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Abstract

A nonlinear stationary model describing the behaviour of a Bingham fluid
is considered in a thin layer in R® . The limit problem obtained after trans-
forming the original problem into one posed over a fixed reference domain
and then letting ¢ (the parameter representing the thickness of the layer)
tend to zero is studied. Existence and uniqueness results and a lower di-
mensional ‘Bingham-like’ constitutive law are obtained. An identical study
of a two dimensional problem yields a one-dimensional model prevalent in
engineering literature.



1 Introduction

A Bingham fluid, which is a visco-plastic medium, obeys the general laws of
continuum mechanics and has a special nonlinear constitutive law. It is used
to model the behaviour of a variety of fluids such as paint, lava and fluid
mud (a clay - water mixture with a high concentration of cohesive mineral
particles).

It is a non - Newtonian fluid which moves like a rigid body when a certain
function of the stress tensor is below a certain threshold (sometimes called
the yield stress). Beyond this yield stress, it obeys a nonlinear constitutive
law.

In this paper, we are interested in the asymptotic behaviour of a Bingham
fluid in a thin layer represented by a ‘thin’ domain in R®. Starting from the
three - dimensional variational inequality giving the velocity and pressure,
as formulated by Duvaut and Lions [2], the problem is transformed into one
over a fixed reference domain, thus explicitly bringing out the dependence
on ¢ (the parameter representing the thickness of the domain) in the varia-
tional formulation. The limit problem, as € tends to zero, is then obtained.
An identical study of a two - dimensional problem yields a one-dimensional
constitutive law, prevalent in engineering literature (cf., for instance, Liu and
Mei [6]).

The paper is organized as follows. Section 2 describes the three - dimen-
sional problem and transforms it to one over a fixed reference domain by a
standard change of variable and a prior:i estimates are obtained. Section 3 is
devoted to the study of a class of function spaces of Sobolev type which will
be needed in the sequel. Just as the theorem of de Rham characterizes the
annihilators of divergence free vector fields as gradients of scalar functions,
the annihilators of a certain space studied here are characterised as the gradi-
ents of functions in the horizontal variable alone. This helps in the recovery
of the pressure later. In Section 4, the limit problem and its well-posedness
are studied. In Section 5, the lower dimensional constitutive law and the
differential equation satisfied by the limit variables in the non-rigid zone are
obtained. The corresponding results for the two - dimensional problem are
stated.



2 Problem Statement and Basic Estimates

Let w C R? be a bounded domain with sufficiently smooth boundary. Let
h :w — R be a sufficiently smooth function such that

for all (z,y) € w, where hy and h; are constants. Let ¢ > 0. Set

Q = {(z,9,2) €ER | (z,y) Ew, 0< 2 < h(z,y)}

Q. = {(z1,70,13) ER® | (71,22) € w 0 < 13 < eh(w1,70)}- (2:2)

We will repeatedly use the bijection between the points of €2, and those of €2
given by

(21,29, 23) € Qe > (2,y,2) €Q, x =121,y = Tg,2 = 13/¢. (2.3)

This automatically produces a bijection between functions ¢ : €2, — R and
»:Q — R given by

@(iﬁ,y,Z) = QO(.’El,:EQ,.’L'g). (24)
Notation We will denote vector fields in three dimensions using bold face
(e.g. £ = (f1, f2, f3)) and vector fields in two dimensions using an underscore
(e.g. v = (v1,v2)). We will denote the Euclidean norm in R? or R® of these
vector fields using the modulus (i.e. |[f| or |v|). We will denote integration
with respect to the (Lebesgue) measure in R® by dx.

Let f € (L*(Q2))? be given. Let f. € (L?(€2.))? be defined by

f.(x1,29,23) = f(21,20,23/¢) (=f(x,y, 2)). (2.5)

Consider an incompressible Bingham fluid occupying the region €2, with
viscosity and yield stress given (after non - dimensionalization) by ue? and
ge respectively (where p > 0 and g > 0 are constants independent of €),
and acted upon by a body force of density given by f. defined by (2.5) (cf.
Bourgeat and Mikeli¢ [1] or Lions and Sanchez - Palencia [5]). A typical
situation would be when the forces depend only on z; and x,.

If u, and p. are the velocity and pressure respectively, then the stress

tensor can be written as 0° = —p.I + oP*. We set
Dy(u.) = ("’5‘;1 +2ei) 1<, <3,
Dir(u.) = 2 Zz] 1 DZJ(UE)DZJ'(US)
£ _ D E D s€
Orr = 2 Zz] 1 ’L] Z] .
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Then the constitutive relation is given by
(05)2 < ge < Dy(u) =0

2.6

(05)2 > g & Dy(u.) =4 (1 - L) ol (2:6)

2 (0502 ) Y
Let
V. = {ve(H;())? | div(v) =0}
Then, the velocity u. is the unique solution of the following variational in-

equality (cf. Duvaut and Lions [2]).
(P.) Find u, € V; such that

pe® [, Vu. V(v —u.)dx + ge [, |Vv]dx —ge [, [Vu.|dx
€ € > = (2.7)
> [q, fe(v —uc)dx

for every v € V..
Equivalently (cf. Bourgeat and Mikeli¢ [1]), there exists p. € L*(Q.)/R
such that the couple (u.,p.) satisfies the following:

pe® [, Vu..V(v —u.)dx + ge [, |Vv]dx —ge [, [Vu.|dx
: c - Jo. (2.8)
> fo fe(v —uc)dx + [, pediv(v — u.)dx

for every v € (Hj(Q))3.
Notation We will denote the norm in L2(U) (or (L2(U))Y,N = 2,3) of a
domain U by |.|oy and the norm in H*(U) by ||.||s,v-

Let U, € (H}(Q))® and p. € L*(Q) denote the transformed functions
defined over 2 as per the rule (2.4). We now proceed to obtain a priori
estimates for these functions.

Lemma 2.1 There exists a constant C > 0, independent of €, such that
ou, ou, ou.
ox oy 0z

-1
)

< C, Ul <C. (2.9)

b iy
0,0 0, 0,Q

Proof: The proof follows by setting v = 2u, and v = 0 successively in (2.7),
using the transformations suggested by (2.3) and (2.4) and by applying the
classical Poincaré’s inequality which, for the domain €., reads as

[0lon. < CelVploa.

for any ¢ € Hy(Q.), where C' > 0 is independent of .l
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Lemma 2.2 There exists a constant C' > 0, independent of €, such that
Op.
ox

Op-
y

Op.
0z

< CE. (2.10)

-1,0

|P: <

0,0 <C, ‘

<0,‘

)
-1,0 -1,0

Proof: Let w € (H;(9))®. Defining w.(z1,72,73) = w(z1,72,73/¢) €
(H} ()3, and setting v = w,. + u. in (2.8), we can deduce the last two
estimates in (2.10). Consequently it follows that (cf. Girault and Raviart [3],
Chapter I, Corollary 2.1) there exists a representative of p. € L?(Q2)/R such
that

Peloe < CllVPel|-10 < C,

since {2 is a Lipschitz domain. This completes the proof.ll

3 Some Function Spaces

It follows from Lemma 2.1 that, for a subsequence, u, — u and that % — g—;‘

weakly in (L?(2))3. We lose information on the derivatives in the z and y

directions. Hence we are led to consider the space W of functions v € L*(Q)
such that % € L*(Q).
We now introduce the linear mapping 7 : L?(2) — L?(w) given by

h(z,y)
T(v)(z,y) = /0 v(z,y, z)dz.
Lemma 3.1 We have
T € L(L*(Q), L*(w)) N L(Hy(Q), Hy (w))

and, for every v € Hy(9),

swe) = 7(5). g - 7(5)m ey

Lemma 3.2 Let w € L*(Q) such that 9% = 0. Then there ezists & € L*(w)
such that w(z,y,2) = w(x,y), i.e., for every v € L*(Q),

/Qwvdx :/{E(x,y)T(v)(x,y)dxdy.l (3.2)



Corollary 3.1 Let w € L*(Q) such that, for all v € H' (),

ov
wadx = 0. (3.3)

Then w = 0.

Proof: By the preceding lemma, since (3.3) implies that 4% = 0, we have
that w(z,y,2z) = w(z,y). If ¢ € D(w), setting v(x,y, ) o(x,y)z, we
deduce from (3.3) that

/ @z, y)o(x, (e, y)dedy = 0.

Since ¢ was arbitrary, it follows that wh =0, i.e. w =0 (cf. (2.1)). H
Let us now set

Lo = {(z,9,0) | (z,y) €@}, It = {(z,9,h(z,y)) | (z,y) € &}

Definition 3.1 We say that u € W wvanishes on T = o UTy if, for any

w € W, we have
/u—dx = / —wdx |
o0

H(div;w) = {@ € (L*(w))* | div(®) € L*(w)}.

If ® € H(div;w), then we can define the trace ®.v on Ow, where v is the
unit outer normal on the boundary of w. If this trace is zero, then, for any
Y € H'(w), we have

Let

/¢div(§)dwdy = —/Vw.id:cdy.

We denote the space of such vector fields with vanishing trace by Hy(div;w).
We now introduce the space
W ={ve ( )? | v vanishes on T' and T'(v) € Hy(div;w)} (3.4)
where T'(v) = (T(v1),T(v9)) if v = (v1,v9). It is easy to see that this is a
Hilbert space for the inner-product defined by

(v, )y = /Q <w+ %.%) dzdy + /w div (T (v))div (T (w))dady. (3.5)



Proposition 3.1 (H;())? is dense in W.

Proof: By Lemma 3.1, we know that (H}(Q2))? is contained in W. Let
v € W such that (v, p)w = 0 for all ¢ € (Hj(2))?. Our aim is to establish
that v = 0, which will complete the proof. We do this in several steps.

Step 1. If & € D(0, hy) such that foho £(z)dz = 1, and if w € D(w) (respec-
tively, in H}(w)), then setting o(z,y, 2) = w(z,y)E(2), we have ¢ € D(Q)
(respectively, in Hy(Q)) and, further, T'(p) = w. Similarly, if ¢ € Hy(div;w),
we have that ¢ = ¢£ € W and T'(¢)) = ¢. B

Step 2. If p € (D(w))? and 3 = ¢¢, we have (v,9)w = 0.Thus

/Q (0.0)6(z)dx + /Q %.Qg’(z)dx—i- / div(T(0))div(¢)dzdy = 0.

Hence,

/w div(T(y))div(@dwdy‘ < Cl¢

It follows that div(T'(v)) € H'(w).
Step 3. Let ¢ € (D(2))*. Using the result of Step 2, we deduce from the
relation (v, ¢)w = 0, that

/ @5_9(1}{
Q 0z 0z
Since ¢ was arbitrary, it follows that % € (L*(Q))%

Step 4. If ¢ € (D(2))? and if we set ¢ = g—%, then ¢ € (D(Q2))* and T(p) = 0.
Thus, for all ¢ € (D(£2))2, the relation (v, 22)y = 0 yields

O,w-

< |v

0,0 £|0,Q + 0,0

[T < o

ov %

0z 028

It then follows from Lemma 3.4 that v — % = c(z,y), and ¢ € (L?(w))>

Step 5. Thus, for all € (D(Q2))?, we can rewrite (v, p)w = 0 as

[ le= VT 1)@ y)dody = o
But by Step 1, the map T : (D(Q))? — (D(w))? is surjective and thus it
follows that
clz,y) = V(div(T(v)))(z,y)
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as elements in (L?(0,1))%
Step 6. Finally, let o € W. Then, by the preceding steps and Green’s formula
(cf. the definition of W),

(v, Q)w = / e — V(div(T))| T(g)dady = 0.

Thus v = 0 and the proof is complete.ll
We now introduce a subspace of W which will be needed in the sequel.
Let
Wy = {veW | div(T(v)) = 0}. (3.6)

This space will play the role similar to that of vector fields with vanishing
divergence in the original problem. Just as the annihilator of such vector
fields are gradients of scalar functions, we have a characterization of the
annihilator of Wj.

Proposition 3.2 Let FF € W', the dual of W, such that F(v) = 0 for all
v € Wy. Then, there exists p € L*(w) such that for everyv € W,

Fv) = /p(x,y)div(T(y))(x,y)dxdy. (3.7)

Proof: Step 1. Let £ € D(0, hg) such that foho &(z)dz = 1. If v € W, then
x € Wy, where xi(z,y,2) = vi(z,y,2) — T(v;)(z,y)&(z), i = 1,2. Hence,
F(x) = 0. By the Riesz representation theorem, there exists w € W such
that, for all v € W, F(v) = (v,w)w. Thus,

Fl) = F(T@w¢) = (w,T@)¢w
= Yo, rile, )T () (@, y)dady + [, div(T (w))div(T (v))dedy

where r; € L?(w) is given by

h(z,y) h(z,y) awz ,
na) = [ we g+ [ G e E)

Step 2. On (Hj(w))?, define the linear functional
2
O(p) = Z/ng@idaﬁdy—i—/div(T(w))div(g)dxdy.
i1 Jw w
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For any ¢ € (Hj(w))? @& € (Hy(Q))> € W and T(¢f) = ¢. Thus, if
div(p) = 0, it follows from Step 1 that ®(¢) = 0 and so, by de Rham’s
theorem, there exists p € L?(w) such that

D(y) = / p(, y)div(p) (z, y)dudy.

For v € (Hg(9))?, we have that T'(v) € (Hg(w))? and F(v) = ®(T(v)). The
result now follows from the density of (Hj(€2))? in W.H

Remark 3.1 Proceeding exactly as in the proof of Poincaré’s inequality (cf.
for instance, Kesavan [4]), we can show that there exists a constant C' > 0
such that for v € W,

v

v < Cl|=

0,0

Thus, in Wy, since div(7T'(v)) = 0, the function v — \%\0,9 defines a norm
equivalent to the norm in W.H

4 The Limit Problem

From the a priori estimates (2.9), we deduce that, for a subsequence, U, —
u, B andedie gy, s%f;f — z5 weakly in (L?(€2))®. But since {22}
is bounded in (H!(Q))3, it follows that z; = 0. In the same way, zz = 0.

Similarly, from the estimates (2.10), there exists a subsequence for which
P. — p weakly in L*(Q) and since %—ﬁ; — 0in H7'(), it follows that % =
and, by Lemma 3.2, that p(z,y, z) = p(z,y).

We will, henceforth, consider a subsequence (indexed yet again by &, for
convenience) for which all the above convergences are valid.

We first deduce some properties of u coming out of the incompressibility

condition div(u,) = 0.

du. _ Ou

Lemma 4.1 Let U, —u, $= — 2% and 5%%,566% — 0 weakly in (L*(Q))3,

where u = (u1, ug, uz). Then, ug =0 and div(T(u)) = 0, where u = (uy, us).

Proof: Since div(u.) = 0, we have

Oty Of.p 100.s

4.1
ox oy e 0z (4.1)




If v € H'(Q), then, multiplying (4.1) by v and integrating by parts, and
then passing to the limit, using the convergences stated in the hypotheses,
we deduce that 5

v

u3&dx =0

for all v € H(Q) and so uz = 0 by Corollary 3.1.
Now, let ¢ € D(w). Once again, from (4.1), we deduce that

ausl £,2 aae,ﬁ) .
dx—l—/a 6Qaz<pdx—0

But, since ﬂg,g € H}(Q2) and ¢ is independent of z, the third integral vanishes
and so, thanks to (3.1) and the fact that T, = (Ue1,Uc2) € (H)(Q))?, it
follows that div(7(u.)) = 0. Since T is continuous and linear, it is weakly
continuous and so div(7'(z)) = 0.1

Henceforth, we will set u = (u,0). Our limit problem will, therefore, be
one satisfied by wu.

Proposition 4.1 Let (u.,p.) be solution of (2.8) such that U, — u = (u,0)
n (L*(Q))® weakly and let p. — p in L*(Q) weakly, so that 58“5 aal;f —0
and %= — 98 yeqkly in (L*())%. Then (u,p) € Wy x L*(Q) and satisfies

the following variational inequality:

o Sar(v—uydx + gf9| ldx—ng 12| dx 0
> [ofw—u dx—i—f pdiv(T(v — u))dxdy '

for every v € W, where £ = (f1, f2, f3) = (f, f3). Further, p = p(z,y).

Proof: We have already observed that p = p(z,y) and that (cf. Lemma 4.1)
u € W().

Let v = (v1,v2,v3) € (Hg(Q2))? and set v.(z1, T, 3) = v(T1, T2, 73/€) €
(H}(Qe))3. Tt then follows from (2.8) that

2 3 auei v, aﬁa,i Jv;
He fn i1 ( dz oz dy dy

+95fn[zz 1 avl) (%QZ)Q

&5 G+
S(G)hdx >

fQ Zz 1fz vy — asz)dx
Jon(+ % + T2

+ 4+ IV o+ +

10

aAs,i asz 65@

pe® Jq z1(gx)2+(gy)2+gz(u ))dx
65,1’ aE’L asz

g€ Jol zl(gz)2+(gy)2+_2(u )?)]2 dx




since div(u.) = 0. We now choose v = (v,0), with v € (H;(2))?. Then,
ignoring some positive terms on the right-hand side and passing to the limit
as € — 0, we get, using the various convergences announced earlier,

“fﬂg:gzdx+gfn a: 0% 2> “fn |2dx+gfﬂ\ , ldx
+[of v—udx—i—fﬂpdlv v)dx.

Finally, since p = p(z,y) and div(7'(u)) = 0, we can replace the last integral
on the right by [ pdiv(T(v—u))dzdy. Thus we get (4.2) for all v € (H;(S2))?
and the result follows from the density of this space in W (cf. Proposition

31). |
dx — g/

If v € Wy, then (4.2) reads as
ou 0
dx
3,2 0z 9, (L wdxtg /

Thus, we get a variational inequality in the space Wy. The ‘pressure’ p can
be recovered from (4.3) by proceeding in a manner similar to that outlined
by Duvaut and Lions [2], which we now detail below.

As usual, setting v = 2u and v = 0 successively in (4.3), we deduce that
it is equivalent to the system:

o3 ;dx—i_gfﬂ‘az‘dx Jo frudx = 0} (4.4)
M Qa:azdx"'gfn 5. dx — fni‘ﬂdx > 0

ov
0z

ou
0z

dx>/f v—u)dx. (4.3)

for every v € W,. Changing v to —v, we get that, for all v € Wy,
‘ Ou Ov

Thus, setting

(4.5) tells us that F' is a continuous linear functional on the subspace of
(L'(2))? which is the image of W, under the mapping v — 7(v) = 2.
Hence, by the Hahn - Banach theorem, there exists m € (L*°(Q))?, with
| Im| ||co <1, such that for all v € W,

Fv) = —g/ﬂm.a—;dx. (4.6)



In particular, it follows from (4.4) that

ou
/m&d" /Q

a—u@dx-i-g/m—dx—/fvdx =

ou

5| dx. (4.7)

Rewriting (4.6) as

0z 0z

for every v € W, we deduce, from Proposition 3.2, the existence of p € L*(w)
such that

Ou Ov ov .
92 ade—#g/ma—dajdy /fvdx = /wpdlv(T(y))dxdy (4.8)

for all v € W. Thus, if for v € W, we set

= ufq g:aaz (v—u)dx +g [ §|dx—gf9 %|dx
— Jo f-(v —uw)dx — fw pdiv(T (v — w)dzdy,

it follows, from the preceding considerations, that

X:g/@
Q

0z

since || |m| ||ooc < 1. Thus, (u,p) satisfies (4.2).

Consequently, it is now enough to consider (4.3) over the space W as the
limit problem (for the unknown wu).

If u; and u, are two solutions, then using u, as a test function in the
inequality for u, and vice versa, we get, on addition,

‘“/Q

Since u; — u, € Wy, it follows that (cf. Remark 3.2) u; — u, = 0. We know
that the limit problem possesses a solution, wviz. the limit u of (U1, U 2).
We can also prove this independently, using the Galerkin method. Thus, the
problem (4.3) admits a unique solution in Wj.

z

dx—g/m.@dx >0
Q@ O

2

9 dx > 0

a(ﬂl - 22)

Remark 4.1 In view of the uniqueness of the solution of the limit problem,
we deduce that the entire sequence (u. 1, U, o) converges to u. We have no
result on the uniqueness of p, even up to an additive constant.ll
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5 Discussion

We now examine the implications of the limit problem (4.2) (or, equivalently,
(4.3)) obtained in the previous section.
Let us set 0 = —Vp + o where,

o

- M@z

m being as in (4.6). Thus, if % = 0, it follows that |g| < g since || |m]| ||oo <
1. Now, rewriting (4.7) as

/|‘3—%|¢0 (

and taking into account the fact that |m| < 1, we deduce that

8_@
0z

@
0z

m.

|

on the set where |%| # 0. Hence, if |%| # 0, we get

5:/18—@—%9%. (5.1)
= 0z |g_g|

In this case, clearly, |g| > ¢g. We can thus write

9 0, if o] < g,
o =4 e (5.2)
0z g~ g, o[>y
dz

which is a lower dimensional ‘Bingham-like’ law.
If we now take into account (4.8), we get

a—dx = /fvdx—/Vpxy ).vdx

for all v € W. Thus,
oo B
0z =



and on the set where \%\ # 0, we get the system of differential equations

(using (5.1))
_0 8_@+ b = f—Vp(z,y) (5.3)

We can perform an identical analysis on a two-dimensional model with
reference domain

Q = {(z,y) |0 <y <h(z)}

where h is a sufficiently smooth function and the thin layer given by

Q= {(z,y) [ 0 <y <eh(a)}.

The limit problem will be one similar to (4.2) or (4.3) involving only deriva-
tives in y. In this case the spaces W and W, will be as follows.

W = {vel*9Q) | Z—Z € L*(Q),v=0 on I',T(v) € Hy(0,1)}

Wo = {veW | T(v) =0}

where I' denotes, as before, the upper and lower boundaries of 2 and T is
defined by

h(z)
ﬂw@)=tﬁ o(z,y)dy.

We can again derive, mathematically, the following one-dimensional ‘Bingham-
like’ law: _
du _ 0, if o] < g,
Moy = \ o -gsen(y), i3] >g.
This has been used by engineers to model a Bingham fluid in thin layers

(cf. for instance, Liu and Mei [6]). The differential equation satisfied in the
non-rigid zone will then turn out to be

By Nay g sg By = J1—D

where p = p(x) is the pressure in the limit. We can integrate this equation
in the non-rigid zone and obtain the following result, which we state without
proof:

14



Proposition 5.1 Assume that f; is a function of x alone and that g—;‘ IS

continuous in 2.

(i) If a“(:1c 0)‘9“(36 1) > 0, then ‘9“(3: y) # 0 for all y € [0, h(x)] and thus the
vertzcal line through (z,0) does not traverse the rigid zone.

(ii) If a“( O)g—(x, 1) < 0, then we can find 0 < vo(x) < vi(x) < h(x)
such that 6“( y) vanishes only in a subset of [vo(x),v1(z)]. In this case,

necessamly,
< h(@)|fi(z) = p'(z)]

and
T[] < wt0wIAE - HE@)] - o7
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