the values of the𝛿 and of
the 𝛾 terms. Since schedules are affine uni-dimensional,
and since dependencies happen only between variables
belonging to the same group (prelude or postlude), the
difference between the schedules of two dependent vari-
ables is an affine function of the indexes and the pa-
rameters, that can be determined by the standard vertex
method.
Indeed, consider a dependence between𝑉 and𝑊 and

let 𝐷 (𝑉) denote the domain of 𝑉 . Then

max
𝑧∈𝐷𝑉

𝑡𝑉 (𝑧) − 𝑡𝑊 (𝑧)

is obtained by taking the maximum of this expression
on the vertices 𝜈 of 𝐷𝑉 . This allows one to obtain the
maximum value of 𝛿 and of 𝛾 , as affines functions of 𝑝 .

5.4.3 Schedules. Finding out the exact schedule of a
variable is not necessary to obtain a valid implementa-
tion of the system. Indeed, what is needed is the sched-
ule of computations, relative to the beginning of the call
to the subsystem, for the prelude variables, or relative
to the end of the call to the subsystem, for the postlude
variables. These relative times can be obtained by using
the vertex method on the dependencies between pre-
lude variables, or between postlude variables.

5.4.4 Summary. In summary, we can see that find-
ing a schedule amounts to successively:

• Find out the scheduling of the variables in the
base case system (using the vertex method).

• Find out the latency 𝜙0 of the base case system.
• Find the scheduling of the prelude variables of the
recursive system, relative to the beginning of the
call to the subsystem.

• Find the scheduling of the postlude variables of
the recursive system, relative to the end of the
call to the subsystem.

• Find the maximum delays 𝛿 and 𝛾 .
• Solve the recursion equations to obtain the latency
of a call, as a function of 𝑝 .

5.5 Scheduling the minRec program
Let us apply this method to the program of Fig. 4.
The latency of the base case system is one cycle (nee-

ded to read value array[1]).

In the recursive part of the program, variables array,
array1, and array2 are prelude variables. Relative to
the beginning of the system evaluation, their schedule
is 𝑡array (𝑖) = 0, and 𝑡array1 (𝑖) = 𝑡array2 (𝑖) = 1, as-
suming that there is a copy of the array. Therefore, the
value of 𝛿 is 1.

Similarly, variables min1, min2, and minimum are post-
lude variables, and their scheduling, relative to the end
of the call to the recursive subsystem is 𝑡min1 (𝑖) =
𝑡min2 (𝑖) = 0, and 𝑡minimum = 1, assuming a one cy-
cle delay for the calculation of the minimum operator.
Thus, 𝛾 = 1.

The 𝜙 function can then be obtained by solving

𝜙 (𝑝) =
{
𝜙 (𝑁2) + 2 if 𝑁 > 1
1 if 𝑁 = 1

(15)

which admits the solution 𝜙 (𝑁) = 2 log2 (𝑁) + 1. Solu-
tions to recursion equations are

6 Discussion
In this section, we elaborate a little bit on several as-
pects of this work that require to be explored in more
details.

6.1 The FFT
An interesting example is the Fast Fourrier Transform
which is well-known not to be represented using stan-
dard recurrence equations. Fig. 5 shows a simplified ver-
sion of the FFT. The input is a vector 𝑥 of size 𝑁 , where
𝑁 is a power of 2. The base part of the system is simply
the vector 𝑥 itself. For 𝑁 > 1, vector 𝑥 is separated in
halves left and right, on which the same algorithm
is called recursively, leading to results q1 and q2. These
results are then interleaved and combined using a sim-
ple addition – for the sake of simplicity – which should
be replaced by the FFT butterfly operation.

The scheduling of this example was done automati-
cally using MMAlpha.

6.2 Static Analysis
To be valid, recursive Alpha programs should be res-
tricted to some values of the parameters. In the exam-
ples of minRec and FFT, the value of 𝑁 is a power of 2.
In general, what we need to check is that the recursion
on the parameters lead to values in the base parameter
domain. It is easy to check that values of the parameters
are decreasing inside a polyhedron, by a simple analy-
sis of the generating system of the parameter domain.
Finding out a subset of values in the parameter domain
such that the recursion leads to a base case is, in general,
more involved and requires to be explored.

8

Recursive Polyhedral Equations Impact 2021, January 18–20, 2021, Virtual event

affine FFT[𝑁] → {: 1 ≤ 𝑁 }
in

x : {[𝑖] : 1 ≤ 𝑖 ≤ 𝑁 }
out

y : {[𝑖] : 1 ≤ 𝑖 ≤ 𝑁 }
when {: 𝑁 = 1}
let

y[𝑖] = x;
.
when {: 2 ≤ 𝑁 }
local

left : {[𝑖] : 1 ≤ 𝑖 and 2𝑖 ≤ 𝑁 }
right : {[𝑖] : 1 ≤ 𝑖 and 2𝑖 ≤ 𝑁 }
q1 : {[𝑖] : 1 ≤ 𝑖 and 2𝑖 ≤ 𝑁 }
q2 : {[𝑖] : 1 ≤ 𝑖 and 2𝑖 ≤ 𝑁 }
z : {[𝑖] : 1 ≤ 𝑖 ≤ 𝑁 }

let
left[𝑖] = x[−1 + 2 ∗ 𝑖];
right[𝑖] = x[2 ∗ 𝑖];
(q1) = FFT[𝑁 /2] (left);
(q2) = FFT[𝑁 /2] (right);
z[𝑖] =
case {
{: 2𝑖 ≤ 𝑁 } : if 𝑖%2 = 0 then
q1[𝑖] + q1[−1 + 𝑖] else
q1[𝑖] + q1[1 + 𝑖];

{: 𝑁 < 2𝑖} : if 𝑖%2 = 0 then
q2[𝑖 − 𝑁 /2] + q2[−1 + 𝑖 − 𝑁 /2] else
q2[𝑖 − 𝑁 /2] + q2[1 + 𝑖 − 𝑁 /2];

};
y[𝑖] = z[𝑖];

.
(16)

Figure 5. Recursive Alpha program for the FFT.

In many situations, the recursion domain is obvious,
as here. Divide-and-conquer strategies with other sche-
mes can be sought (for example, when 𝑁 is a power of
3).
Note that, in practice, the value of 𝑁 is fixed – since

ultimately, a finite architecture has to be generated –,
and therefore, the property can be checked.

6.3 Generating an Architecture
As indicated in 3.4, the generation of a parallel archi-
tecture for such programs amounts to rewrite the equa-
tions in a new, time-space mapped representation, ob-
taied using a change of basis transformation: the sche-
duling function, completed by the appropriate spatial
mapping, forms a unimodular transformation that can

be applied without changing the semantics of the Al-
pha program. It should be clear that this transforma-
tion is valid also on recursive Alpha. In the case of
the minRec program, we would obtain a tree architec-
ture whose leafs correspond to the base case, and each
intermediate level would contain a comparator and a
few registers. The FFT program would be implemented
as log2 𝑁 levels of butterfly operators. In both cases, a
vhdl code could be generated easily, when 𝑁 is fixed.

6.4 Solving the parameter recurrence
Solving in general recursive equations may not be as
easy as here. However, the interested reader will find
in [5] or in [4] methods to solve more involved recur-
sive equations. It should also be noticed that obtaining
a closed form for the 𝜙 function may not be necessary:
when the value of the parameter is set, and again, this
must be the case to generate an architecture, the recur-
sion itself guarantees that the sequence of calls leads to
a log2 𝑁 number of steps.

7 Related Work
Thepolyhedralmodel is founded around compact, math-
ematical, representations of programs as affine recur-
rence equations [18] and reduced dependence graphs
extracted from loop programs [8].These representations
provide rich properties, e.g. closure under affine trans-
formations, aswell as important techniques for program
optimizations, such as scheduling with ILP, and code
generation.Thus, the extension of the polyhedral model
to a wider range of programs, while preserving all the
important properties, is a continued topic of interest
for many years. Benabderrahmane et al. [3] have pro-
posed extensions to handle irregular (data-dependent)
control-flows while allowing previously developed op-
timizations to seamlessly carry over. Similarly, mono-
parametric tiling [11, 12] allows a subset of parametri-
cally tiled programs (those with fixed aspect ratio) to
be expressed as affine sets. Our work also aims at ex-
tending the class of programs amenable to polyhedral
techniques by handling recursive programs.
There is also a body of work on extending the appli-

cability of the polyhedral techniques through dynamic
compilation [14, 15, 23]. The main idea is that programs
that seem non-affine during static analysis may actu-
ally have affine behavior when executed. The APOLLO
framework [23] uses dynamic profiling to test if irregu-
lar memory accesses have (or can be approximated as)
affine behavior. Kobeissi et al. analyze programs and
detect recurrences that can be replaced by affine loop
nests and therefore, can be handled by standard poly-
hedral techniques [14, 15]. Although our work also con-
cerns recursive programs, our goal is to express parallel

9

Impact 2021, January 18–20, 2021, Virtual event Patrice Quinton and Tomofumi Yuki

algorithms with recursive structure, rather than analyz-
ing an already recursive program.
Sundararajah andKulkarni [24] have proposed a frame-

work for analyzing and transforming recursive programs
similar to the polyhedral model in that it has the abil-
ity to reason and transform at the level of statement in-
stances. However, their representation of recursive pro-
grams based on finite-state transducers are not directly
compatible with the polyhedral model. Our work is re-
stricted to a much more limited class of recursions, but
is an extension to the polyhedral model. The primary
target of our work is not arbitrary recursive programs,
but polyhedral programs that may benefit from algo-
rithmic optimizations involving recursive decomposi-
tion, such as FFT or various sub-cubic algorithms for
matrix multiplication.
SPIRAL [10] is a framework for generating efficient

implementations of signal processing algorithms, which
are expressed as linear transforms. SPIRAL explores de-
compositions of a linear transform through application
of rewriting rules that encode decompositions. Such de-
composition is at the core of many algorithmic opti-
mizations (e.g., FFT, Strassen algorithm) that are scar-
sely explored in polyhedral compilers. We hope that re-
cursive systems provide away to explore such optimiza-
tions for a class of programs that is larger than linear
transforms handled by SPIRAL.
Javanmard et al. have proposed a framework for gen-

erating efficient divide-and-conquer algorithms for dy-
namic programming [13]. Their work uses polyhedral
techniques to generate portable (mono-parametric [11,
12]) recursive programs. However, they generate recur-
sive programs during code generation, outside of the
polyhedral representation. Ourwork is about represent-
ing and analyzing recursive programs represented as a
set of affine recurrences.
Initially, subsystemswere used as away towrite struc-

tured Alpha programs, and subsystems were entirely
inlined before scheduling [7].Quinton later proposed a
scheduling technique for Alpha programs with subsys-
tems [20] and Feautrier developed another method for
structured scheduling targeting Communicating Regu-
lar Processes [9].These techniques also decouple sched-
uling of a system and the scheduling across systems,
but the main motivation is scalability. Our work is dif-
ferent in that we compute a schedule for multiple in-
stances of the same system that is recursively called.

8 Conclusion
We have shown that recursive systems of polyhedral
equations can represent divide-and-conquer approaches

to parallel algorithms, andwe have explained how a lan-
guage such as Alpha can be extended to handle such re-
cursions, by using sub-systems calls together with con-
ditions on the values of the parameters. We have ex-
plained how the scheduling of such programs can be
obtained automatically using the methods which han-
dle classical recurrence equations.
We have illustrated this extension on the FFT algo-

rithm, and explained that all the properties needed to
generate hardware for such kinds of algorithms can be
naturally and simply extended.
We already have presented several research avenues

for this work: multi-dimensional scheduling, extension
of the axiomatic transformations such as normalization,
change of basis, etc. This requires a detailed semantics
of the extended language to be described, in order to
certify the validity of these transformations.
Implementing a high-level synthesis tool for recur-

sive Alpha is also an interesting research goal, since
it would increase the power of MMAlpha or alphaZ
tools.
Finally, combining recursivity and reduction opera-

tors would provide a strong basis for high-level trans-
formation of algorithms, aiming at targeting various ar-
chitectures, as is required by practical applications of
parallelism.

Acknowledgments: the authors would like to thank
the referees for their corrections and suggestions. We
also thank Sven Verdoolaege who carefully read this pa-
per and helped correct several errors.

A Corrections made to the first version
After this paper was accepted, the attention of the au-
thors was drawn to an error that appeared to be quite
significant, and therefore, the authors made changes to
the paper in order to correct it. Corrections concern Sec-
tions 5.4 and 5.5 about scheduling. In the initial version,
it was assumed that the schedule of a variable in a recur-
sive call would have the form 𝑡𝑉 (𝑧) = 𝜏𝑉 𝑧 + 𝛼𝑉 + 𝜙 (𝑝)
where 𝜙 would be a function determined by a recur-
sion equation leading to a logarithmic term in the pa-
rameter 𝑝 . Actually, as is now presented in this version,
the logarithmic term represents the latency of a system
call, and it is also obtained by solving recursion equa-
tions, but it cannot be used directly as an offset in any
variable schedule. We have to separate the variables be-
tween those that are computed before a recursive call,
from those that are computed after it, as is done here. In
order to make this presentation easy to understand, we
have restricted ourselves to a simple form of divide-and-
conquer algorithm that is characterized in Section 5.4.

10

Recursive Polyhedral Equations Impact 2021, January 18–20, 2021, Virtual event

References
[1] Christophe Alias, Alain Darte, Paul Feautrier, and Laure

Gonnord. 2010. Multi-dimensional Rankings, Program Termina-
tion, and Complexity Bounds of Flowchart Programs. In Static
Analysis, Radhia Cousot and Matthieu Martel (Eds.). 117–133.

[2] Denis Barthou, Jean-François Collard, and Paul Feautrier. 1997.
Fuzzy Array Dataflow Analysis. J. Parallel and Distrib. Comput.
40, 2 (1997), 210 – 226. https://doi.org/10.1006/jpdc.1996.1261

[3] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Al-
bert Cohen, and Cédric Bastoul. 2010. The Polyhedral Model
is More Widely Applicable than YouThink. In Proceedings of the
19th Joint European Conference on Theory and Practice of Soft-
ware, International Conference on Compiler Construction (CC ’10).
283–303. https://doi.org/10.1007/978-3-642-11970-5_16

[4] Anne Benoit, Yves Robert, and Frédéric Vivien. 2013. A Guide
to Algorithm Design: Paradigms, Methods, and Complexity Anal-
ysis. Chapman & Hall/CRC. 380 pages. https://hal.inria.fr/hal-
00908448

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. 2001. Introduction to Algorithms (2nd ed.). The
MIT Press.

[6] F. DeDinechin. 1997. Structured systems of affine recurrence equa-
tions and their applications. Technical Report. IRISA-PI–97-1151,
Publication interne IRISA.

[7] F. de Dinechin, P. Quinton, and T. Risset. 1995. Structuration of
the ALPHA language. In Programming Models for Massively Par-
allel Computers. 18–24. https://doi.org/10.1109/PMMPC.1995.
504337

[8] Paul Feautrier. 1991. Dataflow analysis of array and scalar refer-
ences. International Journal of Parallel Programming 20, 1 (1991),
23–53. https://doi.org/10.1007/BF01407931

[9] Paul Feautrier. 2006. Scalable and Structured Scheduling. Inter-
national Journal of Parallel Programming 34, 5 (2006), 459–487.

[10] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spamp-
inato, J. R. Johnson, M. Püschel, J. C. Hoe, and J. M. F. Moura.
2018. SPIRAL: Extreme Performance Portability. Proc. IEEE
106, 11 (2018), 1935–1968. https://doi.org/10.1109/JPROC.2018.
2873289

[11] Guillaume Iooss. 2016. Detection of linear algebra operations in
polyhedral programs. Ph.D. Dissertation. Colorado State Univer-
sity and ENS Lyon.

[12] Guillaume Iooss, Sanjay Rajopadhye, Christophe Alias, and Yun
Zou. 2014. Constant Aspect Ratio Tiling. In Proceedings of the 4th
International Workshop on Polyhedral Compilation Techniques,
Sanjay Rajopadhye and Sven Verdoolaege (Eds.). Vienna, Aus-
tria.

[13] Mohammad Mahdi Javanmard, Zafar Ahmad, Martin Kong,
Louis-Noël Pouchet, Rezaul Chowdhury, and Robert Harrison.
2020. Deriving Parametric Multi-Way Recursive Divide-and-
Conquer Dynamic Programming Algorithms Using Polyhedral
Compilers (CGO ’20). 317–329. https://doi.org/10.1145/3368826.
3377916

[14] Salwa Kobeissi and Philippe Clauss. 2019. The Polyhedral
Model Beyond Loops - Recursion Optimization and Paralleliza-
tion Through Polyhedral Modeling. In IMPACT 2019 - 9th Inter-
national Workshop on Polyhedral Compilation Techniques, In con-
junction with HiPEAC 2019. Valencia, Spain. https://hal.inria.fr/
hal-02059558

[15] Salwa Kobeissi, Alain Ketterlin, and Philippe Clauss. 2020.
Rec2Poly: Converting Recursions to Polyhedral Optimized
Loops Using an Inspector-Executor Strategy. In SAMOS 2020:
Embedded Computer Systems: Architectures, Modeling, and Simu-
lation. 96–109. https://doi.org/10.1007/978-3-030-60939-9_7

[16] H. Le Verge, C. Mauras, and P. Quinton. 1991. The ALPHA lan-
guage and its use for the design of systolic arrays. The Journal
of VLSI Signal Processing 3, 3 (1991), 173–182.

[17] C. Mauras. 1989. Alpha : un langage équationnel pour la concep-
tion et la programmation d’architectures parallèles synchrones.
Thèse de l’Université de Rennes 1, IFSIC.

[18] Patrice Quinton. 1984. Automatic Synthesis of Systolic Arrays
from Uniform Recurrent Equations. In Proceedings of the 11th
Annual International Symposium onComputer Architecture (ISCA
’84). 208–214. https://doi.org/10.1145/800015.808184

[19] P. Quinton, A. Chana, and S. Derrien. 2012. Efficient hard-
ware implementation of data-flow parallel embedded systems.
In 2012 International Conference on Embedded Computer Sys-
tems (SAMOS). 364–371. https://doi.org/10.1109/SAMOS.2012.
6404202

[20] Patrice Quinton and Tanguy Risset. 2001. Structured Schedul-
ing of Recurrence Equations:Theory and Practice. In Proceedings
of the Embedded Processor Design Challenges: Systems, Architec-
tures, Modeling, and Simulation (SAMOS ’01). 112–134. https:
//doi.org/10.1007/3-540-45874-3_7

[21] S. Rajopadhye, G. Gupta, and DG. Kim. 2011. Alphabets: An
Extended Polyhedral Equational Language. In Proceedings of the
13th Workshop on Advances in Parallel and Distributed Computa-
tional Models, Fujiwara Nakano, Bordim (Ed.).

[22] Sanjay V Rajopadhye and Richard M Fujimoto. 1990. Synthesiz-
ing systolic arrays from recurrence equations. Parallel Comput.
14, 2 (1990), 163 – 189. https://doi.org/10.1016/0167-8191(90)
90105-I

[23] Aravind Sukumaran-Rajam and Philippe Clauss. 2015. The Poly-
hedral Model of Nonlinear Loops. ACM Trans. Archit. Code Op-
tim. 12, 4, Article 48 (Dec. 2015), 27 pages. https://doi.org/10.
1145/2838734

[24] Kirshanthan Sundararajah and Milind Kulkarni. 2019. Compos-
able, Sound Transformations of Nested Recursion and Loops. In
Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’19). 902–917.
https://doi.org/10.1145/3314221.3314592

[25] Sven Verdoolaege, Hristo Nikolov, and Todor Stefanov. 2013. On
Demand Parametric Array Dataflow Analysis. In Proceedings of
the 3rd International Workshop on Polyhedral Compilation Tech-
niques, ArminGrößlinger and Louis-Noël Pouchet (Eds.). 23–36.

[26] Y. Yaacoby and P. Cappello. 1988. Scheduling a system of affine
recurrence equations onto a systolic array. In Proceedings. Inter-
national Conference on Systolic Arrays. 373–382. https://doi.org/
10.1109/ARRAYS.1988.18077

[27] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan,
and Sanjay Rajopadhye. 2012. AlphaZ: A System for Design
Space Exploration in the Polyhedral Model. In Proceedings of
the 25th International Workshop on Languages and Compilers for
Parallel Computing (Tokyo, Japan) (LCPC ’12). 17–31. https:
//doi.org/10.1007/978-3-642-37658-0_2

11

https://doi.org/10.1006/jpdc.1996.1261
https://doi.org/10.1007/978-3-642-11970-5_16
https://hal.inria.fr/hal-00908448
https://hal.inria.fr/hal-00908448
https://doi.org/10.1109/PMMPC.1995.504337
https://doi.org/10.1109/PMMPC.1995.504337
https://doi.org/10.1007/BF01407931
https://doi.org/10.1109/JPROC.2018.2873289
https://doi.org/10.1109/JPROC.2018.2873289
https://doi.org/10.1145/3368826.3377916
https://doi.org/10.1145/3368826.3377916
https://hal.inria.fr/hal-02059558
https://hal.inria.fr/hal-02059558
https://doi.org/10.1007/978-3-030-60939-9_7
https://doi.org/10.1145/800015.808184
https://doi.org/10.1109/SAMOS.2012.6404202
https://doi.org/10.1109/SAMOS.2012.6404202
https://doi.org/10.1007/3-540-45874-3_7
https://doi.org/10.1007/3-540-45874-3_7
https://doi.org/10.1016/0167-8191(90)90105-I
https://doi.org/10.1016/0167-8191(90)90105-I
https://doi.org/10.1145/2838734
https://doi.org/10.1145/2838734
https://doi.org/10.1145/3314221.3314592
https://doi.org/10.1109/ARRAYS.1988.18077
https://doi.org/10.1109/ARRAYS.1988.18077
https://doi.org/10.1007/978-3-642-37658-0_2
https://doi.org/10.1007/978-3-642-37658-0_2

	Abstract
	1 Introduction
	2 Intuition with an Example
	3 Background: Alpha
	3.1 Affine Systems
	3.2 Alpha Expressions
	3.3 Context Domain
	3.4 Synthesis of Alpha Programs

	4 Language Extensions
	4.1 Subsystem calls
	4.2 When Construct
	4.3 Extending Consistency Check
	4.4 Influence on Change of Basis
	4.5 minRec Example in Alpha

	5 Scheduling Recursive Alpha
	5.1 The Elementary Vertex Method
	5.2 Alpha Program with Parameters
	5.3 Alpha Programs with Sub-Systems
	5.4 Recursive Alpha
	5.5 Scheduling the minRec program

	6 Discussion
	6.1 The FFT
	6.2 Static Analysis
	6.3 Generating an Architecture
	6.4 Solving the parameter recurrence

	7 Related Work
	8 Conclusion
	A Corrections made to the first version
	References

