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Abstract: This article is dedicated to the study of airborne GNSS-R signal processing techniques
for water body detection and edge localization using a low-altitude airborne carrier with high rate
reflectivity measurements. A GNSS-R setup on-board a carrier with reduced size and weight was
developed for this application. We develop a radar technique for automatic GNSS signal segmentation
in order to differentiate in-land water body surfaces based on the reflectivity measurements associated
to different areas of reflection. Such measurements are derived from the GNSS signal amplitudes. We
adapt a transitional model to characterize the changes in the measurements of the reflected GNSS
signals from one area to another. We propose an on-line/off-line change detection algorithm for GNSS
signal segmentation. A real flight experimentation took place in the context of this work obtaining
reflections from different surfaces and landforms. We show, using the airborne GNSS measurements
obtained, that the proposed radar technique detects in-land water body surfaces along the flight
trajectory with high temporal (50 Hz ) and spatial resolution (order of 10 to 100 m2). We also show
that we can localize the edges of the detected water body surfaces at meter accuracy.

Keywords: GNSS-R; airborne reflectometry; signal segmentation; reflectivity; water body detection;
edge localization

1. Introduction

Soil moisture is one of the key parameters in the hydrological cycle, i.e., the continuous
circulation of water between oceans, atmosphere and land in a neverending process [1,2].
It directly influences the amount of evaporation, infiltration, and the amount of water
uptake by plants, and was recognized as an Essential Climate Variable (ECV) [3,4]. In this
context, measuring the soil moisture content can be of a great benefit in a large number
of applications. Disciplines such as hydrology, climatology, and agriculture, require esti-
mating the soil moisture content for prediction of potential flood and drought hazards,
understanding land–atmosphere energy balance, and crop yield expectation [5,6]. The
study of soil moisture content can be applied to observe the distribution of in-land water
body surfaces.

Floodplains and in-land water body surfaces cover at least 12.1× 106 km2 (8%) of
landscapes on Earth [7,8]. They play a significant role in the water cycle through river flow
variability, flood mitigation, groundwater recharge and water quality improvement [9].
Despite its important role, little knowledge has been acquired concerning the water stored
in floodplains and wetlands as well as its temporal variations from regional to global scales
until remote sensing techniques emerged as potential instruments for soil moisture and
water body detection. In this regard, soil moisture and water content remote sensing on a
global and regional scale has been an active area of research over the past few decades. It
has been proven that the microwave band that is optimal for soil moisture remote sensing
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lies within the L-band [10]. It is shown that the soil dielectric constant value that governs
the surface reflectivity can be determined from only the top 0–5 cm of soil [10].

Global Navigation Satellite Systems-Reflectometry (GNSS-R) is an emerging bistatic
remote sensing technique that uses the GNSS signals (mainly GPS signals) as sources of
opportunity to characterize Earth surface. GNSS systems continuously transmit signals
to Earth surface at different L-bands ranging between 1 and 2 GHz. A GNSS-R sensor
receives the direct GNSS signals from the satellites as well as those reflected from the
Earth’s surface. The reflected signals carry information about the reflecting surface, such as
its height, shape, and moisture content. The reflecting surface can be an ocean, in which
case, the sea level altimetry [11,12], wind speed [13,14], and ocean salinity [15] can be
estimated, or land for studying the cryosphere including snow depth estimation [16,17] and
sea ice detection [18,19], or for estimating the soil moisture content [10,20] and vegetation
biomass [21].

GNSS-R platforms offer dedicated applications for Earth surface remote sensing
on a local scale using ground-based experiments, a regional scale using airborne cam-
paigns, and recently extending to a global scale using GNSS-R based spaceborne missions.
Ground-based experiments have been proposed to prove the GNSS-R sensitivity to soil
moisture [22–29]. Many studies have employed information on multipath effects from
ground-based GNSS receivers to retrieve soil moisture content and biomass content sens-
ing [24,25]. In [23,28], the Interference Pattern Technique (IPT) was employed to estimate the
soil moisture content. The literature in [27] conducted the LEiMON experiment, a ground-
based experimental campaign that is based on continuous polarimetric measurements of
GNSS scattered signals in order to improve the accuracy of the reflectivity measurements.

Several airborne campaigns have shown the feasibility of retrieving soil moisture
using reflected GNSS signals [5,10,30–36]. Masters et al. [5] conducted an airborne soil
moisture remote sensing experiment in order to extract the soil moisture content from the
measurements of the surface reflectivity by deriving the relation between the power of the
GNSS signals, the Fresnel coefficient, and the soil moisture content. In 2016, Motte et al. [36]
introduced the GLObal navigation satellite system Reflectometry Instrument (GLORI), ded-
icated to the study of land surfaces (soil moisture, vegetation water content, forest biomass)
and in-land water bodies from airborne flights. This instrument used two hemispherical
GPS dual-frequency (L1 and L2) dual-polarization active antennas and mainly relied on
Delay Doppler Maps (DDM) with a total integration time of 1 s to obtain measurements
of surface reflectivity. At the beginning of 2021, a study [31] performed a comparison of
two different data sets acquired with the Microwave Interferometer Reflectometer (MIR),
an airborne-based dual-band (L1/E1 and L5/E5a), multiconstellation (GPS and Galileo)
GNSS-R instrument. In this work, the effective integration time was set to 5 s to neglect
surface roughness effects. The use of such integration time led to a decrease in the spatial
resolution of the application.

Few studies [7,37,38] have been conducted concerning the detection of in-land water
body surfaces using airborne GNSS-R techniques. These studies also lacked quantitative
analysis concerning the localization accuracy of the detected water body surfaces and the
detection capacity of the proposed techniques over large flight trajectories and mostly
recurred to very few number of test areas. In 2015, Troglia et al. [37] developed a GNSS-
based sensor for UAVs and small manned aircraft, used to classify lands according to their
water content. The classification is based on the Signal-to-Noise (SNR) ratio between the
direct and reflected signals. This experiment used a dual antenna configuration with one
up-looking and two down-looking antennas. The sensitivity of the approach was tested
on an in-land water body surface. Its main limitations arise from (1) the use of different
components in the receiving channels, leading to power and phase variations between
the LHCP and RHCP channels, and (2) the instrument antennas, which are affected by
cross-polarization isolation issues, thus preventing reliable polarimetric measurements.

Most recently, exhaustive demonstration of the sensitivity of spaceborne reflected GPS
signals to changes in the soil moisture has been carried out using data from TechDemoSat-1
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(TDS-1) [39,40] and data from the Cyclone GNSS (CYGNSS) missions [41,42]. GNSS-R
spaceborne missions promise enhanced resolution compared to passive satellite missions
for soil moisture remote sensing. Currently, there are two L-band passive microwave
spaceborne missions specifically devoted to measuring soil moisture: the Soil Moisture and
Ocean Salinity mission (SMOS) and the Soil Moisture Active and Passive mission (SMAP).
Both SMOS and SMAP derive global maps of soil moisture from brightness temperature
measurements at a spatial resolution of 35 to 36 km with a 3-day revisit time. On the other
hand, CYGNSS provides observation of soil moisture at a spatial resolution of ∼500 m
determined by the major-axis size of the first Fresnel zone for flat surfaces with coherent
bistatic scattering and up to ∼10 km for rough surfaces with incoherent (diffuse) bistatic
scattering [43]. The CYGNSS constellation consists of 8 observatories in order to provide
measurements as frequently as possible. This results in a mean revisit time of 6 to 7 h. The
primary GNSS-R spaceborne missions employ conventional GNSS-R (cGNSS-R) signal
proccessing techniques to obtain DDM observables, which is the basic product containing
physical information of a surface. In this regard, CYGNSS satellites generate on-board
DDM products with an integration time of 1 s.

However, GNSS-R spaceborne missions still suffer from a relatively low spatial and
temporal resolution compared to ground-based and airborne experiments. The spatial
and temporal resolution of such GNSS-R applications depend on the receiver height as
well as the constraints and requirements of the application. A minimal height implies a
maximized spatial resolution but with less coverage. In this regard, there is a trade-off
between spatial resolution and global coverage. The maximum temporal resolution of
GNSS-R ground-based and airborne applications is equivalent to the code repetition rate of
GNSS signals (e.g., 1 ms for GPS C/A). However, a longer integration time increases the
Signal-to-Noise (SNR) ratio of the signal, which is important when studying land reflections
due to the weak nature of the reflected signals.

This article is dedicated to the study of airborne GNSS-R techniques for water body
detection using a low-altitude airborne carrier with high rate reflectivity measurements. We
develop a radar technique for automatic GNSS signal segmentation in order to differentiate
surfaces, and in particular water bodies, in landforms based on the changes in the reflectivity
measurements associated to different areas of reflection. Such measurements are derived
from the GNSS signal amplitudes. We have shown in a previous work [44] that in a
1-bit quantization digital receiver, the digitized GNSS signals are independent of the
automatic gain control and thus dedicated GNSS signal processing techniques provide
direct observation of the GNSS signal amplitude. In the context of this work, we estimate
20 ms rate of the GNSS signals amplitudes using 20 ms rate observations of the signals
components. We estimate high rate (50 Hz rate) reflectivity measurements in order to cope
with the rapid displacement of the satellites footprints along the airborne experiment. We
propose a mixture of an on-line/off-line change point detection and localization algorithm
for the segmentation of the GNSS signals into stationary parts associated to different mean
signal levels. We develop a GNSS-R setup on-board a lightweight airborne carrier that
can achieve the high temporal and spatial resolution requirements of our application. We
show, along a real flight experimentation, that the proposed radar technique detects in-land
water body surfaces along the flight trajectory. We also show that we can localize, at meter
accuracy, the edges of the detected water body surfaces, i.e., the border between water
and land.

Based on the foregoing, this chapter is organized as follows: Section 2 describes the
airborne bi-static GNSS-R configuration. Section 3 introduces the airborne GNSS-R system
that we utilize in this work. Section 4 demonstrates the on-line/off-line change model that
is proposed for GNSS signal segmentation. In Section 5, we introduce the context of the
real flight experimentation. Analyses of the data acquired during the flight for water body
detection and edge localization are provided in Section 6. Discussion and conclusions are
provided in the final two sections.
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2. Airborne Bi-Static GNSS-R Configuration

GNSS-R consists of using GNSS signals received on Earth directly from the GNSS
satellites as well as after a reflection on the Earth’s surface. In our implementation, we
use a GNSS-R dual antenna geometry. The direct GNSS signals are received by a Right
Hand Circular Polarized (RHCP) antenna, and the reflected GNSS signals are received by
a Left Hand Circular Polarized (LHCP) antenna after specular scattering from different
landforms along the flight trajectory as shown in Figure 1. Once a signal hits a reflection
point on Earth, scattering occurs primarily from the region of the surface surrounding the
specular reflection point.

Direct Signal

Reflected
Signal

Reflecting Surface 
(Satellite Footprint)

Figure 1. Airborne GNSS-R Geometry.

On flat areas with no topography, the specularly reflected power can be derived solely
from the Fresnel reflection coefficients. In this case, the spatial resolution of the GNSS
measurements is mostly linked to the size of the first Fresnel zone which in turn determines
the surface reflectivity. In this work, we process the amplitudes of the RHCP and LHCP
antenna signals in order to measure the reflectivity of the surface. The reflectivity mea-
surements are defined as the ratio of the amplitudes of the reflected LHCP antenna signals
Ar

LHCP over the amplitudes of the direct RHCP antenna signals Ad
RHCP as shown below:

Γ(t) =
Ar

LHCP(t)
Ad

RHCP(t)
(1)

We associate these measurements with 20 ms rate specular point localization.

3. Airborne GNSS-R System

We present in Figure 2 the GNSS-R system used in our airborne experimentation. The
GNSS-R setup developed for this application consists of a typical GNSS-R sensor that uses
an RHCP antenna and an LHCP antenna with a single mono-channel bit grabber for signal
digitization. A delay line is used to separate the RHCP antenna signals and the LHCP
antenna signals in time so that both signals can be tracked independently using a mono
channel receiver with perfect phase and frequency synchronization. The specular points are
localized as a function of the GPS time with the use of RINEX files and on-board drone card
measurements. The raw data recorded by the GNSS-R receiver correspond to the samples
of the direct and reflected GNSS signals at the output of the antennas (after frequency
down conversion).

After collecting the raw GNSS data, dedicated GNSS signal processing techniques are
implemented in our self-built GNSS software receiver for the extraction of the required
GNSS data. The processing of the GNSS signals adapts a master/slave configuration.
The direct signals processing can be derived from the classical GNSS demultiplexing and
demodulation processes in the form of Phase Lock Loop (PLL), Frequency Lock Loop
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(FLL), and Delay Lock Loop (DLL) to obtain the corresponding GNSS data. The estimated
code and frequency delay of the direct signals are used in the model aided tracking of the
reflected GNSS signals. As a result, GNSS observations related to the direct and reflected
signals (i.e., in-phase component of the signals, code delay, frequency delay and phase
delay estimates) are derived. The message of navigation is extracted in the process and the
GPS time of each data is derived after signal dating.

RHCP Antenna

LHCP Antenna

Combiner

Delay Line

Digitizer

Direct Signal 
Tracking

Model Aided 
Reflected Signal 

Tracking

Reflectivity 
Estimation

Amplitude 
Estimation

Data Collection

Signal Processing
Radar Signal 

Segmentation

Drone Board 
Sensor

Specular Point 
Localization

Segments linked
to reflecting surfaces

Figure 2. Airborne GNSS-R system.

The GNSS data provided by the direct and reflected signals tracking loops are used
in order to obtain observations of the GNSS signals amplitudes. Then, the reflectivity
measurements are derived from the amplitudes of the GNSS signals as a function of the
GPS time. The GNSS signals are segmented into stationary parts based on the changes
in reflectivity using the segmentation model developed in this work. These segments are
associated with different areas of reflections represented by the specular point localization.
For this purpose, the specular point coordinates and the segmented GNSS signals are linked
using the GPS time provided by on-board sensors and the GPS time extracted from the
digitized GNSS signals.

4. Segmentation of the GNSS Signal
4.1. Transition Model

In our radar application, the amplitude of the reflected GNSS signal changes as a
function of time. The GNSS signal amplitude is proportional to the ground reflectivity
contained in the surface of the first Fresnel zone of the satellite footprint. The first Fresnel
zone is an ellipse centered on the specular reflection point. The displacement of this ellipse
on the ground follows the satellite trace. We show in Figure 3, the satellite footprints
displacement from one area to another. We show in Figure 4 the signal model in the
working window.

We can observe in Figure 4 that when the mean value of the GNSS signal amplitude is
equal to m1, the ellipse is on the first area (land), and when the mean value of the GNSS
signal amplitude is equal to m2, the ellipse is on the second area (water body). We observe
that at the border between different areas of reflection, the change in the signal level is not
abrupt but rather transitional. That is why a transition model is adapted to characterize
the changes in the amplitudes of the reflected GNSS signals. We assume that the GNSS
measurements are piecewise stationary and the noise on the observations are additive,
Gaussian and centered. The increasing evolution of the signal model between the mean
values m1 and m2 in Figure 4 models a linear transition from a surface of low reflectivity
(land) to a surface of higher reflectivity (water body). We define in Section 4.3 the start and
end instants of the working window in order to optimize the estimation.
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Working Window

𝑚𝑚1

𝑚𝑚2

Satellite footprint

Displacement 

Imagery Date: 9/21/2019     lat 50.888653° lon 1.870741° elev 0 m     eye alt     110 m

20 m

Figure 3. Satellite footprints displacement from one area to another. The area is located at
(50.888653◦N, 1.870741◦E). m1 and m2 represent the mean values of the GNSS signal amplitudes
when the ellipses are on land and on water, respectively.
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Figure 4. Signal model in a working window. m1 and m2 represent the mean values of the GNSS
signal amplitudes when the ellipses are on land and on water, respectively.

In the presence of a large amount of data that need to be processed, an on-line change
detection process needs to be implemented. In this regard, we use the CUSUM algo-
rithm [45–47] to detect a change on-line. The CUSUM change detector is capable of
detecting changes associated to the model of transition that we use in this work. After the
changes are detected on-line, an off-line localization approach is proposed to localize the
detected change points. We propose a maximum likelehood estimate for change localiza-
tion. This approach is close to the optimal estimation because we maximize in this case the
size of the working window in which the detected change point is localized.

4.2. Change Detection

We show in Figure 5 the architecture of the change point detector. The amplitudes of
the direct and reflected GNSS signals are estimated with an Extended Kalman Filter (EKF)
that uses the in-phase components of the signals yk as observations based on the model
proposed in [44]. A Kalman filter and a CUSUM algorithm are used to detect a change
at instant ta

l,i. l is the satellite and i is an instant of time. yk and xk are respectively the
state and measurement vectors. x̂k represents the estimated GNSS signal amplitudes. εk
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is the innovation of the EKF and Sk is the covariance of the innovation. When a change is
detected an alarm is generated to initialize the Kalman filter.

Extended 
Kalman Filter CUSUM

𝑦𝑦𝑘𝑘

�𝑥𝑥𝑘𝑘 ,𝑃𝑃𝑘𝑘

𝜖𝜖𝑘𝑘 , 𝑆𝑆𝑘𝑘

Alarm

�̂�𝑡𝑙𝑙,𝑖𝑖a

Figure 5. Architecture of the change point detector.

We show in Figure 6 the GNSS signal amplitude and the filter innovation as a function
of time. The CUSUM detection algorithm uses an integration of the innovation process
in order to detect the changes in the GNSS measurements. At a transition of the signal,
between two stationary pieces, the innovation increases and then decreases (or vice versa)
to produce a peak. When a change occurs in the mean of the innovation, the mean value
after the change is either µ+

1 = µ0 + ν or µ−1 = µ0 − ν with ν, the dynamic of the change,
assumed to be known. In this work we use a two-side CUSUM algorithm [47]. The CUSUM
detection process is defined by

g+k =
(

g+k− + εk − µ0 − ν/2
)+

(2)

g−k =
(

g−k− − εk + µ0 − ν/2
)+

(3)

t̂a
l,i = min

{
k : (g+k ≥ λ) ∪ (g−k ≥ λ)

}
(4)

where (X)+ = max(X, 0) and ta
l,i is the ith instant of change detected for satellite l. Before

the change, the mean of the innovation process is µ0 = 0, and g+k and g−k , the integration of
the innovation process, evolves as a Gaussian random walk. After the change instant w + t
defined in Figure 4, g+k and g−k are monotonic increasing functions. In our implementation,
we assume that the innovation before and after the change is distributed according to a
Gaussian distribution notice N(µ, σ) where µ and σ are, respectively, the mean and the
standard deviation of the distribution. The normalized innovation process εkS−1/2

k is
distributed according to N(0, 1) before the change and N(ν, 1) after the change.
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Figure 6. GNSS signal amplitude and filter innovation as a function of time.
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According to the transition model defined in Figure 4, the theoretical value of the
detection threshold λ can be defined as λ = ∆t ν

2 − ν
2 with ν = m2 − m1. In practice,

ν is a parameter defined by the user. It represents the minimum change dynamic that
we want to detect. In our application, ∆t, the length of the transition area in the change
model, is defined with the satellite elevation angle, as well as the speed and height of the
airborne carrier.

4.3. Change Localization

In this work, the dynamic of the change is not known. We propose an off-line Maxi-
mum Likelihood Localization Estimate (MLLE) for change point localization. We show in
Figure 7 the architecture of the proposed change point estimate.

Extended 
Kalman Filter CUSUM

𝑦𝑦𝑘𝑘

�𝑥𝑥𝑘𝑘 ,𝑃𝑃𝑘𝑘

𝜖𝜖𝑘𝑘 , 𝑆𝑆𝑘𝑘

Alarm

MLLE
�𝑛𝑛𝑙𝑙,𝑖𝑖𝑒𝑒�̂�𝑡𝑙𝑙,𝑖𝑖a

Figure 7. Architecture of the change point localization algorithm. MLLE stands for Maximum
Likelihood Localization Estimate

According to the signal model of Figure 4 and assuming that the noise is additive,
white-centered, and Gaussian, we derive a maximum likelihood estimate of t, the starting
instant of the transition and ∆t, the duration of the transition. The estimates are processed
with the GNSS signal amplitudes observations in the working window (x̃n̂e

l,i−1
, . . . , x̃t̂a

l,i+1
).

The GNSS amplitude observations x̃k are obtained from the in-phase observations yk [44].
n̂e

l,i is the localization of the ith change for satellite l and t̂a
l,i is the ith detected change instant

provided by the CUSUM detector for satellite l. In the rest of the section, we will note n̂e
l,i as

ne
i and t̂a

l,i as ta
i to simplify notations. N is the number of samples in the working window

defined between ne
i−1, the previous localized change by MLLE and ta

i+1, the next detected
change by CUSUM.

In practice, the CUSUM detector detects a change after its actual position, as shown
in Figure 8a. In this case, the working window is not optimal, but nearly optimal with
a difference of very small number of samples at the end of the window. This number of
samples represents the difference between the detected ta

i+1 and localized ne
i+1 change point

position at the instant i + 1.
To estimate the localized change instant ne

i , we define the likelihood function as:

f (X̃ne
i−1

, . . . , X̃ta
i+1

) =
1

(σ1
√

2π)t
exp

−∑
ne

i−1+t−1
n=ne

i−1
(x̃n −m1)

2

2σ2
1


1

(σf
√

2π)∆t
exp

−∑
ne

i−1+t+∆t−1
n=ne

i−1+t (x̃n − fn)2

2σ2
f

 (5)

1
(σ2
√

2π)N−t−∆t+1
exp

−∑
ta
i+1

n=ne
i−1+t+∆t(x̃n −m2)

2

2σ2
2


m1 and m2 are the mean values of the GNSS signal amplitude before and after the change,
respectively. fn is a sampling line that models the growth of the reflectivity from m1 to m2
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defined between (ne
i−1 + t, m1) and (ne

i−1 + t + ∆t, m2). We can express the negative log
likelihood as follows:

−L( f . . . )) = t log(σ1
√

2π) +
∑

ne
i−1+t−1

n=ne
i−1

(x̃n −m1)
2

2σ2
1

+ ∆t log(σf
√

2π) +
∑

ne
i−1+t+∆t−1

n=ne
i−1+t (x̃n − fn)2

2σ2
f

(6)

+ (N − t− ∆t + 1) log(σ2
√

2π) +
∑

ta
i+1

n=ne
i−1+t+∆t(x̃n −m2)

2

2σ2
2

In practice, the parameters of the log likelihood function are estimated using empirical
maximum likelihood estimation. The empirical variances are defined by:

σ̂2
1 =

1
t

ne
i−1+t−1

∑
n=ne

i−1

(x̃n −m1)
2 (7)

σ̂2
f =

1
∆t

ne
i−1+t+∆t−1

∑
n=ne

i−1+t
(x̃n − fn)

2 (8)

σ̂2
2 =

1
N − t− ∆t + 1

ta
i+1

∑
n=ne

i−1+t+∆t
(x̃n −m2)

2 (9)

We can derive the expression of the empirical maximum likelihood estimate of t̂ and
∆̂t by:

(t̂, ∆̂t) = Argmin︸ ︷︷ ︸
t,∆t

{t log(σ̂1) +
∑

ne
i−1+t−1

n=ne
i−1

(x̃n −m1)
2

2σ̂2
1

+ ∆t log(σ̂f ) +
∑

ne
i−1+t+∆t−1

n=ne
i−1+t (x̃n − fn)2

2σ̂2
f

(10)

+ (N − t− ∆t + 1) log(σ̂2) +
∑

ta
i+1

n=ne
i−1+t+∆t(x̃n −m2)

2

2σ̂2
2

}

Finally, the empirical maximum likelihood estimate is given by:

(t̂, ∆̂t) = Argmin︸ ︷︷ ︸
t,∆t

{
t log(σ̂1) + ∆t log(σ̂f ) + (N − t− ∆t + 1) log(σ̂2)

}
(11)

In practice, the estimate value t̂ is searched in a working window of N samples
defined between ne

i−1 and ta
i+1. The estimate value ∆̂t is searched between ne

i−1 + t̂ and
ne

i−1 + t̂ + ∆tM − 1. The value of ∆tM is dependent on the application. For our application
to airborne GNSS-R data, ∆tM is a function of the length of the major axis of the first Fresnel
zone ellipse associated with the satellite footprint. According to the signal model, the true
position of the border between two different areas which corresponds to the true change
point position is assumed to be at ne

i = ne
i−1 + t̂ + ∆̂t

2 as shown in Figure 8b. This position
can be in practice the beginning or the end of the edge of a water body along the satellite
footprint trace.
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Figure 8. Change detection and localization. (a) change detection, (b) change localization.

4.4. Segmentation of Airborne GNSS Measurements

We show in Figure 9 the reflectivity measurements obtained with our GNSS-R receiver
embedded on a gyrocopter. The surface reflectivity increases with the water content of
the soil. Figure 9 shows the changes in the signal reflectivity associated to the reflections
from land and from water bodies. In order to detect and localize water bodies, we apply
an automatic segmentation of the signal using the reflectivity measurements based on the
change detection and localization algorithms presented in the previous sections. Firstly,
the changes in the reflectivity of the GNSS signal are detected with the Kalman-CUSUM
algorithm (Figure 9a). Then, these changes are localized using the proposed MLLE approach
(Figure 9b). Finally, the signal is divided into different segments associated to different
mean reflectivity levels based on the localized change positions (Figure 9c).
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Figure 9. Segmentation of a GNSS signal obtained in an airborne experiment. (a) detection, (b) local-
ization, (c) segmentation.

The results obtained in Figure 9 show the feasibility of our approach to segment a
real reflectivity signal obtained in an airborne experiment. In this context, the proposed
approach is used for the detection and localization of in-land water body surfaces. This
evaluation is realized with signals of reflectivity obtained for different satellites along the
trajectory. The airborne experiment is described in the next section.

5. Flight Experimentation
5.1. Flight Information

The flight took place in the North of France and started at 14h45 UTC, the 19th of
October 2020 and ended at 15h30 of the same day lasting for 45 min. We show in Figure 10
the gyrocopter that was used for the flight experimentation with the different sensors
embedded on it. The gyrocopter (MTO Sport 2017) is a light aircraft with an approximate
weight of 245 kg and size of 5.1 m × 1.9 m × 2.7 m. It can carry a load up to double its
weight. The maximum speed that the gyrocopter can fly at is 195 km/hr. It can cover a
distance up to 700 km with 6.7 h loft within a single flight.

An RHCP antenna is fixed on the nose of the gyrocopter pointing towards the zenith
and an LHCP antenna is mounted on the bottom of the gyrocopter pointing towards the
nadir. A drone board sensor records the receiver’s attitude, altitude and position with
respect to the GPS time. In addition to the on-board sensors, the gyrocopter was loaded
with the necessary setup that constitute the GNSS-R receiver hardware for data collection.
This receiver is composed of a delay line, combiners/splitters and a Syntony L1-L5 bit
grabber for digitizing the composite signal.

Figure 9. Segmentation of a GNSS signal obtained in an airborne experiment. (a) detection, (b) local-
ization, (c) segmentation.
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The results obtained in Figure 9 show the feasibility of our approach to segment a
real reflectivity signal obtained in an airborne experiment. In this context, the proposed
approach is used for the detection and localization of in-land water body surfaces. This
evaluation is realized with signals of reflectivity obtained for different satellites along the
trajectory. The airborne experiment is described in the next section.

5. Flight Experimentation
5.1. Flight Information

The flight took place in the North of France and started at 14:45 UTC, the 19 October
2020 and ended at 15:30 of the same day lasting for 45 min. We show in Figure 10 the gyro-
copter that was used for the flight experimentation with the different sensors embedded
on it. The gyrocopter (MTO Sport 2017) is a light aircraft with an approximate weight of
245 kg and size of 5.1 m × 1.9 m × 2.7 m. It can carry a load up to double its weight. The
maximum speed that the gyrocopter can fly at is 195 km/hr. It can cover a distance up to
700 km with 6.7 h loft within a single flight.

RHCP GNSS Antenna

LHCP GNSS Antenna

Drone Board Sensor

Figure 10. The gyrocopter that was used during the flight with the sensors embedded on it.

An RHCP antenna is fixed on the nose of the gyrocopter pointing towards the zenith
and an LHCP antenna is mounted on the bottom of the gyrocopter pointing towards the
nadir. A drone board sensor records the receiver’s attitude, altitude and position with
respect to the GPS time. In addition to the on-board sensors, the gyrocopter was loaded
with the necessary setup that constitute the GNSS-R receiver hardware for data collection.
This receiver is composed of a delay line, combiners/splitters and a Syntony L1-L5 bit
grabber for digitizing the composite signal.

The gyrocopter took off from Calais–Dunkerque Airport located in Marck, 7 km
east-northeast of Calais, in the Hauts-de-France region. We scanned a large zone that
borders the English Channel over a trajectory of ∼71 km between Calais, Escalles, and
Ardres. This study area was selected for experimentation because it contains a number
of different landforms. The topography of the study area, especially the region between
Guînes and Ardres, does not vary a lot as it only contains plain land, water bodies, and
some forests with no landscapes that might hugely affect the topography of the surface
(such as mountains or big hills). This specific region holds over 50 different water body
surfaces (such as lakes, ponds, rivers, swamps, etc.) of different nature and sizes. The
effects of the study area surface roughness on the reflectivity measurements are not taken
into consideration since we aim for the detection and localization of in-land water body
surfaces using the variations of the measurements as we obtain reflections from different
landforms along the trajectory rather than its estimated value. The flight trajectory and
study area are shown in Figure 11.
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Figure 11. Flight trajectory. Geographical setting of the study area (the WGS84 Universal Transverse
Mercator UTM datum corresponds to Zone 31U North.)

During the flight, the gyrocopter maintained a low altitude of approximately 315 m
above the ground with an average speed of 95 km/h. The wind speed was approximately
at 25 km/h. Table 1 presents an overview of the flight information.

Table 1. Flight Information

Description

Date 19/10/2020
Location North of France

Fight Duration 45 min
Distance Covered 71 km

Average Speed 95 km/h
Average Height 315 m

Wind Speed 25 km/h
Wind Direction North

5.2. Flight Trajectory

Figure 12 depicts the traces of the satellites footprints along the flight trajectory im-
posed on Google Earth software. The traces of very low elevation satellites are not shown in
Figure 12. In our application, we aim to study reflections from satellites with high elevation
angles in order to maximize the spatial resolution of our application. In this regard, we
fix the maximum size of the major axis to 23 m, so the minimum satellite elevation to
50◦. An average of 9 GPS satellites have been detected along the trajectory. Three GPS
satellite signals of elevation angles superior to 50◦ were extensively analyzed to observe
the reflectivity of the different areas of reflections. These signals corresponds to satellite
PRNs 5, 7, and 30.

Concerning the temporal resolution of the application, the raw data were sampled at a
frequency of 25 MHz and the GNSS measurements are realized at a rate of 50 Hz . Taking
into consideration the average speed of the gyrocopter (95 km/h), the distance between
two consecutive specular points is approximately 0.5 m. This means that every 20 ms the
footprints are displaced by 0.5 m. The size of the GNSS data that constitutes the sampled
direct and reflected GNSS signals digitized and stored (in bytes format) by the Syntony bit
grabber for GPS L1 signals is 133.78 GB.

We apply the GNSS signal segmentation in the next section for water body surface
detection and edge localization.
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Imagery Date: 9/21/2019     lat 50.923925° lon 1.863171° elev 0 m     eye alt     25  km
5 km

Figure 12. The satellite footprint traces along the flight trajectory imposed on Google Earth software.
The traces of very low elevation satellites are not shown in the figure.

6. Data Analysis
6.1. Radar Signal Segmentation

Figure 13 presents the GNSS measurements for an area located at (50.888515◦N,
1.871803◦E) along the trajectory. In the upper figure, the traces of the satellites footprints
are represented by 20 ms rate localization of the specular points of reflection. The colors
of the points represent different reflectivity measurements associated with different kinds
of reflecting surfaces. The number in brackets notes the satellite elevation angle. On the
lower figures, we show the GNSS reflectivity measurements and the automatic signal
segmentation associated to it using our proposed radar technique over 12 s of data from
this area.

We can notice from the graphs that a difference in the mean of the measurements
separates different areas of reflection. We remark a significant increase in reflectivity corre-
sponding to water body surfaces. This increase is not constant though and is dependent
on the type of land and water that the signals are reflecting from. We can observe from
the graphs of Figure 13 that the proposed radar technique detects different water bodies
corresponding to different mean reflectivity levels shown in blue segments. These segments
are associated with a blue coloring of the specular points on the Google Earth image. The
yellow coloring of the specular points is associated to land reflections. We can also observe
fluctuations in the mean reflectivity level (blue segments) corresponding to the detected
swamp by satellite PRN 7. This is due to the trace of satellite PRN 7 passing through a
small green area in the middle of the swamp that can be a very wet piece of land or small
set of leaves that have been accumulated over time.

We show in Figure 14 different types of water bodies detected along the traces of the
satellites footprints. We observe that the radar technique detects in-land water bodies with
various sizes and shapes and under different environments. It is worth noting that the
approximate size is not the same for all the surfaces of the same water body type. We notice
that we detect large-size contained water body surfaces such as lakes (Figure 14a) and
swamps (Figure 14b). We also differentiate smaller contained water body surfaces such as
wetlands (Figure 14e). In our study, we differentiate lakes from ponds based on the size
of the water body surface. We differentiate swamps from lakes and ponds based on the
characteristics of the water body and the surrounding environment. However, this is not
always explicit by manual inspection using Google Earth map imagery data.
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Figure 13. Automatic segmentation of the GNSS measurements by the proposed radar technique for
an area located at (50.888515◦N, 1.871803◦E) along the trajectory.



Remote Sens. 2022, 14, 163 15 of 22

PRN 5 (66∘)

100 m

108 m
Imagery Date: 9/21/2019     lat 50.882083° lon 1.976546° elev 0 m     eye alt     200 m

40 m

(a)

PRN 7 (57∘)

110 m
75 m

186 m

50 m

Imagery Date: 9/21/2019     lat 50.876854° lon 1.948390° elev 0 m     eye alt     200 m

(b)

PRN 7 (59∘)

PRN 5 (64∘)

PRN 30 (72∘)
Imagery Date: 9/21/2019     lat 50.887720° lon 1.878526° elev 0 m     eye alt     227 m

50 m

(c)

PRN 30 (72∘)

5.76 m

3.6 m

Imagery Date: 9/21/2019     lat 50.888385° lon 1.868127° elev 0 m     eye alt     120 m

30 m

(d)

PRN 30 (72∘)

27 m

14 m

Imagery Date: 9/21/2019     lat 50.883070° lon 1.900203° elev 0 m     eye alt     110 m
30 m

(e)

PRN 5 (66∘)

9 m

4.5 m

Imagery Date: 9/21/2019     lat 50.886888° lon 1.884547° elev 0 m     eye alt     65 m
20 m

(f)

Figure 14. Detection of water body surfaces in landforms using the proposed automatic radar
technique. (a) Lake (50.882083◦N, 1.976546◦E); (b) Swamp (50.876854◦N, 1.948390◦E); (c) River
(50.887720◦N, 1.878526◦E); (d) Streams (50.888385◦N, 1.868127◦E); (e) Wetland (50.883070◦N,
1.900203◦E); (f) Pool (50.886888◦N, 1.884547◦E).

Rivers of different widths along the trajectory are detected by the traces of all three
satellites due to its length. The river shown in Figure 14c has a width of 21 m. We notice
in Figure 14d, two small streams of 3.6 m and 5.76 m width, while we notice in Figure 14f
that the proposed radar technique was able to detect a small pool of 4.5 m × 9 m size along
the trace of satellite PRN 5 footprints. This shows the sensitivity of the proposed radar tech-
nique to changes in landforms and shows the importance of high spatio-temporal resolution
in the detection of in-land water body surfaces using low-altitude airborne carrier.

6.2. Water Body Surface Detection

The proposed radar technique is first applied for detecting water body surfaces in
landforms. We represent the specular points of reflection corresponding to the detected
water body surfaces by our radar technique for the three satellites in study on maps
provided by the French National Institute of Geographic and Forest Information (IGN)
maps using QGIS software. IGN maps maintain geographical information for France
managing geodesic and leveling networks, aerial photographs and geographical databases
and maps. IGN maps provide up-to-date map schemes that clearly show the actual
locations of the water body surfaces at the day of the experimentation. The aim is to assess
the performance of the proposed method for water body surface detection. Figure 15 shows
the detected water body surfaces using our proposed method for the area between Guînes
and Ardres represented by a blue coloring of the specular points of reflection.
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Figure 15. The detected water body surfaces using our proposed radar technique for the area
between Guînes and Ardres. The specular points of reflection, represented by a blue coloring, are
superimposed on IGN maps.

The proposed method detects water body surfaces whenever the reflectivity measure-
ments are beyond a specified threshold. From the analysis of the GNSS measurements
obtained, the reflectivity threshold used in this study is 0.21 for the three satellites. We
compare the number of water body surfaces provided by IGN maps along the satellite
footprints traces with the percentage of detections of these water bodies using our proposed
approach. Table 2 details the results of the manual inspection applied between the IGN
images and our radar technique for water body surface detection.

Table 2. Performance assessment of the proposed radar technique for water body surface detection.
Results of the manual inspection applied between the IGN images and our radar technique per water
body type and in total (bold) for the study area.

Water Body Number of Surfaces Percentage of Detection
Using IGN Maps Using Our Radar Technique

Lakes/Large Swamps 20 100%

Ponds/Swamps/Wetlands 17 94%

Rivers/Canals 4 100%

Streams/Brooks 6 83%

Total 47 96%

We show in Table 2 that our radar technique detects 96% of in-land water body surfaces
(i.e., 45 out of 47 surfaces) along the satellites footprint traces as compared to the details
provided by IGN maps. We detect 100% of large-size contained water body surfaces (i.e.,
lakes/large swamps) and of large waterways (such as rivers and canals). However, we
miss one small-size contained water body surface and one stream along the trajectory. We
cannot clearly observe the reason using maps such as IGN or Google Earth as it is not
evident whether the miss is due to a detection inaccuracy or due to the water bodies being
masked by vegetation (such as trees or groves).

Although IGN maps provide updated map imageries, we can observe from Figure 15
that these maps do not provide sufficient information about the water body characteristics
(e.g., type, shape, and approximate size) nor the vegetation possibly covering it. Thus,
we propose to use satellite images provided by Google Earth software for water body
edge localization.
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6.3. Water Body Edge Localization

The proposed radar technique is applied for localizing the edges of the detected water
body surfaces along the satellites footprints traces. Google Earth does not provide up-to-
date map images. In this regard, the Google Earth images and the experimentation were
obtained with one year of difference (Google Earth dates its imagery data to September
2019). We select in our study the water body surfaces that can be clearly observed using
both IGN maps and Google Earth. We can assume that the water level was the same
between the 2 dates. We assess the accuracy of the proposed automatic edge localization
technique using manual edge localization on Google Earth.

We report in Table 3 the parameters of the detected water body surfaces by satellite
PRN 5 for 100 s of an area along the trajectory. We report the approximate size (in meters)
for each of the mentioned surfaces. We also report the difference in localization between
the automatic and manual approach (in meters) for the starting and ending edges of the
detected water body surfaces. These values can be positive or negative. In addition, we
record the total localization distance error (in meters), i.e., the total absolute offset for the
start and end edges of each water body as well as the automatic and manual detection
length (in meters), i.e., the length covered by the satellite footprints trace along the water
body surface using the proposed radar technique and Google Earth, respectively.

Table 3. Parameters of the detected water body surfaces by satellite PRN 5 trace for 100 s correspond-
ing to an area located between ( 50.888837◦N, 1.869701◦E) and ( 50.887512◦N, 1.880296◦E) along
the trajectory.

Water Body Wetland Lake River Stream

Approximate size (m) 40× 48 125× 141 W = 22 W = 4.56

Localization diff—Start (m) +3.45 0 +0.82 +4.9

Localization diff—End (m) 0 0 0 +1.47

Distance error—Total (m) 3.45 0 0.82 6.37

Automatic detection length (m) 52.21 171.3 24.57 10.93

Manual detection length (m) 48.76 171.3 23.75 4.56

We observe in Table 3, perfect edge localization (i.e., zero total distance error) for the
lake by the proposed radar technique as compared to Google Earth. The localization of the
river edges are less accurate especially for the start of the river but clearly better than that
of wetland and stream. In this regard, edge localization requires precise measurements.
The localization accuracy is affected by the characteristics of the water body surface (type,
shape, size, etc.), as well as the nature of the landforms surrounding the water body at
its edges. We can clearly observe from the Google Earth images that the stream reported
in Table 3 is small in size ( 4.56 m width), muddy, and surrounded by vegetation. It is
worth noting that this stream reported the lowest localization accuracy among all the water
body surfaces localized along the traces of the three satellites footprints during the whole
trajectory. Other streams are localized more accurately.

We apply the aforementioned quantitative analysis for the detected water body sur-
faces by the traces of the three satellites’ footprints along the whole trajectory. We report
in Table 4 the number of detections of each water body type as well as the percentage of
perfect edge localizations (i.e., whenever the total localization distance error is 0). We also
record the mean distance localization error (in meters) which is the absolute value of the
offset in meters between the manual and the automatic edge localization. Finally, we record
the localization difference standard deviation (in meters) which represents the standard
deviation of the difference in the starting and ending edges.
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Table 4. Assessment of the accuracy of proposed radar technique for water body edge localization.
Quantitative analysis of the difference between the automatic and manual edge localization for the
detected water body surfaces by the traces of the 3 satellites footprints along the whole trajectory per
water body type and in total (bold).

Water Body Number of
Detections

Percentage of
Perfect Edge
Localization

Mean Distance
Localization Error

(in meters)

Localization
Difference—Std

(in meters)

Lakes 12 79.20% 0.59 0.69

Oxbow Lakes 4 62.50% 1.86 1.47

Ponds 11 72.70% 0.68 0.73

Pools 1 50.00% 0.82 0.41

Rivers/Canals 12 79.20% 0.63 0.93

Streams/Brooks 6 58.30% 1.75 1.38

Swamps 15 86.70% 0.36 0.50

Wetlands 4 75.00% 0.99 1.12

Total 65 76.2% 0.96 0.9

We can also observe in the histogram of Figure 16, a comparison of the number of
perfect and imperfect localizations with respect to the total number of water body edge
localizations per type. We notice from the second column of Table 4 and from Figure 16 that
swamps had the highest localization accuracy with 86.70% (26 perfect localizations out of
30) followed by lakes and rivers with an accuracy of 79.2% for each with the same number
of detections. The pool had the lowest edge localization accuracy with 50% but from just
2 measurements. Streams/brooks noted the second lowest edge localization accuracy with
58.3% from 12 localizations.
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Figure 16. Statistics of water body edge localization by the proposed radar technique per water
body type.

We note from Table 4 that swamps had the least mean localization error of 0.36 m and
the lowest localization difference standard deviation of 0.5 m (after the pool). Although
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lakes and rivers have the same percentage of perfect edge localizations, we notice that
the lakes had lower mean distance localization error and localization difference standard
deviation, implying better overall localization accuracy for lakes. The oxbow lake and
streams reported the highest statistical errors in terms of the recorded mean and std. We
notice that the only oxbow lake detected along the trajectory was surrounded by vegetation
on its borders. In addition, as previously discussed, the streams along the trajectory are
mostly muddy and covered by trees. The results are in agreement with those derived in
Table 3, but applied for the whole study area and for the three satellites. We can observe
that the edge localization is affected by the type of the water body surface, as well as
the characteristics of the landforms surrounding the water body at its edges (vegetation
biomass, roughness, etc.)

In total, the proposed radar technique achieved an overall water body edge localization
accuracy of 76.2% with a mean distance localization error of 0.96 m and localization
difference standard deviation of 0.9 m. From this study, we conclude that we can achieve the
meter accuracy for water body edge localization with our automatic approach as compared
to manual localization using Google Earth taking into consideration the spatial resolution
of our GNSS-R application and the approximate distance between two consecutive specular
points (∼0.5 m) for a gyrocopter average speed of ∼95 km/h.

7. Discussion

The accuracy of water body edge localization by the proposed radar technique is
affected by the inaccuracies that Google Earth encounters while processing its map imagery.
One of the main perspectives of this work is to compare the results obtained for water
body detection and edge localization using the proposed radar technique with the ground-
truth data. This requires extensive in situ measurement campaigns with the use of precise
GNSS-R positioning techniques to accurately localize the starting and ending edges of the
in-land water body surfaces. In order to better analyze the variations in the reflectivity of a
water body surface, we aim to make use of real-time images captured by action cameras
embedded on the bottom of the gyrocopter as part of the new GNSS-R receiver setup. This
would also allow us to analyze the reason of possible misses in the detection of water body
surfaces, as well as to track the number of false detections by the proposed radar technique
as it is practically impossible using maps.

We have also seen from the analysis of the GNSS reflectivity measurements that it is
exceptionally complicated to differentiate other surfaces in landforms such as plain land
surfaces and groves. One of the interesting aspects of the mono channel bit grabber used
in this work is the digitization of L1 and L5 signals. The next step in this direction would
be the processing of L5 signals and the fusion of L1 and L5 data to further increase the
observables of the reflected GNSS signals. An information fusion algorithm based on
statistical approaches would be developed for the integration of the GPS L1 and L5 signals.
The GPS L5 signals have higher transmitted power than L1 signals and they are expected
to have deeper penetration capacity in land for more accurate reflectivity measurements,
allowing more precise detection of other surfaces in landforms (other than in-land water
bodies). In addition, for more accurate reflectivity measurements, the gain patterns of the
antennas should be taken into account.

8. Conclusions

This airborne experiment studies the techniques for water body localization using
GNSS-R. A GNSS-R setup of reduced size and weight was developed specifically to meet
the requirements of this application. The utilization of the delay line in the GNSS-R setup
is a significant contribution of this work. The delay line produces a delay that is sufficient
enough to track the direct and reflected GNSS signals independently using a mono channel
receiver which allows perfect synchronization of the RHCP and LHCP links. The observa-
tions are realized with high temporal and spatial resolution. We estimate the reflectivity
measurements as the ratio of the amplitudes of the reflected LHCP antenna signals over the



Remote Sens. 2022, 14, 163 20 of 22

amplitudes of the direct RHCP antenna signals. The signals are segmented into stationary
parts associated with different areas of reflection. We relate the 20 ms rate reflectivity mea-
surements to the corresponding reflecting surfaces via a 20 ms localization of the specular
points of reflection. We apply a real flight experimentation using a low-altitude airborne
carrier with high rate observations of the surface reflectivity. We show that our method
is able to differentiate surfaces, and thus detect water bodies in landforms, based on the
difference in reflectivity measurements associated to each surface. We show that our radar
technique is able to detect 96% of the total number of water body surfaces on the traces
of the satellites footprints in study as compared to the up-to-date data provided by IGN
maps. In a second analysis, we apply a manual inspection between the automatic edge
localization provided by the radar technique and manual localization using Google Earth
in order to assess the edge localization accuracy of the proposed approach. We show in this
study that our proposed radar technique is highly sensitive to the changes in landforms
with a meter precision regarding the water body edge localization.
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