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We study the homogenization of a double porosity diffusion problem in a thin highly heterogeneous composite medium formed by two materials separated by an imperfect interface, where the solution and its flux exhibit jumps. By applying homogenization techniques specific to the thin periodic domain under study, one derives the limit problem.

Introduction

Our goal in this paper is to study a diffusion problem in a specific thin porous medium, namely a composite material formed by two constituents occupying a thin three-dimensional domain of height ε denoted Ω ε . The result is still valid in R d (d ≥ 2), but the three-dimensional case is physically more relevant, if we think, for instance, to applications in filtering type problems. The domain Ω ε is divided in two open subdomains, denoted by Ω ε 1 and Ω ε 2 and separated by an imperfect interface Γ ε . The subdomain Ω ε 2 , assumed to be disconnected, is formed by inclusions which are ε-periodically distributed in an horizontal layer and do not touch the boundary of Ω ε (see Figure 1). The domain described above is a mathematical model corresponding to the physical situation of a filtering material (for instance, textile, paper, biological tissue, soil) constituted of three thin horizontal layers of total height ε. Two of the layers -the top and the bottom one, respectively -are identical (material 1) and the third one in between is formed by two materials with high contrasting permeability properties. This last layer, which plays the role of a filter for the structure, is made up of the two materials 1 and 2, the material with high porosity (corresponding to the subdomain Ω ε

2 ) being fully included in this layer. In such a geometry, we analyze the asymptotic behavior, as the small parameter ε tends to zero, of the solution u ε = (u ε 1 , u ε 2 ) of problem (2.2) stated below. We first remark that, as already mentioned, the order of magnitude of the permeability of the material occupying the domain Ω ε 2 is very low (so the porosity is high), of order ε2 , while the permeability of the material occupying the domain Ω ε 1 is supposed to be of order one. We next remark that the flux of the solution is discontinuous across the interface separating the two materials (see Remark 2.1) and depends linearly on the jump of the solution. This problem presents various sources of singularities, all described in terms of the small positive parameter ε: the geometric one related to the interspersed periodic distribution of the components, the material one related to the permeabilities and the ones generated by the presence of an imperfect interface between the two materials.

A similar problem, in the same geometry, was addressed in [START_REF] Damlamian | Homogenization limits of diffusion equations in thin domains[END_REF] and in [ [START_REF] Amaziane | Homogenization of a single phase flow through a porous medium in a thin layer[END_REF], Section 7]. The main difference for our study is the presence of jumps, both in the solution and in its flux, while in the above mentioned papers the solution of the initial problem does not have any jump. Problems with jumps were already encountered in classical porous media, but, as far as we know, they are new in the context of the thin porous media we consider.

Our aim is to study the behavior of problem (2.2) when ε tends to zero. We apply the periodic unfolding method (see [START_REF] Cioranescu | The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems[END_REF] and the references therein), with operators suited to the present geometry. We study two representative cases for the function G ε describing the flux jump, stated explicitly in Section 2, relations (2.3) and (2.4), which lead in the limit to different modified regularized models of diffusion. Both models, presented in Theorem 4.2 and Theorem 4.5, respectively, are special cases of double porosity models, in which the dimension reduction phenonomenon occurs. The effect of the small height of the domain Ω ε is reflected in the fact that in the limit the diffusion occurs only in the horizontal bi-dimensional domain ω, where the homogenized problems are stated (see (4.9) and (4.23), respectively). Nevertheless, the solution of these homogenized problems keeps track of the local vertical variable y 3 via the values of the constant homogenized coefficients (see Remark 4.3). The combined effects of the small height, the disconnected geometry of the second material Ω ε 2 and the low permeability in Ω ε 2 are reflected in the fact that the limit function (4.11) depends on the third variable. As far as the flux jump is concerned, in the first case, a new global source term, macroscopically distributed over the bi-dimensional domain ω, appears in the right-hand side of the homogenized equation (4.9). In the second case, we note the emergence of the non-homogeneous Neumann cell problem (4.25) and the presence of its solution in the corrector (4.24).

For mathematical studies of similar diffusion problems in thin periodic media, we refer, for instance, to [START_REF] Caillerie | Homogénéisation des équations de la diffusion stationnaire dans les domaines cylindriques aplatis[END_REF], [START_REF] Damlamian | Homogenization limits of diffusion equations in thin domains[END_REF], [START_REF] Hoang | Diffusion in a highly heterogeneous thin domain[END_REF], [START_REF] Mabrouk | Homogenization of a degenerate linear parabolic problem in a highly heterogeneous thin structure[END_REF], [START_REF] Neuss-Radu | Effective transmission conditions for reaction-diffusion processes in domains separated by an interface[END_REF], [START_REF] Jerez-Hanckes | Derivation of cable equation by multiscale analysis for a model of myelinated axons[END_REF], [START_REF] Fatima | Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers[END_REF], [START_REF] Gaudiello | A two-dimensional electrostatic model of interdigitated comb drive in longitudinal mode[END_REF], [START_REF] Gahn | Singular limit for reactive diffusive transport through an array of thin channels in case of critical diffusivity[END_REF] and the references therein. For elasticity problems in related thin periodic domains, we refer to [START_REF] Caillerie | Thin elastic and periodic plates[END_REF], [START_REF] Damlamian | Homogenization limits of the equations of elasticity in thin domains[END_REF], [START_REF] Panasenko | Homogenization of a three-dimensional problem of the theory of elasticity in an inhomogeneous plate[END_REF], [START_REF] Canon | Modelling of thin elastic plates with small piezoelectric inclusions and distributed electronic circuits. Models for inclusions that are small with respect to the thickness of the plate[END_REF], [START_REF] Canon | Modelling of thin isotropic elastic plates with small piezoelectric inclusions and distributed electric circuits. Models for inclusions larger or comparable to the thickness of the plate[END_REF], [START_REF] Griso | Homogenization via unfolding in periodic layer with contact[END_REF], [START_REF] Griso | Asymptotic analysis for domains separated by a thin layer made of periodic vertical beams[END_REF]. For flow problems in thin porous media, we refer, for example, to [START_REF] Amaziane | Homogenization of a single phase flow through a porous medium in a thin layer[END_REF], [START_REF] Fabricius | Darcy's law for flow in a periodic thin porous medium confined between two parallel plates[END_REF], [START_REF] Anguiano | Darcy's laws for non-stationary viscous fluid flow in a thin porous medium[END_REF], [START_REF] Anguiano | Homogenization of Bingham flow in thin porous media[END_REF]. Double porosity phenomena are treated in [START_REF] Arbogast | Derivation of the double porosity model of single phase flow via homogenization theory[END_REF], [START_REF] Allaire | Homogenization and two-scale convergence[END_REF], [START_REF] Polisevski | The regularized diffusion in partially fractured porous media[END_REF], [START_REF] Polisevski | Heat conduction through a first-order jump interface[END_REF], [START_REF] Amaziane | Homogenization of a single phase flow through a porous medium in a thin layer[END_REF], [START_REF] Hoang | Diffusion in a highly heterogeneous thin domain[END_REF], [START_REF] Mabrouk | Homogenization of a degenerate linear parabolic problem in a highly heterogeneous thin structure[END_REF], [START_REF] Peter | Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium[END_REF], [START_REF] Donato | Homogenization of an elastic double-porosity medium with imperfect interface via the periodic unfolding method[END_REF], [START_REF] Bunoiu | On the homogenization of a two-conductivity problem with flux jump[END_REF] (see, also, the references therein). The first study of diffusion problems with jumps in solution is due to [START_REF] Auriault | Macroscopic modelling of heat transfer in composites with interfacial thermal barrier[END_REF] and since then there is a wide mathematical literature on the topic; it is impossible and out of the scope of this paper to mention all the existing relevant results in this area (see, for instance, [START_REF] Monsurrò | Homogenization of a two-component composite with interfacial thermal barrier[END_REF], [START_REF] Polisevski | The regularized diffusion in partially fractured porous media[END_REF], [START_REF] Polisevski | Heat conduction through a first-order jump interface[END_REF], [START_REF] Timofte | Multiscale analysis in nonlinear thermal diffusion problems in composite structures[END_REF], [START_REF] Donato | The periodic unfolding method for a class of imperfect transmission problems[END_REF] and the references therein). The study of problems with jumps in flux is much more recent in the mathematical literature; we refer the reader to [START_REF] Fellner | A discontinuous Poisson-Boltzmann equation with interfacial transfer: homogenisation and residual error estimate[END_REF], [START_REF] Ijioma | Pattern formation in reverse smouldering combustion: a homogenization approach[END_REF], [START_REF] Bunoiu | Homogenization of a thermal problem with flux jump[END_REF], [START_REF] Bunoiu | On the homogenization of a two-conductivity problem with flux jump[END_REF], [START_REF] Bunoiu | Upscaling of a diffusion problem with interfacial flux jump leading to a modified Barenblatt model[END_REF], [START_REF] Amar | Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices[END_REF], [START_REF] Amar | Concentration and homogenization in electrical conduction in heterogeneous media involving the Laplace-Beltrami operator[END_REF].

The paper is organized as follows: in Section 2, we introduce the microscopic problem and we fix the notation. In Section 3, we give the appropriate unfolding operators and their properties. In Section 4, we state and prove the main homogenization results of this paper.

Setting of the problem

We start by describing the geometry of Ω ε , which represents a two-phase thin porous medium (see Figure 1). Let ω be a smooth and bounded domain in R 2 . We denote the independent variable x ∈ R 3 as x = (x 1 , x 2 , x 3 ) = (x, x 3 ) and we define

Ω ε = ω × (0, ε) = {x = (x, x 3 ) ∈ R 3 | x ∈ ω, 0 < x 3 < ε}. (2.1) 
Here, ε ∈ (0, 1) is a sequence of strictly positive numbers such that 1 ε ∈ N * . This small parameter is related to the characteristic dimension of our domain. Thus, Ω ε is a thin heterogeneous layer, both its thickness and the periodicity of its heterogeneities being of order ε. The domain ω is chosen so that Ω ε is the union of a finite number (depending on ε) of replicated unit cells Y = (0, 1) 3 , rescaled with ε.

One has Y = Y 1 ∪ Y 2 , where Y 1 and Y 2 are two non-empty disjoint connected open subsets of Y such that Y 2 ⊂ Y . We assume that Γ = ∂Y 2 is Lipschitz continuous. For each κ ∈ Z 3 , we denote Y κ α = κ + Y α , for α ∈ {1, 2}.
We also define, for each ε,

Z ε = κ ∈ Z 3 | εY k 2 ⊂ Ω ε ; we set Ω ε 2 = κ∈Zε εY k 2 and Ω ε 1 = Ω \ Ω ε 2 .
The boundary of Ω ε 2 is denoted by Γ ε and n ε is the unit outward normal to Ω ε 2 . The boundary of the domain Ω ε is split into three parts: Σ ε D , the lateral boundary of the domain Ω ε , Σ ε D = {x ∈ R 3 | x ∈ ∂ω, 0 < x 3 < ε}, and Σ ε,N + , Σ ε,N -, the top and the bottom boundaries, respectively, Σ ε,N 

+ = {x ∈ R 3 | x ∈ ω, x 3 = ε}, Σ ε,N -= {x ∈ R 3 | x ∈ ω, x 3 = 0}.
ε = (u ε 1 , u ε 2 ) of the following problem:                      -div (A ε ∇u ε 1 ) = f in Ω ε 1 , -div (ε 2 A ε ∇u ε 2 ) = f in Ω ε 2 , A ε ∇u ε 1 • n ε = εh ε (u ε 1 -u ε 2 ) -G ε on Γ ε , ε 2 A ε ∇u ε 2 • n ε = εh ε (u ε 1 -u ε 2 ) on Γ ε , A ε ∇u ε 1 • ν ε ± = εk ± on Σ ε,N ± , u ε 1 = 0 on Σ ε D .
(2.2)

Remark 2.1 We remark that the flux of the solution is discontinuous across Γ ε . Indeed,

A ε ∇u ε 1 • n ε -ε 2 A ε ∇u ε 2 • n ε = -G ε .
All the assumptions made on the data are listed below.

(H1) For λ, µ ∈ R, with 0 < λ ≤ µ, let M(λ, µ, Y ) be the set of all the matrices A = (a ij ) ∈ (L ∞ (Y )) 3×3 such that for any ξ ∈ R 3 , λ|ξ| 2 ≤ (A(y)ξ, ξ) ≤ µ|ξ| 2 ,
almost everywhere in Y . For a symmetric matrix A ∈ M(λ, µ, Y ), 1-periodic in the first two variables y 1 and y 2 , we set

A ε (x) = A ε (x, x 3 ) = A x ε , x 3 ε = A x ε a.e. in Ω ε ,
which is well-defined since, due to (2.1), one has x 3 ε = y 3 ∈ (0, 1).

(H2) The function f ∈ L 2 (ω) is given.

(H3) Let h be a function 1-periodic in the first two variables y 1 and y 2 such that h ∈ L ∞ (Γ) and there exists h 0 ∈ R with 0 < h 0 < h(y) a.e. on Γ. We set

h ε (x) = h x ε a.e. on Γ ε .
(H4) Let g be a function 1-periodic in the first two variables y 1 and y 2 that belongs to L 2 (Γ). We define

g ε (x) = g x ε a.e. on Γ ε .
For the given function G ε in (2.2), we consider the following two relevant situations (see [START_REF] Cioranescu | The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems[END_REF] and the references therein):

Case 1 : G ε (x) = εg x ε , if M Γ (g) = 0, (2.3) Case 2 : G ε (x) = g x ε , if M Γ (g) = 0. (2.4)
Here, M Γ (g) = 1 |Γ| Γ g(y) dy denotes the mean value of the function g on Γ.

(H5) The functions k + ∈ L 2 (ω) and k -∈ L 2 (ω) are given.

In order to write the variational formulation of problem (2.2), we introduce, for every positive ε < 1, the Hilbert space

H ε = V ε × H 1 (Ω ε 2 ).
The space

V ε = v ∈ H 1 (Ω ε 1 )| v = 0 on Σ ε D is endowed with the norm v V ε = ∇v L 2 (Ω ε 1 )
, for any v ∈ V ε , and the space H 1 (Ω ε

2 ) is equipped with the standard norm. On the space H ε , we consider the scalar product

(u, v) H ε = Ω ε 1 ∇u 1 ∇v 1 dx + Ω ε 2 ε 2 ∇u 2 ∇v 2 dx + ε Γ ε (u 1 -u 2 )(v 1 -v 2 ) dσ x , (2.5) 
where u = (u 1 , u 2 ) and v = (v 1 , v 2 ) belong to H ε . The norm generated by the scalar product (2.5) is given by

v 2 H ε = ∇v 1 2 L 2 (Ω ε 1 ) + ε 2 ∇v 2 2 L 2 (Ω ε 2 ) + ε v 1 -v 2 2 L 2 (Γ ε ) . (2.6)
The variational formulation of problem (2.2) is the following one: find

u ε ∈ H ε such that a(u ε , v) = l(v), ∀v ∈ H ε , (2.7) 
where the bilinear form a :

H ε × H ε → R and the linear form l : H ε → R are given by a(u, v) = Ω ε 1 A ε ∇u 1 ∇v 1 dx + ε 2 Ω ε 2 A ε ∇u 2 ∇v 2 dx + ε Γ ε h ε (u 1 -u 2 )(v 1 -v 2 ) dσ x and l(v) = Ω ε 1 f v 1 dx + Ω ε 2 f v 2 dx + Γ ε G ε v 1 dσ x + ε Σ ε,N + k + v 1 dσ + x + ε Σ ε,N - k -v 1 dσ - x ,
respectively. We give in the next lemma a result which is a key argument allowing us to prove existence, uniqueness and a priori estimates for the solution of the variational problem (2.7). In the sequel, unless otherwise mentioned, by C we denote a positive constant which is independent of ε and whose value can change from line to line. Lemma 2.2 For every v given in the space H ε , the following inequalities hold true:

v 1 L 2 (Ω ε 1 ) ≤ C v H ε , v 2 L 2 (Ω ε 2 ) ≤ C v H ε .
Proof. The first inequality is a direct consequence of the definition (2.6), together with the Poincaré inequality applied to functions from the space V ε , namely

v 1 L 2 (Ω ε 1 ) ≤ C ∇v 1 L 2 (Ω ε 1 ) . (2.8)
In order to prove the second inequality, we make use of the following relations:

v 2 L 2 (Ω ε 2 ) ≤ C(ε ∇v 2 L 2 (Ω ε 2 ) + √ ε v 2 L 2 (Γ ε ) ) (2.9) and √ ε v 1 L 2 (Γ ε ) ≤ C(ε ∇v 1 L 2 (Ω ε 1 ) + v 1 L 2 (Ω ε 1 )
).

(2.10) Inequality (2.9) is an adaptation of a result in [START_REF] Polisevski | The regularized diffusion in partially fractured porous media[END_REF] to the present geometry. For the derivation of (2.10), we refer the reader to [START_REF] Melnyk | Asymptotic analysis of boundary-value problems in thin perforated domains with rapidly varying thickness[END_REF]. The triangular inequality applied in (2.9), together with (2.10) and (2.8), imply

v 2 L 2 (Ω ε 2 ) ≤ C(ε ∇v 2 L 2 (Ω ε 2 ) + √ ε v 2 -v 1 L 2 (Γ ε ) + √ ε v 1 L 2 (Γ ε ) ) ≤ C(ε ∇v 1 L 2 (Ω ε 1 ) + ε ∇v 2 L 2 (Ω ε 2 ) + √ ε v 1 -v 2 L 2 (Γ ε ) + v 1 L 2 (Ω ε 1 ) ) ≤ C( ∇v 1 L 2 (Ω ε 1 ) + ε ∇v 2 L 2 (Ω ε 2 ) + √ ε v 1 -v 2 L 2 (Γ ε ) ),
and the second inequality then follows, by using the definition (2.6).

Lemma 2.3 For G ε satisfying hypothesis (H4) and v 1 ∈ V ε , the following estimate holds:

I = Γ ε G ε (x)v 1 (x) dσ x ≤ √ εC ∇v 1 L 2 (Ω ε 1 )
.

Proof. In order to prove this result, we follow the ideas in [START_REF] Cioranescu | The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems[END_REF], Proposition 4.50. By using Definition 3.1 and Proposition 3.3 below, one has

Γ ε G ε (x)v 1 (x) dσ x = ω×Γ T ε b (G ε )T ε 1 (v 1 ) dx dσ y = ω×Γ T ε b (G ε ) T ε 1 (v 1 ) -M 1 ε (v 1 ) dx dσ y + ω×Γ T ε b (G ε )M 1 ε (v 1 ) dx dσ y = I 1 + I 2 ,
where the operator

M 1 ε : L 2 (ω) -→ L 2 (ω) is defined by M 1 ε (v 1 )(x) = 1 |Y 1 | Y1 T ε 1 (v 1 )(x, y) dy.
For the integral I 1 , one has

|I 1 | ≤ T ε b (G ε ) L 2 (ω×Γ) T ε 1 (v 1 ) -M 1 ε (v 1 ) L 2 (ω×Γ) ≤ C T ε b (G ε ) L 2 (ω×Γ) ∇ y T ε 1 (v 1 ) L 2 (ω×Y1) ≤ √ εC T ε b (G ε ) L 2 (ω×Γ) ∇v 1 L 2 (Ω ε 1 )
, where we use Poincaré-Wirtinger inequality and Proposition 3.3, (iii) and (iv).

For the integral I 2 , one has

|I 2 | ≤ ω×Γ T ε b (G ε )M 1 ε (v 1 ) dx dσ y ≤ |Γ| ω M b ε (G ε )M 1 ε (v 1 ) dx ≤ C M b ε (G ε ) L 2 (ω) M 1 ε (v 1 ) L 2 (ω) ≤ C √ ε M b ε (G ε ) L 2 (ω) ∇v 1 L 2 (Ω ε 1 ),
where

M b ε (G ε ) = 1 |Γ| Γ T ε b (G ε )(•, y
) dσ y and we used the definition of M 1 ε , Proposition 3.3, (iii) and Poincaré inequality. Combining the previous estimates on I 1 et I 2 , we obtain:

I ≤ √ εC ∇v 1 L 2 (Ω ε 1 ) T ε b (G ε ) L 2 (ω×Γ) + 1 ε M b ε (G ε ) L 2 (ω) .
According to hypothesis (H4), one gets the desired result.

Theorem 2.4 For any ε ∈ (0, 1), the variational problem (2.7) has a unique solution u ε ∈ H ε . Moreover, there exists a constant C > 0, independent of ε, such that

1 √ ε u ε 1 L 2 (Ω ε 1 ) ≤ C, 1 √ ε u ε 2 L 2 (Ω ε 2 ) ≤ C (2.11) and 1 √ ε ∇u ε 1 L 2 (Ω ε 1 ) ≤ C, √ ε ∇u ε 2 L 2 (Ω ε 2 ) ≤ C, u ε 1 -u ε 2 L 2 (Γ ε ) ≤ C.
(2.12)

Proof. In order to prove the existence and the uniqueness of the solution for problem (2.7), we apply the Lax-Milgram theorem for the space H ε endowed with the norm (2.6). Due to the hypotheses (H1) and (H2), we easily get that the bilinear form a is coercive and continuous. Indeed, we have

a(v, v) ≥ C v 2 H ε , ∀v ∈ H ε , and a(u, v) ≤ C u H ε v H ε , ∀u, v ∈ H ε .
Let us prove now that the linear form l is continuous. More precisely, we shall prove

l(v) ≤ √ εC v H ε , ∀v ∈ H ε .
One obviously has

|l(v)| ≤ f L 2 (Ω ε 1 ) v 1 L 2 (Ω ε 1 ) + f L 2 (Ω ε 2 ) v 2 L 2 (Ω ε 2 ) + Γ ε G ε (x)v 1 (x) dσ x + ε Σ ε,N + k + v 1 dσ + x + ε Σ ε,N - k -v 1 dσ - x .
(2.13) By using the hypotheses (H2), (H4), (H5) and Lemma 2.3, we get

f L 2 (Ω ε 1 ) v 1 L 2 (Ω ε 1 ) ≤ √ εC v 1 L 2 (Ω ε 1 ) ; f L 2 (Ω ε 2 ) v 2 L 2 (Ω ε 2 ) ≤ √ εC v 2 L 2 (Ω ε 2 ) , Γ ε G ε (x)v 1 (x) dσ x ≤ √ εC ∇v 1 L 2 (Ω ε 1 ) ; ε Σ ε,N ± k ± v 1 dσ ± x ≤ √ εC ∇v 1 L 2 (Ω ε 1 )
.

Coming back to (2.13), we obtain:

|l(v)| ≤ √ εC( v 1 L 2 (Ω ε 1 ) + v 2 L 2 (Ω ε 2 ) + ∇v 1 L 2 (Ω ε 1 ) ).
By using Lemma 2.2 and the definition (2.6), we get the continuity of l. Thus, the Lax-Milgram theorem applies.

In order to obtain the a priori estimates (2.11) and (2.12), we take v = u ε in the variational formulation (2.7). By using the coerciveness of a and the continuity of l, we get

u ε H ε ≤ √ εC,
which obviously implies (2.12). Estimates (2.11) are then obtained by applying Lemma 2.2.

Unfolding operators for the thin domain and compactness results

We recall here the definition and the main properties of the unfolding operators specific to the geometry of our thin periodic domain (see [START_REF] Onofrei | The unfolding operator near a hyperplane and its application to the Neumann sieve model[END_REF], [START_REF] Neuss-Radu | Effective transmission conditions for reaction-diffusion processes in domains separated by an interface[END_REF], [START_REF] Cioranescu | The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems[END_REF], [START_REF] Griso | Homogenization via unfolding in periodic layer with contact[END_REF], [START_REF] Donato | The periodic unfolding method for a class of imperfect transmission problems[END_REF]). One of the main features of these operators is that they allow us to simultaneously perform homogenization and dimension reduction. For x ∈ R 3 , we denote by [x] Y its integer part κ ∈ Z 3 , such that x -[x] Y ∈ Y , and we set {x}

Y = x -[x] Y for x ∈ R 3 . So, for every x ∈ R 3 , we have x = ε x ε Y + x ε Y . In particular, if x ∈ Ω ε (see (2.1)), one has x = ε (x,0) ε Y + x ε Y .
According, for instance, to Section 3.1 in [START_REF] Griso | Homogenization via unfolding in periodic layer with contact[END_REF], one has: Definition 3.1 For any Lebesgue measurable function ϕ on Ω ε α , α ∈ {1, 2}, we define the periodic unfolding operators by the formula

T ε α (ϕ)(x, y) = ϕ ε (x, 0) ε Y + εy , for a.e. (x, y) ∈ ω × Y α .
If ϕ is a function defined in Ω ε , for simplicity, we write T ε α (ϕ) instead of T ε α (ϕ| Ω ε α ). For any function ϕ which is Lebesgue-measurable on Γ ε , the periodic boundary unfolding operator T ε b is defined by (ii) for every ϕ ∈ L 1 (Ω ε α ), one has

T ε b (ϕ)(x, y) = ϕ ε (x, 0) ε Y + εy , for a.e. (x, y) ∈ ω × Γ. Remark 3.2 We notice that if ϕ ∈ W 1,p (Ω ε α ) (p ∈ [1, +∞]), then T ε b (ϕ) is, in fact, the trace of T ε α (ϕ) on ω × Γ.
Ω ε α ϕ(x) dx = ε ω×Yα T ε α (ϕ)(x, y) dx dy;
(iii) for every ϕ ∈ L 2 (Ω ε α ), one has

T ε α (ϕ) L 2 (ω×Yα) = 1 √ ε ϕ L 2 (Ω ε α ) ; (iv) for every ϕ ∈ H 1 (Ω ε α ), one has ∇ y (T ε α (ϕ)) = εT ε α (∇ϕ) a.e. in ω × Y α ; (v) for every ϕ ∈ L 1 (Γ ε ), one has Γ ε ϕ(x) dσ x = ω×Γ T ε b (ϕ)(x, y) dx dσ y ;
(vi) for every ϕ ∈ L 2 (Γ ε ), one has

T ε b (ϕ) L 2 (ω×Γ) = ϕ L 2 (Γ ε ) .
Remark 3.4 Throughout this paper, we are allowed to not write explicitly the measure of Y 1 = (0, 1) 2 , since it equals 1.

One has the following compactness result:

Proposition 3.5 Let v ε = (v ε 1 , v ε 2 ) ∈ H ε be such that v ε H ε ≤ √ εC. (3.1) 
Then, up to a subsequence, still denoted by ε, there exist

v 1 ∈ H 1 0 (ω), v 1 ∈ L 2 ω, H 1 per (Y 1 ) and v 2 ∈ L 2 ω, H 1 (Y 2 ) such that T ε 1 (v ε 1 ) v 1 weakly in L 2 ω, H 1 (Y 1 ) , T ε 1 (∇ xv ε 1 ) ∇ xv 1 + ∇ ȳ v 1 weakly in L 2 (ω × Y 1 ), T ε 1 (∂ x3 v ε 1 ) ∂ y3 v 1 weakly in L 2 (ω × Y 1 ), T ε 2 (v ε 2 ) v 2 weakly in L 2 (ω, H 1 (Y 2 )), εT ε 2 (∇v ε 2 ) ∇ y v 2 weakly in L 2 (ω × Y 2 ) ,
where M Γ ( v 1 ) = 0 for almost every x ∈ ω and the space H 1 per (Y 1 ) is defined by

H 1 per (Y 1 ) = {v ∈ H 1 (Y 1 ) | v is 1-periodic in y 1 and y 2 }.
Proof. Relation (3.1) and the definition of the norm in

H ε imply 1 √ ε v ε 1 L 2 (Ω ε 1 ) + 1 √ ε ∇v ε 1 L 2 (Ω ε 1 ) ≤ C, 1 √ ε v ε 2 L 2 (Ω ε 2 ) + √ ε ∇v ε 2 L 2 (Ω ε
2 ) ≤ C. Then, according to Definition 3.1 and Proposition 3.3, (iii), (iv), there exists a constant C > 0, independent of ε, such that

T ε 1 (v ε 1 ) L 2 (ω×Y1) ≤ C, T ε 1 (∇v ε 1 ) L 2 (ω×Y1) ≤ C, T ε 2 (v ε 2 ) L 2 (ω×Y2) ≤ C, ε T ε 2 (∇v ε 2 ) L 2 (ω×Y2) ≤ C.
The convergences follow by applying results in [START_REF] Neuss-Radu | Effective transmission conditions for reaction-diffusion processes in domains separated by an interface[END_REF], namely Proposition 4.7, Proposition 4.4 (i) for the sequences (v ε 1 ) and (∇v ε 1 ), and, respectively, Proposition 4.4 (ii) for the sequences (v ε 2 ) and (∇v ε 2 ) (see, also, [START_REF] Jerez-Hanckes | Derivation of cable equation by multiscale analysis for a model of myelinated axons[END_REF], [START_REF] Griso | Homogenization via unfolding in periodic layer with contact[END_REF], [START_REF] Cioranescu | The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems[END_REF]).

Homogenization results

Our goal in this section is to pass to the limit, with ε → 0, in the variational formulation (2.7) of problem (2.2). To this end, we make use of the periodic unfolding operators and the general compactness results given in Section 3. More precisely, using the a priori estimates (2.11)-(2.12) and the general compactness results from Proposition 3.5, it follows that there exist

u 1 ∈ H 1 0 (ω), u 1 ∈ L 2 (ω, H 1 per (Y 1 )), u 2 ∈ L 2 (ω, H 1 (Y 2 )
), with M Γ ( u 1 ) = 0, and such that, up to a subsequence, for ε → 0, we get:

T ε 1 (u ε 1 ) u 1 weakly in L 2 (ω, H 1 (Y 1 )), T ε 1 (∇ xu ε 1 ) ∇ x u 1 + ∇ ȳ u 1 weakly in L 2 (ω × Y 1 ), T ε 1 (∂ x3 u ε 1 ) ∂ y3 u 1 weakly in L 2 (ω × Y 1 ), T ε 2 (u ε 2 ) u 2 weakly in L 2 (ω, H 1 (Y 2 )), εT ε 2 (∇u ε 2 ) ∇ y u 2 weakly in L 2 (ω × Y 2 ). (4.1)
The special form of the limits in convergences (4.1) 2 and (4.1) 3 suggests us to introduce the following notation: to every w = w(x) ∈ H 1 (ω), whose gradient ∇ xw(x) has two components, we associate the tridimensional vector ∇w(x) defined by ∇w(x) = (∇ xw(x), 0).

Let W per (Y 1 ) = {v ∈ H 1 per (Y 1 ) | M Γ (v) = 0}.
We introduce the space

V = H 1 0 (ω) × L 2 (ω; W per (Y 1 )) × L 2 ω, H 1 (Y 2 )
and for all

V = (v, v 1 , v 2 ) ∈ V we define V 2 V = ∇v + ∇ y v 1 2 L 2 (ω×Y1) + ∇ y v 2 2 L 2 (ω×Y2) + v -v 2 2 L 2 (ω×Γ) ,
which is a norm (see, for instance, Lemma 5.4 in [START_REF] Cioranescu | The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems[END_REF]).

In order to pass to the limit in (2.7), we will distinguish between two cases, depending on the form of the function G ε .

Case 1: G ε = εg x ε , if M Γ (g) = 0.
Theorem 4.1 Under the assumption (2.3), the unique solution u ε = (u ε 1 , u ε 2 ) of the variational problem (2.7) converges, in the sense of (4.1), to the unique solution (u 1 , u 1 , u 2 ) ∈ V of the following unfolded limit problem:

ω×Y1 A(y)(∇u 1 + ∇ y u 1 )(∇ϕ + ∇ y Φ 1 ) dx dy + ω×Y2 A(y)∇ y u 2 ∇ y Φ 2 dx dy+ ω×Γ h(y)(u 1 -u 2 )(ϕ -Φ 2 ) dx dσ y = |Y 1 | ω f (x)ϕ(x) dx + ω×Y2 f (x)Φ 2 (x, y) dx dy+ |Γ|M Γ (g) ω ϕ(x) dx + ω k + (x)ϕ(x) dx + ω k -(x)ϕ(x) dx, (4.2) 
for all ϕ ∈ H 1 0 (ω), Φ 1 ∈ L 2 (ω, H 1 per (Y 1 )) and Φ 2 ∈ L 2 (ω, H 1 (Y 2 )).
Proof. In order to get the limit problem (4.2), we unfold the variational formulation (2.7). By using the properties of the unfolding operators, we obtain

ε ω×Y1 T ε 1 (A ε )T ε 1 (∇u ε 1 )T ε 1 (∇v 1 ) dx dy + ε ω×Y2 T ε 2 (A ε )T ε 2 (ε∇u ε 2 )T ε 2 (ε∇v 2 ) dx dy+ ε ω×Γ h(y)(T ε 1 (u ε 1 ) -T ε 2 (u ε 2 ))(T ε 1 (v 1 ) -T ε 2 (v 2 )) dx dσ y = ε ω×Y1 T ε 1 (f )T ε 1 (v 1 ) dx dy + ε ω×Y2 T ε 2 (f )T ε 2 (v 2 ) dx dy + ω×Γ T ε b (G ε )T ε 1 (v 1 ) dx dσ y + ε ω×Y1 T ε (k + )(x, ȳ)T ε 1 (v 1 )(x, ȳ, ε) dx dȳ + ε ω×Y1 T ε (k -)(x, ȳ)T ε 1 (v 1 )(x, ȳ, 0) dx dȳ, (4.3) 
where Y 1 = (0, 1) 2 , ȳ = (y 1 , y 2 ) and T ε is the classical unfolding operator from [START_REF] Cioranescu | The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems[END_REF], Definition 1.2, considered here as an operator from L 2 (ω) to L 2 (ω × Y 1 ).

Recalling that x = (x, x 3 ), we choose in the unfolded problem (4.3) the test functions

v 1 (x, x 3 ) = ϕ(x) + εω 1 (x) ψ 1 x ε , x 3 ε , v 2 (x, x 3 ) = ω 2 (x) ψ 2 x ε , x 3 ε , (4.4) 
with ϕ, ω 1 , ω 2 ∈ D(ω),

ψ 1 ∈ H 1 per (Y 1 ), ψ 2 ∈ H 1 (Y 2
). One has the following convergences:

T ε 1 (v 1 ) → ϕ(x) strongly in L 2 (ω × Y 1 ), (4.5) 
T ε 1 (∇v 1 ) → ∇ϕ(x) + ∇ y Φ 1 strongly in L 2 (ω × Y 1 ), (4.6) 
T ε 2 (v 2 ) → Φ 2 (x, y) strongly in L 2 (ω × Y 2 ), (4.7) 
T ε 2 (ε∇v 2 ) → ∇ y Φ 2 strongly in L 2 (ω × Y 2 ), (4.8) 
where Φ 1 (x, y) = ω 1 (x) ψ 1 (y) and Φ 2 (x, y) = ω 2 (x) ψ 2 (y).

After dividing equation (4.3) by ε, we pass to the limit with ε → 0, by using convergences (4.1) and (4.5)-(4.8). The passage to the limit for the terms which need more attention is detailed in what follows: Due to the uniqueness of (u 1 , u 1 , u 2 ) ∈ V, all the above convergences hold true for the whole sequence. Theorem 4.2 Under the assumption (2.3), the unique solution u ε = (u ε 1 , u ε 2 ) of the variational problem (2.7) converges, in the sense of (4.1), to (u 1 , u 1 , u 2 ) ∈ V, where u 1 is the unique solution of the homogenized problem

1 ε ω×Γ T ε b (G ε )T ε 1 (v 1 ) dx dσ y = ω×Γ T ε b g x ε , x 3 ε T ε 1 ϕ(x) + εω 1 (x)ψ 1 x ε , x 3 ε dx dσ y = ω×Γ g(y)T ε 1 (ϕ)(x, y) dx dσ y + ε ω×Γ g(y)T ε 1 (ω 1 )(x, y)T ε 1 (ψ 1 )(x, y) dx dσ y → |Γ|M Γ (g) ω ϕ(x) dx, ω×Y1 T ε (k + )(x, ȳ)T ε 1 (v 1 )(x, ȳ, ε) dx dȳ → ω×Y1 k + (x)ϕ(x) dx dȳ = ω k + (x)ϕ(x) dx, ω×Y1 T ε (k -)(x, ȳ)T ε 1 (v 1 )(x, ȳ, 0) dx dȳ → ω k -(x)ϕ(x)
-div x (A hom ∇ xu 1 (x)) = f (x) + |Γ|M Γ (g) + k + (x) + k -(x) in ω, u 1 = 0 on ∂ω (4.9)
and

u 1 (x, y) = - 2 j=1 ∂u 1 ∂x j (x)χ j 1 (y) in ω × Y 1 , (4.10) 
u 2 (x, y) = u 1 (x) + f (x)χ 2 (y) in ω × Y 2 . ( 4 

.11)

Here, A hom is the constant homogenized 2 × 2 matrix whose entries are defined, for i, j ∈ {1, 2}, by

A hom ij = Y1 a ij - 3 k=1 a ik ∂χ j 1 ∂y k dy. (4.
12)

The function

χ 1 = (χ 1 1 , χ 2 1 ) ∈ (H 1 per (Y 1 
)) 2 and the scalar function χ 2 ∈ H 1 (Y 2 ) are the weak solutions of the following cell problems:

         -div y (A(y)(∇ y χ j 1 -e j )) = 0 in Y 1 , (A(y)(∇ y χ j 1 -e j )) • n = 0 on Γ, (A(y)(∇ y χ j 1 -e j )) • ν ± = 0 on Σ 1 ± , M Γ (χ j 1 ) = 0 (4.13)
which imply that the scalar function χ 2 is the solution of the Robin cell problem (4.14).

By choosing now Φ 1 = Φ 2 = 0 in (4.2), we obtain:

ω×Y1 A(y)(∇u 1 + ∇ y u 1 )∇ϕ dx dy + ω×Γ h(y)(u 1 -u 2 )ϕ dx dσ y = |Y 1 | ω f (x)ϕ(x) dx + |Γ|M Γ (g) ω ϕ(x) dx + ω k + (x)ϕ(x) dx + ω k -(x)ϕ(x) dx. (4.17)
We notice that 

dx+ ω k + (x)ϕ(x) dx + ω k -(x)ϕ(x) dx.
We integrate this last equality by parts with respect to x and, by using (4.10) and (4.13), we are led to the homogenized problem (4.9) with the homogenized coefficients given by (4.12).

Remark 4.3 The 2 × 2 homogenized matrix A hom is lower dimensional with respect to the initial matrix A, but information coming from the vertical direction of the initial problem is preserved. Indeed, the value of the constant coefficients (4.12) is influenced by the third local variable y 3 , through the solution χ 1 of the cell problem (4.13). Consequently, the solution u 1 of the homogenized problem (4.9) is implicitly influenced by the third local variable y 3 . The solution u 1 also depends on the third direction via the vertical fluxes k + and k -, respectively. As far as the limit solutions u 1 and u 2 are concerned, their dependence on the third local variable y 3 is explicit, via the solutions χ 1 and χ 2 of the three-dimensional local problems (4.13) and (4.14), respectively.

We analyze now the second relevant situation for the jump function G ε .

Case

2: G ε (x) = g x ε , if M Γ (g) = 0.
Theorem 4.4 Under the assumption (2.4), the unique solution u ε = (u ε 1 , u ε 2 ) of the variational problem (2.7) converges, in the sense of (4.1), to the unique solution (u 1 , u 1 , u 2 ) ∈ V of the following unfolded limit problem:

ω×Y1 A(y)(∇u 1 + ∇ y u 1 )(∇ϕ + ∇ y Φ 1 ) dx dy + ω×Y2 A(y)∇ y u 2 ∇ y Φ 2 dx dy+ ω×Γ h(y)(u 1 -u 2 )(ϕ -Φ 2 ) dx dσ y = |Y 1 | ω f (x)ϕ(x) dx + ω×Y2 f (x)Φ 2 (x, y) dx dy+ ω×Γ g(y)Φ 1 (x, y) dx dσ y + ω k + (x)ϕ(x) dx + ω k -(x)ϕ(x) dx, (4.18) for all ϕ ∈ H 1 0 (ω), Φ 1 ∈ L 2 (ω, H 1 per (Y 1 )), Φ 2 ∈ L 2 (ω, H 1 (Y 2 )).
Proof. To obtain the problem (4.18), we pass to the limit in the unfolded form of the variational formulation (2.7) with the test functions (4.4), which satisfy (4.5)-(4.8). The only difference with respect to the proof of Theorem 4.1 is the passage to the limit in the term involving the function G ε . More precisely, we have now:

1 ε ω×Γ T ε b (G ε )T ε 1 (v 1 ) dx dσ y = 1 ε ω×Γ T ε b g x ε , x 3 ε T ε 1 ϕ(x) + εω 1 (x)ψ 1 x ε , x 3 ε dx dσ y = 1 ε ω×Γ g(y)T ε 1 (ϕ)(x, y) dx dσ y + ω×Γ g(y)T ε 1 (ω 1 )(x, y)T ε 1 (ψ 1 )(x, y) dx dσ y → ω×Γ g(y)Φ 1 (x, y) dx dσ y , since 1 ε ω×Γ g(y)T ε b (ϕ)(x, y) dx dσ y → 0. (4.19)
Indeed, let us denote

J ε = 1 ε ω×Γ g(y)T ε b (ϕ)(x, y) dx dσ y .
Then,

J ε = 1 ε ω×Γ g(y) [T ε 1 (ϕ) -M Γ (T ε 1 (ϕ))] dx dσ y + 1 ε ω×Γ g(y)M Γ (T ε 1 (ϕ)) dx dσ y = J ε 1 + J ε 2 .
Set y Γ = y -M Γ (y). For the first integral J ε 1 , we have

J ε 1 → ω×Γ g(y)y Γ • ∇ϕ dx dσ y , (4.20) 
since, following the same ideas as in [START_REF] Cioranescu | The Periodic Unfolding Method. Theory and Applications to Partial Differential Problems[END_REF], [START_REF] Donato | The periodic unfolding method for a class of imperfect transmission problems[END_REF], and [START_REF] Bunoiu | Upscaling of a diffusion problem with interfacial flux jump leading to a modified Barenblatt model[END_REF], one can prove that

T ε 1 (ϕ) -M Γ (T ε 1 (ϕ)) ε → y Γ • ∇ϕ strongly in L 2 (ω × Γ).
Using the equality )), we are led to the unfolded limit problem (4.18). Due to the uniqueness of (u 1 , u 1 , u 2 ) ∈ V, which can be proven by the Lax-Milgram theorem, all the above convergences hold true for the whole sequence and our theorem is proven. We integrate this last equality by parts with respect to x and, using (4.30) and the definition (4.12) of the matrix A hom , we obtain

-div x (A hom ∇ xu 1 ) = f + k + + k -+ div x Y1
A(y)∇η(y) dy in ω, which leads immediately to the homogenized problem (4.23).

Remark 4.6

We remark that the homogenized matrix A hom and, so, the solution u 1 , are independent of the function h, while the limit u 2 depends on h, via the function χ 2 . As far as the contribution of the jump function g is concerned, its effects are analogous to the ones observed in [START_REF] Bunoiu | Homogenization of a thermal problem with flux jump[END_REF], [START_REF] Bunoiu | On the homogenization of a two-conductivity problem with flux jump[END_REF] and [START_REF] Bunoiu | Upscaling of a diffusion problem with interfacial flux jump leading to a modified Barenblatt model[END_REF] for similar problems studied in classical porous media: in case one, the function g is recovered as an additional source term in the homogenized problem (4.9), while in case two the function g is recovered at a finer scale, in the expression of the corrector (4.24), via the solution of the Neumman-type problem (4.25).
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Theorem 4 . 5 , u ε 2 )u 1
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and -div y (A(y)∇ y χ 2 ) = 1 in Y 2 , A(y)∇ y χ 2 • n + hχ 2 = 0 on Γ, (4.14) where n denotes the unit outward normal to Y 2 and ν ± = (0, 0, ±1).

Proof. By choosing ϕ = 0 in the unfolded limit problem (4.2), we obtain: 

). Then, taking Φ 2 = 0 in (4.15), we get:

) such that Φ 1 = 0 on ω × ∂Y 1 and integrating by parts with respect to y, we are formally led to

Taking now in (4.16) a test function

Taking in (4.16) a test function

) which is zero on Σ 1 -(and which is zero on Σ 1 + ), we get

The linearity of the problem suggests us to search u 1 (x, y) = -∇u 1 (x) • χ 1 (y), where the vector χ 1 (y) = (χ 1 1 (y), χ 2 1 (y), χ 3 1 (y)) belonging to (H 1 per (Y 1 )) 3 has to be determined. Recalling that ∇u 1 (x) = (∇ xu 1 (x), 0), we notice that only the first two components of χ 1 will play a role in our analysis. Inserting this factorization into the equation, we therefore obtain the two local problems (4.13).

By choosing now Φ 1 = 0 in (4.15), we get:

). This formally implies

which suggests us to look for the function u 2 of the form

By replacing this form of u 2 in the two previous equations, we obtain

Here, A hom is the homogenized matrix whose entries are given by (4.12) and the functions χ j 1 and χ 2 are defined by (4.13) and (4.14). The function η, 1-periodic in y 1 and y 2 , is the unique solution of the following non-homogeneous Neumann cell problem:

where n denotes the unit outward normal to Y 2 and ν ± = (0, 0, ±1).

Proof. By taking ϕ = 0 in the unfolded limit problem (4.18), we obtain:

By taking now suitable test functions Φ 2 , we formally obtain

We then find the functions u 2 and χ 2 exactly like in the proof of Theorem 4.2. Now, let us take Φ 2 = 0 in (4.26). We formally obtain ω×Y1 A(y)(∇u 1 + ∇ y u 1 )∇ y Φ 1 dx dy = ω×Γ g(y)Φ 1 dx dσ y .

By taking suitable test functions Φ 1 , we obtain

(A(y)∇ y u 1 )

The linearity of the problem (4.28) and the presence of the function g in relation (4.29) suggest us to search

where the vector χ 1 (y) = (χ 1 1 (y), χ 2 1 (y), χ 3 1 (y)) belonging to (H 1 per (Y 1 )) 3 and the function η in H 1 (Y 1 ) have to be determined. Recalling that ∇u 1 (x) = (∇ xu 1 (x), 0), we notice that only the first two components of χ 1 will play a role in our analysis. Actually, the functions χ j 1 are defined by (4.13) and the function η remains to be found. To this end, we replace u 1 given by (4.30) in (4.28)-(4.29). By using (4.13), we deduce that the scalar function η is the unique solution of the cell problem (4.25), which is a non-homogeneous Neumann problem. The compatibility condition for this problem is satisfied, thanks to the hypothesis (2.4).