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Abstract

This study deals with the viscoplastic behavior of a porous polycrystal with pores and grains of similar sizes. Such a
microstructure can be encountered in irradiated nuclear Mixed OXide (MOX) fuel materials. MIcronized MASter blend
(MIMAS) MOX are multi-phase materials mainly composed of two or three phases depending on their fabrication process.
One of these phases corresponds to plutonium-rich agglomerates which strongly evolve during irradiation. The large Pu-rich
agglomerates become highly porous due to the accumulation of fission gases and to the apparition of irradiation bubbles.
In a past study, Wojtacki et al. (2020) showed that pores distributed inside the Pu-rich clusters have a strong impact on
the overall viscoplastic behavior of MOX fuel, when considering a purely isotropic behavior for the Pu-rich clusters. In the
present study, the impact of pores similar in size to the surrounding anisotropic grains on the overall viscoplastic behavior
is studied in details through numerical full-field simulations. A crystal plasticity model recently developed by Portelette
et al. (2018) is used to describe the anisotropic behavior of the polycrystalline matrix with dislocation glide mechanisms.
Three-dimensional full-field simulations are performed by a method based on Fast Fourier Transforms (FFT) to compare
the behavior of porous materials with that of dense materials. These simulations show that, in the case of spherical pores,
their relative size with respect to that of the grains plays a minor role in the overall viscoplastic behavior. However, in
the case of polyhedral pores, the relative size effect is more pronounced. With fixed porosity, decreasing the relative size
of the cavities with respect to the size of grains leads to a softening of the material and a decrease of the viscoplastic flow
stress.
Keywords: Porous media, Viscoplasticity, Polycrystal, Crystal plasticity, Fast Fourier Transform method, Nuclear MOX
fuel

1 Introduction

This paper follows the previous work of Wojtacki et al. (2020) dedicated to the micromechanical modeling of viscoplastic
porous materials with two rate-sensitivity exponents for an application to a Mixed OXide (MOX) fuel.

MOX fuel is a nuclear fuel made from plutonium oxide mixed with uranium oxide. It has notably been used in French
Pressurised Water Reactors since 1987 (Oudinet et al., 2008). The manufacturing process of MOX fuel has a significant
impact on the microstructure of the resulting material. The present study concerns MIcronized MASter blend (MIMAS)
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Reference σ [MPa] T [◦C] O/M d [µm] ρ [%] PuO2 wt[%] 235U [%]
Houston et al. (1970) 10-17 1100-1330 1.95-1.98 3-15 90-94 22 -
Evans et al. (1971) 7-70 1475-1625 1.95-2 4-23 88-94 0-100 -
Routbort et al. (1972) 7-110 1400-1675 1.83-1.99 10-47 95-97 25 65-93
Routbort and Voglewede (1973) 69 1500-1600 1.883-1.994 5-44 90-97 22/25 30-93
Slagle et al. (1984) 2.2-6.5 2175-2640 1.89-1.92 25 88-93 25 93
Caillot et al. (2004) 40-80 1535 - 5.5 95-96 6-10 -

Table 1: Creep tests on MOX pellets where σ is the compressive stress, T the temperature, O/M the oxygen-to-metal ratio,
d the grain size, and ρ the pellet density.

MOX fuels. During the MIMAS process, a micronisation of a mixture with 25–30% plutonium dioxide is first performed, then
followed by a dilution with natural or depleted uranium dioxide (White et al., 2001; Fisher et al., 2002). As a result, a material
with plutonium-rich agglomerates is obtained. The uranium dioxide powders used in the process can be produced by AUC
(Ammonium Uranate Carbonyl) or ADU (Ammonium DiUranate) routes leading to distinct microstructures. The MIMAS-
AUC presents rather a two-phase microstructure with Pu-rich agglomerates and a matrix with a mixed content of uranium
dioxide and plutonium dioxide. The MIMAS-ADU has rather a three-phase microstructure with Pu-rich agglomerates, a
UO2-rich matrix and a coating phase with intermediate Pu content (White et al., 2001). During irradiation, the large Pu-rich
agglomerates become highly porous due to the accumulation of fission gases and to the apparition of irradiation bubbles
(Noirot et al., 2008). Irradiation results in a variation of the physical properties of MOX fuel which is important to consider
when estimating the loading applied by the fuel on the cladding, whose mechanical properties drastically change throughout
their use in the reactor (see (Vincent et al., 2010) among others). The specific microstructure of MOX fuel and its evolution
during irradiation must be studied closely to derive models for the thermo-mechanical behavior of MOX fuel during nominal
or power transient operations, or under accident conditions, such as a Reactivity Initiated Accident (RIA) (Koo et al., 1997;
Schmitz and Papin, 1999; Sasajima et al., 2000; Fuketa, 2012). The present study is devoted to the viscoplastic behavior of
this fuel.

Earliest compression tests were conducted on UO2 pellets for several temperatures, stresses, and strain rates (Byron,
1968; Bohaboy et al., 1969; Seltzer et al., 1970, 1971; Burton et al., 1973). These studies mainly highlighted two stationary
creep regimes. For low stresses, the strain rate was observed to vary linearly with stress (ε̇ ∝ σ). A point defect diffusion
mechanism (together with a grain boundary sliding contribution) was attributed to this regime. For high stresses, the strain
rate was observed to depend on the stress raised to a power close to 4.5 (ε̇ ∝ σ4.5). The dominant creep mechanism for
this regime seemed to be the dislocation motion (dislocation glide and dislocation climb can occur). Then, creep tests were
performed on MOX pellets (Houston et al., 1970; Evans et al., 1971; Routbort et al., 1972; Routbort and Voglewede, 1973;
Slagle et al., 1984; Caillot et al., 2004) and, similarly to UO2, two regimes were observed. Some features on the compression
tests are reported in Table 1. Contrary to the tests performed on UO2 pellets, the contents of Pu and 235U are here
systematically specified because they influence the mechanical behavior. Moreover, the tested materials reported in Table
1 remain understoichiometric. Stoichiometry is also known to influence their mechanical behaviors. Stresses are between 7
MPa and 110 MPa. Temperatures are between 1100◦C and 1700◦C, with the exception of (Slagle et al., 1984) in which tests
are performed at temperatures higher than 2000◦C, representative of extreme temperatures which could be encountered in
a fuel during a postulated RIA (Suzuki et al., 2008).

From these studies, the unidimensional constitutive relation is classically written under the form:

ε̇ = A1 exp

(
− Q1

RT

)
σn1 +A2 exp

(
− Q2

RT

)
σn2, (1)

where ε̇ and σ are respectively the strain rate and the creep stress along the compression direction. Parameters Qi, ni,
and Ai are respectively the activation energy, the stress exponent and the prefactor for the ith mechanism (index i = 1
for point defect diffusion and i = 2 for dislocation motion). Some noticeable features of these parameters are reported
in Table 2. The discrepancies observed on these parameters according to the different studies on MOX reported here are
probably due to specimen selections, test conditions and experimental procedures. Nevertheless, the activation energies and
stress exponents obtained from these studies remain close to each other, suggesting that they probably involve the same
mechanisms. Moreover, it appears that the values obtained for MOX remain close to the values obtained for UO2, probably
indicating similar mechanisms involved. Furthermore, all these studies captured a grain-size dependency for the point defect
diffusion mechanism, while no grain-size effect were found for the dislocation mechanism. Evans et al. (1971) identified a
dependency as the inverse of the cube of the grain size and attributed that to interstitial diffusion in grain boundaries (Coble,
1963). The other authors found a dependency as the inverse of the square of the grain size and attributed that to vacancy
diffusion in the grain bulk (Nabarro, 1948; Herring, 1950).

Later, compressive tests on UO2 pellets were performed with higher stresses and strain rates (Guerin, 1975; Radford
and Terwilliger, 1975; Tachibana et al., 1976; Salvo et al., 2015). From these studies, it was observed an increase of the
stress exponent with stress, pointing out the presence of another deformation mechanism. The dislocation glide mechanism
controlled by Peierls force was mentioned. Unfortunately, such tests were not conducted on MOX fuel. However, considering
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MOX A1(d) Q1 [kcal.mol−1] n1 A2(d) Q2 [kcal.mol−1] n2
Houston et al. (1970) ∝ 1/d2 77 1.4 - - -
Evans et al. (1971) ∝ 1/d3 100 1 - 140 4,5
Routbort et al. (1972) ∝ 1/d2 92.5 1 - 136.8 4,4
UO2

Bohaboy et al. (1969) ∝ 1/d2 90 1 - 132 4,5

Table 2: Parameters of the constitutive model (1).

the similarity between MOX and UO2 fuels mentioned before, it is probable that the same deformation mechanism occurs
for high stresses. The present study is focussed only on this gliding mechanism by extending the dislocation glide model
developed for UO2 (Portelette et al., 2018) to MOX polycristal.

MOX fuel is known to have a higher creep rate than UO2 fuel which is an important feature when estimating the Pellet-
Cladding Interaction (PCI) (Caillot et al., 2004). Furthermore, the porosities do not vary in the same way in the two fuels
during irradiation and have a great impact on the viscoplastic behavior. In particular, irradiation and fission products help
the development of pressurized bubbles surrounded by sub-grains. This is called the High Burn-up Structure (HBS). It is
mainly located at the periphery of UO2 fuel pellets (see (Lozano et al., 1998) among others) while it is mainly located at the
large Pu-rich clusters in MOX fuels (Noirot et al., 2008). Noirot et al. (2008) showed that the size of bubbles and grains in
the Pu-rich spots results from complex phenomena. Near the periphery of pellet (but not in the extreme periphery), where
the temperature is lower in nominal conditions than at the center of the pellet, they observed on an irradiated MOX fuel, that
the bubbles in Pu-rich clusters had approximately the same size than the surrounding sub-grains (mean values about 1.2 µm
for the sub-grains and 1.3 µm for the bubbles). In the extreme periphery, bigger bubbles were observed and were attributed
to higher burn-up in the agglomerates. At mid-radius, bubbles were approximately twice the size of sub-grains (mean values
about 1.7 µm for the grains and 3 µm for the bubbles). At zero-radius, they observed very large bubbles (several tens of
microns), though the grains sizes remained very similar to the initial sizes (about 7 µm). Therefore, irradiation conditions
influence the relative size of the bubbles with respect to the size of grains. Thus, Noirot et al. (2008) clearly exhibited cases
where bubbles and surrounding grains in Pu-rich clusters are similar in size. Fission gases exert internal pressure inside
the bubbles, which consequently tends to round their shape. That’s why, as a first approximation for modeling, one can
consider spherical in shape bubbles. However it remains an approximation and deviations from the sphericity of the bubbles
are therefore quite possible.

In a past study, Wojtacki et al. (2020) performed full-field simulations on periodic Representative Volume Elements
(RVE) with an isotropic matrix, weakened by randomly distributed clusters of pores. The simulations were performed by
a method based on Fast Fourier Transforms using the CraFT software (Suquet et al., 2012). This method, first proposed
by Moulinec and Suquet (1994) is particularly effective when dealing with complex microstructures. In (Wojtacki et al.,
2020), a random distribution of single-sized spherical clusters was used with single-sized pores randomly distributed inside
the clusters. The porous clusters correspond to the large Pu-rich agglomerates in MOX fuel. The viscous strain in the matrix
between the clusters and inside the clusters around the pores was described by two viscoplastic power-laws corresponding to
two different creep mechanisms as described in equation (1) for MOX fuel. From these simulations, it was shown that the
size of pores in the clusters has only a limited impact on the overall strain rate. The use of an isotropic viscoplastic behavior
for the matrix surrounding the pores is legitimate when the cavities are larger than the surrounding grains and providing
that the crystallographic orientation of the grains in the surrounding polycrystal be random. When cavities and grains have
comparable sizes, the isotropy assumption is only motivated if the anisotropy introduced by the grains remains moderate. As
stated above, the pores are subjected to internal pressure (Pb) due to the fission gas and the pores are said to be saturated.
Wojtacki et al. (2020) only considered the case with a zero-pressure in the pores. In this case, the pores are said to be
drained. This approach was motivated by a result demonstrated in (Vincent et al., 2009). In the case of an incompressible
matrix, the macroscopic behavior in the saturated case can be obtained from the macroscopic behavior in the drained case
by a simple shift along the axis of hydrostatic stresses. The macroscopic hydrostatic stress Σm obtained in the drained case
is replaced by Σm + Pb to treat the saturated case. This result is also used in the present study and only the drained case
(Pb = 0) is considered without loss of generality. Note that this result applies when the material surrounding the pores is
incompressible. In the present work, concerning the local behavior of the grains surrounding the pores, a compressible elastic
part is added to the viscoplastic part which is incompressible. As a result, the local behavior of the grains is not purely
incompressible. Nevertheless, the present study focusses on the response of the material deep into the plastic range, where
the elastic effects become negligible compared to the viscoplastic effects and where the local behavior of the grains is close
to the incompressibility.

The objective of the present study is to analyze the effect of the anisotropy due to the grains surrounding the pores
on the overall viscoplastic behavior of MOX fuel (stationary creep). The particular case of pores and grains with similar
sizes is studied. Two distinct shapes of pores are considered (spherical and polyhedral). The anisotropic behavior of the
grains is modeled through a crystal plasticity constitutive relation (Portelette et al., 2018). Unlike Wojtacki et al. (2020),
who considered simulations with several porous clusters embedded in a matrix, here, simulations are only performed on
microstructures representative of porous clusters. FFT-based full-field simulations are performed on porous polycrystals.
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(a) (b) (c) (d)

Figure 1: Periodic polycrystalline microstructures (500x500x500 voxels) with 15% porosity (voids in blue) (a) spherical voids
with dp = dg, (b) polyhedral voids with dp ≈ dg, (c) spherical voids with dp ≈ 2 dg, (d) polyhedral voids with dp ≈ 2 dg.

The paper is organized as follows. Section 2 presents the microstructures, the crystal plasticity model, and the loadings,
together with some features about the FFT-based method used in the simulations. Results are shown in Section 3 and the
main findings are discussed in Section 4.

2 Methods

2.1 Microstructure generation

In Pu-rich agglomerates near the pellet periphery, Noirot et al. (2008) found a case where bubbles and grains have approxi-
mately similar diameters. The estimated local burnup was about 100 GWd/t in this zone, which corresponds to a maximum
volume fraction of pores in the agglomerates (fp) of about 15%. Hence, in the present study, the simulations were performed
on polycrystals with porosity varying from 0 (dense case) to 15%, by step of 5%. For the reason stated in the introduction,
the pores were considered to be spherical in shape. However, this is just an approximation, therefore, an additional case
was also studied, considering pores of polyhedral shape. Thus, the effect of the shape of pores could also be estimated. To
identify the potential effect of the relative size of pores compared to the size of the grains, two different cases were treated:

• the diameter of the pores is approximately equal to the diameters of the grains, dp ≈ dg,

• the diameter of the pores is approximately twice the diameters of the grains, dp ≈ 2 dg.

The arrangement of the grains is based on a Poisson-Voronoi diagram (Aurenhammer, 1991; Stoyan et al., 1995). A single set
of ns = 1000 seeds was considered in the whole study to generate the periodic polycrystals. In addition, a single set of grain
orientations was also considered following a uniform random distribution. This follows from a parametric study reported in
Appendix A on the statistical representativeness. The FFT scheme used in the present study requires a discretization of the
unit cell with a regular grid composed of voxels. Based on the parametric study reported in Appendix A, a grid with 5003

voxels has been adopted for all the simulations.
The average volume Vg of the grains in the Voronoi tessellation is thus given by V/ns, where V = 1 is the volume of

the unit cell. The average grain diameter dg, defined as the diameter of an equivalent sphere of same volume Vg, is thus

(6Vg/π)
1/3

.

2.1.1 Spherical voids

To create the microstructures with spherical voids, single sized non-penetrable spheres were randomly positioned in the unit
cell of the dense polycrystalline microstructure and all voxels inside the spheres were set to 0 (value corresponding to the
void material, in blue in Figure 1). The number of pores (np) is determined from the desired volume fraction of pores and
their relative size with respect to grains using the following relations:

fp =
np Vp
V

=
np
ns

(
dp
dg

)3

, (2)

where Vp is the volume occupied by a pore. First, imposing dp = dg leads to integer values of np, np = ns fp = 1000 fp. By
doing so, a cell with 5% porosity and containing 50 pores will satisfy dp = dg. Thus, 10% porosity leads to 100 pores and
15% porosity leads to 150 pores. Secondly, imposing dp = 2 dg leads to np = 125 fp and for the porosity values studied in
this work (namely 5%, 10% end 15%) the value of np is not integer. We used instead dp = (10)1/3dg ≈ 2 dg which leads to
np = 100 fp. By doing so, a cell with 5% porosity and containing 5 pores will satisfy dp ≈ 2 dg. Thus, 10% porosity leads to
10 pores and 15% porosity leads to 15 pores. Some examples of microstructures with spherical voids are shown in Figures 1
(a) and (c). In the following, the microstructures obtained from this procedure are called Voronoi-type microstructures with
spherical voids.
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(a) (b)

Figure 2: Slices of microstructures with 15% porosity, dp ≈ 2 dg and polyhedral voids following (a) the procedure presented
in 2.1.2, (b) the procedure presented in 2.1.3.

2.1.2 Polyhedral voids

For generating microstructures with polyhedral voids, some particular grains of the polycrystal were simply considered as
void. They are called “voided grains” in the following.

Two different procedures were applied for generating such microstructures.

1. Depending on the targeted porosity, a given number of voided grains can simply be randomly selected among the
grains of the initial dense polycrystal. This procedure can only be used if the same grain and pore sizes are desired
(dp ≈ dg). In the following, the microstructures obtained from this procedure are called Voronoi-type microstructures
with polyhedral voids. Moreover, it does not guarantee to reach the exact volume fraction of pores desired, because of
the statistical fluctuations of the grain sizes. To overcome these two limitations, a second procedure is proposed which
makes use of Laguerre tessellations.

2. Laguerre tessellations, also called power diagrams, are an extension of Voronoi tessellations where the euclidian distance
- used in Voronoi tessellation to determine for each point of the volume which is the closest seed - is replaced by the
“power distance” (Aurenhammer, 1987; Lautensack and Zuyev, 2008). Alternatively, Laguerre tessellations can be
considered as the result of the crystal growth process where a set of seeds are positionned in space and time - each seed
s is thus determined by the couple (xs, ts) - and where each crystal grows from its corresponding seed with a constant
growth rate G of the square of their distance to its seed, untill it reaches another crystal. In other words, a given point
x is reached by the growth of crystal s at time t = d2(x,xs)/G + ts (where d(, ) denotes the euclidian distance), and
at the end, x belongs to the crystal which reaches it first. As for the Voronoi tessellations, the cells of the Laguerre
tessellations are convex polyhedra, but the choice of the times ts at which the crystals start to grow, and of the growth
rate G enables to drive the sizes of the resulting cells. In the particular case where all the values of ts are equal, the
resulting tessellation is a Voronoi diagram.

In order to obtain microstructures with similar voids distribution as the Voronoi-type microstructures with spherical
voids we proceed in two steps. Firstly, the grains of the initial dense polycrystal (with ns = 1000 grains) which contain
the centers of the spherical voids are selected. The seeds of these grains will be the seeds of the voided grains. Then
the procedure applied in this study consists in fixing the nucleation time ts of the seeds of the voided grain to 0, and
the nucleation time of the other grains to 1, and in searching the growth rate in order to reach the desired volume
fraction with the following algorithm:

• the first estimate of the surface growth rate G is set arbitrarily,

• if it does not lead to the desired volume fraction, an extrapolation is made to define the next value,

• then, for the next iterations, G is estimated by interpolating the values already calculated, until the volume
fraction of pores is reached (with a precision set to 10−4).

In the following, the microstructures obtained from this procedure are called Laguerre-type microstructures with
polyhedral voids.

Some examples of microstructures with polyhedral voids are shown in Figure 1 (b) and (d) and in Figure 2 (a).

2.1.3 Additional microstructures

For further discussions (section 4.1), two additional kinds of microstructures were generated.
The first one is a polycrystal with spherical voids obtained by a slightly different method from that described in section

2.1.1. First, a Laguerre-type microstructure with polyhedral voids is considered. Second, the voided grains are replaced by
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Name Void shape Tessellation Note
Voronoi-type microstructures with spherical voids spherical Voronoi

Voronoi-type microstructures with polyhedral voids polyhedral Voronoi
only for dp ≈ dg

uncontrolled
porosity

Laguerre-type microstructures with polyhedral voids polyhedral Laguerre
Additional microstructures
Voronoi-type microstructure with re-centered spherical voids spherical Laguerre

Laguerre-Voronoi-type microstructures with polyhedral voids polyhedral Laguerre/Voronoi

Laguerre
tessellation for the

voids
Voronoi tessellation

for the grains

Table 3: Main features for the different microstructures of the study.

dense grains and spherical pores of identical sizes are centered at the barycenters of these selected grains. In the following,
this microstructure is called Voronoi-type microstructure with re-centered spherical voids.

The second one consists in generating a new set of positions of grain seeds, where the number of seeds ns is set to np/fp.
Some of these seeds are randomly selected to be the seeds of the voided grains. The number of voided grains is set as in
2.1.1. A Laguerre tessellation is then performed and the algorithm described above is used to get the desired volume fraction
of porosity. All the voided grains thus obtained are then superimposed on the initial dense polycrystalline microstructure
with 1000 grains. This lead to unrealistic microstructures because the faces of the voids do not depend on the surrounding
grains (see Figure 2 (b)). In the following, the microstructures obtained by this procedure are called Laguerre-Voronoi-type
microstructures with polyhedral voids.

To sum up, the main features for the different types of microstructures are summarized in Table 3.

2.2 Crystal plasticity model

By lack of single-crystal experiments available for MOX fuel, the crystal plasticity model of Portelette et al. (2018), initialy
proposed for UO2 single crystals, is used to describe the behavior of the grains. This assumption is motivated by the fact
that MOX and UO2 fuels exhibit a fairly similar overall viscoplastic behavior. Moreover, PuO2 and UO2 have the same
fluorite lattice structure.

Here, viscoplasticity is driven by the glide of dislocations on crystallographic planes, identified by their normal vectors ns.
During the slip process, a shear strain is produced along directions ms colinear to Burgers vectors of type 1/2〈110〉. Each
pair [ms](ns) defines a slip system. In a fluorite lattice, there are three families of slip systems given by different slip plane
symmetries, usually named family I, II and III and corresponding to {100} slip planes, {110} slip planes and {111} slip
planes, respectively. Therefore, there are 24 slip systems with 6 systems for family I, 6 systems for family II, and 12 systems
for family III. Since in UO2 the role of the third family seems to be less significant and is not yet very well understood, it is
not considered in this study (see (Portelette et al., 2018) for more details). Detailed expressions of ns and ms vectors can
be found in (Portelette et al., 2020).

The Cauchy stress tensor σ is related to the elastic strain tensor εe through the fourth-order elastic tensor C:

σ = C : εe. (3)

The elastic strain tensor εe is obtained from the difference between the total strain, ε, and the viscoplastic strain, εvp:

εe = ε− εvp. (4)

The viscoplastic strain rate is the sum of the slip rates, γ̇s, projected on each slip system s using the symmetric Schmid
tensor µssym:

ε̇vp =

12∑
s=1

γ̇sµssym =

{100}︷ ︸︸ ︷
6∑
s=1

γ̇sµssym +

{110}︷ ︸︸ ︷
12∑
s=7

γ̇sµssym, (5)

µssym =
1

2
(ns ⊗ms +ms ⊗ ns). (6)

The evolution of the slip rate in each slip system s, is given by equation (7). To account for the temperature dependency,
T , an activation energy, ∆Hi

0, is defined for each slip family i. Note that the dependence of the slip rate on the stress is
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1/2<110>{100} 1/2<110>{110}
γ̇0 [s−1] 5.22×108 1.52×108

∆H0 [eV] 5.71 5.22
τ0 [MPa] 4.86 17.2

Table 4: Parameters of the crystal plasticity model.

modelled by a hyperbolic cosine function. For each slip system family, a prefactor γ̇0
i is introduced as a parameter, together

with a reference resolved shear stress denoted by τ i0:

γ̇s = γ̇i0 exp

(
−∆Hi

0

kbT

)(
cosh

(
τs

τ i0

)
− 1

)
sign(τs). (7)

Here, kb = 8.618 10−5 eV.K−1 is the Boltzmann constant. The resolved shear stress τs is defined as the projection of the
stress on the slip system s:

τs = σ : µssym. (8)

The above constitutive equations were implemented in the CraFT software (Suquet et al., 2012). Details on the time-
integration of the equations are given in Appendix B.

For each slip family, the three parameters (γ̇i0, ∆Hi
0, τ i0) are adjusted in order to match with the experiments of Routbort

et al. (1972) conducted on MOX fuel in the dislocation motion regime (see Appendix C for details). The obtained parameters
are specified in Table 4. The elastic anisotropy is accounted for by assuming a cubic stiffness tensor C. The evolution of the
three elastic constants (C11, C12, and C44 in Voigt notations) with temperature are obtained by interpolations between the
experimental results of Wachtman et al. (1965). The introduction of an elastic part is useful for the time-integration of the
constitutive equations (see Appendix B). Since the present study concerns the overall viscoplastic behavior, only the overall
stress obtained at the end of the simulation is kept, when the elasticity effects become negligible (loadings specified in 2.4).

Even if Portelette et al. (2018) considered finite strains, here, the constitutive equations are implemented under the
small strain assumption, since the maximum strain investigated is rather low. In addition, both studies do not consider
the isotropic hardening due to dislocation interactions. Indeed, Portelette et al. (2020) determined the coefficients of the
interaction matrix and it is shown in (Portelette, 2018) that such hardening in a thermally-activated regime of dislocation
glide is not relevant in UO2.

Note that, since the size of pores considered here is above a few microns (see section 1 about the microstructure of
irradiated MOX fuel), the surface effects predominant for nanosized inclusions are not considered here (Haller et al., 2015,
2016).

2.3 FFT-based homogenization method

The numerical simulations presented in this study are carried out using the CraFT code (Suquet et al., 2012). This software is
based on a full-field numerical method, introduced by Moulinec and Suquet (Moulinec and Suquet, 1994, 1998), which allows
the calculation of the homogenized mechanical quantities of a given heterogenous material from the data of its microstructure
and the properties of its constituents.This method basically consists in solving the Lippmann-Schwinger equation and makes
an intensive use of Fast Fourier Transforms (FFT). A major feature of the method is that it relies on a discretization of the
space according to a regular grid, i.e. on spatial data organized in the form of two- or three-dimensional images made of
pixels or voxels. Thus, the microstructural data are provided by an image of the material, making possible the direct use
of experimental results obtained by imaging techniques. The method was designed for numerical efficiency and has proven
to converge mostly much faster in terms of spatial discretization than the more classical FEM-based methods on similar
problems (El Shawish et al., 2020).

Following Joëssel et al. (2018) and Vincent et al. (2020) on porous viscoplastic crystals and polycrystals, the numerical
scheme used in the particular context of this study is a fixed-point iterative scheme (called ”basic scheme” by some authors).
The convergence criterion is here the one introduced by Bellis and Suquet (2019) which proved to be the most suitable
mathematically.

2.4 Loadings

The overall stress (also called effective or macroscopic stress) is denoted by Σ and the overall strain is denoted by E. The
effective response of dense polycrystal with the model presented in Section 2.2, is in good agreement with the experiments
in the dislocation mechanism domain as shown in Appendix C. Therefore, in this study, the investigated temperature range
was taken from 1400◦C to 1700◦C and the strain-rate range was from 10−7 s−1 to 10−4 s−1.

The triaxiality diagram was explored using mechanical tests with imposed overall stress direction and controlled overall
strain in the stress direction (see Appendix B in (Moulinec and Suquet, 1998) for more details). Note that this procedure
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Figure 3: Macroscopic stress versus macroscopic strain in the compression direction (absolute values) during a uniaxial
compression loading (a) on the dense polycrystal for different temperatures and strain rates, (b) on the dense polycrystal
and Voronoi-type microstructures with polyhedral voids for dp ≈ dg, T = 1400◦C, and |Ė11| = 10−7 s−1.

is extremely useful to test the response of heterogeneous porous cells under different loading paths (as done here with
the FFT based method), but also to test the response of analytical macroscopic models for porous media derived from a
micromechanical approach on a material point (see for example (Nkoumbou Kaptchouang et al., 2021)).

Several overall stress triaxialities were prescribed to investigate the effect of porosities considering the first and the
second stress invariants, i.e. the hydrostatic stress, Σm, defined in equation (9) and the Von Mises equivalent stress defined
in equation (10), in which the deviatoric stress tensor is defined by Σd = Σ−ΣmI and I is the second-order identity tensor.
The overall stress triaxiality is then defined by the ratio of the two invariants: Tσ = Σm/Σeq. Note that the effect of the
third stress invariant was not studied here.

Σm =
1

3
tr (Σ) , (9)

Σeq =

√
3

2
Σd : Σd. (10)

An axisymmetric overall stress direction, Σ0, was prescribed:

Σ0 =

−1 0 0
0 c 0
0 0 c

 , (11)

where, c is a scalar between -1 and 0.5 dedicated to control the stress triaxiality. Uniaxial compression tests (corresponding
to the case where Tσ = −1/3 and c = 0) were performed in order to allow a comparison with experimental results reported in
the literature. Moreover, purely deviatoric (Tσ = 0, c = 0.5) and purely hydrostatic compressions (T = −∞, c = −1) tests,
corresponding to the two extreme triaxialities, and two intermediate tests ( (Tσ = 1, c = −0.4) and (Tσ = 3, c = −0.7273) )
were performed to cover the whole domain of triaxiality.

For all cases investigated, it was chosen to deform until the projected strain, |E| = |E : Σ0|, reaches 1.5%. This value
allows to estimate the asymptotic overall stress with reasonable accuracy. Uniaxial and deviatoric simulations were performed
with 1500 constant time steps while 2500 to 3000 time steps were used for hydrostatic simulations, because numerical
convergence is harder to achieve in hydrostatic case than for deviatoric and uniaxial loadings. The overall hydrostatic stress
and the overall equivalent stress obtained at the end of the simulations are checked so that they vary less than 0.1 MPa in
the last 100 time steps.

Tables D.1 and D.2 in appendix D summarize all the simulations achieved for each microstructure and loading.

3 Results

3.1 Uniaxial compression loading

Let us consider the case of uniaxial compression loading as defined in 2.4 (imposed direction of overall stress). Figure 3 (a)
shows some stress-strain curves obtained on the dense polycrystal. As expected, the stress level deep in the plastic range
decreases with the temperature and increases with the strain rate. The effect of porosity on the strain-stress curves at 1400◦C
and 10−7 s−1 is illustrated in Figure 3 (b). Voronoi-type microstructures with polyhedral voids are here considered. As
expected, the pores induce a softening of the material and the stress level deep in the plastic range decreases with porosity.
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Figure 5: Stress versus porosity for Voronoi-type microstructures with spherical voids, Laguerre-type and Voronoi-type
microstructures with polyhedral voids, submitted to a uniaxial compression loading (dotted and dashed lines are linear
regression functions). (a) dp ≈ dg for different temperatures and strain rates, (b) dp ≈ dg and dp ≈ 2 dg for T = 1400◦C and

|Ė11| = 10−7 s−1.
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In the following, the macroscopic stress obtained at the end of the computation is denoted by Σ̄ (its component along
the compression direction is Σ̄11). Figure 4 shows that the dependence of stress on strain rate is not linear in a log-log
representation. Here, a hyperbolic cosine function is used to fit the evolution of the strain rate, |Ė11|, with the stress, |Σ̄11|,
for each temperature T (dashed lines in Figure 4):

|Ė11| = A exp

(
− Q

RT

)(
cosh

(
|Σ̄11|
Σ0

)
− 1

)
(12)

where R = 8.314 J.mol−1.K−1 is the gas constant. Here, a better fit is obtained with a hyperbolic cosine function than with
an exponential or a hyperbolic sine function which are more often used in the literature. The parameters, determined by
a least squares regression, are the prefactor A = 9.68 × 108 s−1, the activation energy Q = 539 kJ.mol−1 (or ∆H0 = 5.59
eV), and the referential stress Σ0 = 20.5 MPa. Note that theses values are close to the values for family I and II reported in
Table 4. The effect of porosity observed in a log-log representation (Figure 4) exhibits a global softening compared to the
dense material, no matter the temperature and the strain rate. By adjusting the equation (12), the parameters with 15%
porosity are A = 1.58× 109 s−1, Q = 549 kJ.mol−1 and Σ0 = 13.5 MPa. Therefore, porosity markedly affects the prefactor
and the referential stress while the activation energy does not change significantly. This means that porosity facilitates the
dislocation motion but faintly influences the temperature dependency.

Figure 5 (a) shows the evolution of the stress —Σ̄11— with respect to the porosity fp for some values of temperature
and strain rate. Microstructures with similar in size pores and grains are considered. Voronoi-type microstructures with
spherical voids, Laguerre-type microstructures with polyhedral voids, and Voronoi-type microstructures with polyhedral voids
are considered. An almost linear evolution of the stress with respect to the porosity is observed. The dashed and dotted
lines are linear functions adjusted by a least squares regression to highlight the trends for microstructures with spherical
voids and polyhedral voids respectively. The slope is steeper at lower temperature and at higher strain rate. It appears that
the simulations with polyhedral voids systematically induce more softening than the simulations with spherical voids.

Results for microstructures with dp ≈ dg and dp ≈ 2 dg are presented for 1400◦ C and 10−7 s−1 in Figure 5(b). First,
it appears that the stress discrepancies due to the different draws of microstructures remain low for both relative size of
pores and microstructures investigated. The discrepancies appear slightly higher for the microstructures with polyhedral
voids than for microstructures with spherical voids. Also, the discrepancies obtained from the different draws of a given type
of microstructure increase with the relative size of pore. Indeed, increasing the relative size of pore tends to decrease the
number of pores in the unit cell, which induces a loss of representativeness. Nevertheless, the level of discrepancies remains
relatively small showing a sufficient representativeness. Secondly, results obtained from Laguerre-type and Voronoi-type
microstructures with polyhedral voids (described in Section 2.1.2) lie on the same interpolated line. Note that the porosity
is not perfectly controlled for Voronoi-type microstructures with polyhedral voids, because of statistical fluctuations during
the generation process. Thus, in Figure 5, the points associated with these microstructures correspond to porosities slightly
scattered with respect to the desired porosities (5, 10 or 15%). This outlines the equivalence of the two ways of generating
the microstructures with polyhedral voids. Thirdly, when the relative size of voids increases, the stresses obtained from the
microstructures with polyhedral voids tend to the stresses obtained from the microstructures with spherical voids. To the
end, it is observed that the effect of the relative size of voids with respect to the size of grains is negligible for microstructure
with spherical voids (less than 1 MPa absolute difference and less than 1% relative differences). It appears to be more
pronounced for microstructures with polyhedral voids (maximum relative difference about 5%).

3.2 Other loading conditions

Figure 6 shows the macroscopic equivalent stress as a function of the macroscopic hydrostatic stress obtained at the end of
the simulations for different macroscopic stress triaxialities. Voronoi-type microstructures with spherical voids and Laguerre-
type microstructures with polyhedral voids are considered. The strain rate Ė is given by Ė : Σ0 where Σ0 is the imposed
direction of macroscopic stress. In Figure 6 (a), it is observed that the higher the stress triaxiality (in absolute value),
the higher the difference between the stresses for the sets of temperature and strain rate studied. From Figure 6 (b), it
appears that the softening observed in uniaxial compression due to porosity is also noticeable for other loading conditions
and increases with the stress triaxiality. In addition, the effect of the type of pores (spherical or polyhedral in shape) is also
enhanced with stress triaxiality. Finally, it is observed in Figure 6 (c) that the effect of the relative size of pores remains
small for microstructures with spherical voids for all the stress triaxialites investigated. For microstructures with polyhedral
voids, it is more pronounced and it increases with stress triaxiality. Furthermore, when dp ≈ 2 dg, the behavior for the
microstructures with polyhedral voids tends to be similar to the behavior of the microstructures with spherical voids.

As explained at the end of the section 4.1, for polyhedral voids, increasing the relative size leads to voids which are closer
to the spherical shape. This could be the reason why the curves in Figure 6 (c) corresponding to spherical voids and to
polyhedral voids with dp ' 2 dg are close to each other. In line with these arguments, the differences observed on curve
corresponding to the polycrystal with polyhedral voids with dp ' dg, compared to the other curves, especially for high stress
triaxiality, seem to be an effect of the shape of the cavities rather than a size effect.
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Figure 6: Equivalent stress versus hydrostatic stress of Voronoi-type microstructures with spherical voids, Laguerre-type
microstructures with polyhedral voids (dotted and dashed lines are interpolations between the mean values obtained for each
stress triaxiality) (a) for different temperatures and strain rates with dp ≈ dg and fp = 15%, (b) for different porosities with

dp ≈ dg, T = 1400◦C, and |Ė| = 10−7 s−1, (c) for dp ≈ dg and dp ≈ 2 dg with fp = 15%, T = 1400◦C, and |Ė| = 10−7 s−1.

4 Discussion

4.1 Crystallinity and pore shape effects

In this study, it is observed that the relative size of pores with respect to the size of grains has a minor effect on the overall
viscoplastic behavior in the case of spherical voids. Thus, in this case, the material seems insensitive to the crystallinity
and the anisotropy of the grains surrounding the pores. This is in accordance with (Lebensohn et al., 2011), in which the
numerical simulations and theoretical predictions for the viscoplasticity of polycrystalline solids containing intergranular
spherical voids (grains and cavities with a similar size) indicate that the effective response of untextured voided solids was
relatively insensitive to the crystallinity of the matrix.

It is observed in the present study, that the effect of the relative size of pores with respect to the size of grains on the
overall viscoplastic behavior is quite pronounced for microstructures with polyhedral voids and negligible for microstructures
with spherical voids. Wojtacki et al. (2020) observed a negligible increase of the strain rate for a constant porosity when
the size of pores is decreasing. Their observation were based on simulations of creep tests on a material with an isotropic
viscoplastic matrix and spherical pores organized into clusters representative to irradiated MOX fuel. Boittin et al. (2017)
studied the effect on the effective plastic flow surface of the relative size of intergranular lenticular cavities located along grain
boundaries with respect to the mean grain size in a biporous material with spherical intragranular cavities. An isotropic
matrix surrounding the intergranular lenticular cavities was considered. For a constant volume fraction of intergranular
bubbles, the effective yield stress was found to reduce when decreasing the relative size of the bubbles. This effect was
larger for a purely hydrostatic overall stress direction than for a purely deviatoric axisymmetric overall stress direction.
These observations were in good agreement with those of Bilger et al. (2005) who carried out simulations of porous media
composed of a perfectly plastic matrix with connected clusters of voids.

Figure 7 shows maps of equivalent strain obtained at the end of the simulation for a Voronoi-type microstructure with
re-centered spherical voids (see section 2.1.3) and a Laguerre-type microstructure with polyhedral voids under hydrostatic
compression. The equivalent strain seems highly localized in zones between neighboring voids. For both microstructures, a
strong interaction between neighboring voids is thus obtained, which is in line with the results of Lebensohn et al. (2011)
for purely hydrostatic loading. Nevertheless, it appears that the spatial distribution of the equivalent strain at the extreme
periphery of the voids is quite different considering spherical or polyhedral voids (see black circles in Figure 7). In some zones
around the polyhedral voids, the equivalent strain may remain very low and in other zones around the polyhedral voids it
may experience large values. In the case of spherical voids, a non-zero equivalent strain is typically observed all around the
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Figure 7: Equivalent strain fields at the end of the simulation for fp = 15% under hydrostatic compression with dp ≈ dg,

T = 1400◦C, and |Ė| = 10−7 s−1. (a) Voronoi-type microstructure with re-centered spherical voids (see section 2.1.3),
(b) Laguerre-type microstructure with polyhedral voids. Isovalues are bounded with a maximum value set to 2.5%. In
microstructures (a) and (b), pore centers have identical positions.
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Figure 9: Stress fields at the end of the simulation for fp = 15%. dp ≈ dg, T = 1400◦C, and |Ė| = 10−7 s−1. Hydrostatic
compression, maps of tr(σ) (a) for a Voronoi-type microstructure with spherical, (b) for a Laguerre-type microstructure with
polyhedral voids. Uniaxial compression, maps of σ11 (c) for a Voronoi-type microstructure with spherical voids, (d) for a
Laguerre-type microstructure with polyhedral.
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Figure 10: Distribution of stress at the end of the simulation for fp = 15% in Voronoi-type microstructure with spherical

voids and Laguerre-type microstructure with polyhedral voids. dp ≈ dg, T = 1400◦C, and |Ė| = 10−7 s−1. (a) tr(σ) for
hydrostatic compression loading, (b) σ11 for uniaxial compression loading.

Portelette et al. Postprint - International Journal of Solids and Structures 13



cavities. Thus, it appears that the shape of the pores has an influence on the local fields.
Here, when dp ≈ dg, it is observed that the stresses obtained from microstructures with polyhedral pores are lower than

the stresses obtained from microstructures with spherical pores. Nevertheless they are not generated with the same process.
In one hand, the microstructures with spherical voids are generated by superimposing spherical cavities on an initial Voronoi
tessellation. In the other hand, the microstructures with polyhedral voids are directly generated from a Voronoi or Laguerre
tessellation (some cells of the tessellation are considered as voids). As a result, we investigate whether this difference in
results is caused by the difference in the building process, one with overlap and the other without. Thus, an additional
type of microstructures is considered with polyhedral voids (see Figure 2 and Section 2.1.3) with a superposition of cavities
obtained from a Laguerre tessellation directly mapped onto a Voronoi tessellation. Figure 8 shows the results obtained from
Voronoi-type and Laguerre-type microstructures with polyhedral voids under uniaxial compression (as in Figure 5), together
with the results obtained from this additional type of microstructures with polyhedral voids. When dp ≈ dg it is observed
that the different types of microstructures lead to similar results. It shows that the difference in the building process, with
or without overlap cannot explain the difference in results obtained from microstructures with polyhedral and spherical
pores. Moreover, Figure 8 shows that the results obtained from the additional microstructures with polyhedral pores are
not very sensitive to the relative pore size (similar results for dp ≈ dg or dp ≈ 2 dg). Thus the additional microstructures
with polyhedral voids lead to a negligible size effect, unlike the other microstructures with polyhedral voids. Note that
the polyhedral voids in the additional microstructures have larger and fewer facets than the voids in the Laguerre-type
microstructures with polyhedral voids when dp ≈ 2 dg (see Figure 2). It could explain the specific behavior observed on these
additional microstructures. Consequently, it indicates that the difference between results obtained on microstructures with
polyhedral and spherical pores when dp ≈ dg mentioned above is probably due to the shape of pores.

To better understand the pore shape effect, local stress fields are shown in Figure 9 for hydrostatic and uniaxial compres-
sion loadings and for both types of microstructures. Note that the color bar is set to visualize the minimum and maximum
values of stresses in the two microstructures and the color gradient is adjusted to get approximately the same colors for the
same values around 0 MPa. The dispersion is larger in the case of polyhedral voids than spherical voids. For hydrostatic load-
ing, the zones with small values of local hydrostatic stress are more spread in the case of the polyhedral voids than spherical
voids. Even if it is less noticeable for the uniaxial loading, it seems that the same trend is emerging for the local stress in the
compression direction. This means that the polyhedral void case contains more unloaded zones than the spherical void case.
To quantify these differences, distributions of stresses are plotted in Figure 10. The peak observed at 0 MPa is mainly due
to the stress-free voids. As expected, the spread of small stresses is larger in the case of the microstructure with polyhedral
voids, especially under hydrostatic compression with a clear shift of the distribution. For uniaxial compression, the shift is
less pronounced, but the amount of voxels with small stresses is clearly larger for the microstructure with polyhedral voids.
Thus, it seems that the differences obtained on the microstructures with the two types of pore are due to the spread of small
stress zones around the pores.

The non-spherical shape effect was largely discussed in the literature, first in 2D (Zimmerman, 1986; Kachanov et al.,
1994; Tsukrov and Novak, 2002; Ekneligoda and Zimmerman, 2006), showing that the overall compressibility in elasticity
depends on the ratio of the square of the perimeter of pores over its surface area. Thus, they highlighted that the circular
pore shape is the stiffest in 2D, since it gives the lowest perimeter for a given surface area. In 3D, many authors investigated
the pore shape effect, considering regular pore shapes (Sevostianov and Giraud, 2012; Sevostianov et al., 2016; Chen et al.,
2015, 2018; Markov et al., 2020; Du et al., 2020, 2021) or irregular pore shapes (Drach et al., 2011, 2014, 2016; Markov et al.,
2020). In a similar way to 2D, the ratio of the surface area of pores over their volume is of great importance for the overall
compressibility in elasticity. This is well in line with the results of the present study, since the surface area of polyhedral
pores is larger than the surface area of spherical pores of same volume. Furthermore, the fact that the discrepancy between
the results obtained with Voronoi-type microstructure with spherical pores and those of Laguerre-type microstructures with
polyhedral pores is reduced when dp ' 2 dg compared to the one of the case when dp ' dg (see Figure 6 (c)), can be explained
by the more spherical aspect of the pores when dp ' 2 dg, which is well illustrated in Figure 1 (b) and (d). Oppositedly, as
can be seen in 8, the Laguerre-Voronoi-type microstructures with polyhedral voids, with either dp ' dg or dp ' 2 dg have a
mechanical response close to that of Laguerre-type microstructures with polyhedral voids with dp ' dg, probably because
the shapes of the pores in the two cases are very similar - they only differ in their sizes - and thus present the same deviation
to sphericity.

4.2 Modified porosity

From Figure 5, it seems that the case of polyhedral voids and dp ≈ dg can be derived from the case of spherical voids by
multiplying the porosity by a constant q (to be determined). It could serve to extend the analytical model developed in
(Wojtacki et al., 2020) for spherical voids to polyhedral voids when the size of voids is similar to the size of grains. Multiplying
the porosity by q in this analytical model could lead to an estimate when the pores are polyhedral with a size close to the
size of grains. Since porosity have the highest influence in hydrostatic loadings, q is determined from the evolution of the
hydrostatic stress with the porosity for hydrostatic loadings. Then the value of q is used, with no further fitting, to simulate
the uniaxial tests and the purely deviatoric tests at different strain-rate levels and different temperatures.
The overall hydrostatic stress at the end of the simulation versus porosity for microstructures with dp ≈ dg under hydrostatic
compression is presented in Figure 11 (c) for different temperatures and strain rates. The evolution of overall hydrostatic
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T [◦C] |Ė| [s−1]
Tσ Spherical voids Polyhedral voids qsv

Asv Bsv Apv Bpv 5% 10% 15% mean

1400 10−4
-∞ -156.6 643.5 -167.1 626.4 1.24 1.30 1.34 1.29
-1/3 -3.7 193.8 -4.5 193.8

0 -3.3 186.5 -3.9 186.5

1400 10−7
-∞ -77.1 302.9 -79.7 286.7 1.30 1.33 1.35 1.33
-1/3 -1.4 76.0 -1.7 76.0

0 -1.1 68.5 -1.3 68.5

1700 10−4
-∞ -60.7 234.8 -60.5 218.1 1.31 1.30 1.30 1.30
-1/3 -0.99 54.9 -1.17 54.9

0 -0.77 48.1 -0.90 48.1

1700 10−7
-∞ -7.6 27.0 -7.2 24.2 1.33 1.28 1.25 1.29
-1/3 -0.08 4.3 -0.09 4.3

0 -0.05 3.5 -0.06 3.5

Table 5: Parameters of equations (13) and (14) identified by a least squares regression and q values determined from equation
(16).

stress with porosity is estimated for spherical voids and polyhedral voids respectively using the following relation:

|Σ̄m| = Ai ln(fp) +Bi. (13)

where i is the type of pore (’sv’ for spherical voids and ’pv’ for polyhedral voids). The logarithm function is inspired from the
hollow sphere problem with Von Mises rigid plastic matrix under purely hydrostatic loading in the original Gurson analysis
(Gurson, 1977). The coefficients Ai and Bi are determined using a least squares regression (see Table 5).
In Figures 11 (a) and (b), it is observed that the evolutions of Σ̄eq and |Σ̄11|, respectively for purely deviatoric and uniaxial
compression loadings, with porosity are quite linear. Therefore, they are estimated by:

|Σ̄eq,11| = Ai fp +Bi. (14)

The parameters Ai and Bi identified by the least squares regression are reported in Table 5 for both types of microstructure.
In Figure 11 (c), dashed and dotted lines correspond to the evolution of stress as a function of porosity for spherical voids
and polyhedral voids respectively using the following relation:

|Σ̄m| = Ai ln(qi fp) +Bi. (15)

The parameter qsv is adjusted for spherical voids to meet the relation for polyhedral voids where qpv = 1:

qsv =
1

fp
exp

(
Apv log(fp) +Bpv −Bsv

Asv

)
. (16)

A mean value for qsv is computed for each set of temperature and strain rate in Table 5. The obtained values are then
averaged, leading to qsv = 1.3. It is checked in Figure 11 (c) that the dashed lines with qsv = 1.3 (simply denoted by q)
remain close to the dotted lines for the different temperatures and strain rates.
In Figures 11 (a) and (b), dashed and dotted lines correspond to the evolution of stress as a function of porosity for spherical
voids and polyhedral voids respectively using the following relation:

|Σ̄eq,11| = Ai (qi fp) +Bi. (17)

with qsv = 1.3 and qpv = 1. The dashed lines with qsv = 1.3 (simply denoted by q) slightly underestimates the results for
the microstructures with polyhedral voids. Nevertheless, the discrepancies remain below 5% of the stress for both loadings.

5 Conclusions

Porous polycrystalline microstructures with similar in size pores and grains are generated to analyze the effect of the
anisotropy due to the grains surrounding the pores on the overall viscoplastic behavior. Such microstructures can be
encountered in large Pu-rich clusters of irradiated MOX fuels. Two distinct shapes of pores are considered (spherical and
polyhedral), together with two relative sizes of the voids with respect to the grains. Specific algorithms are derived to
generate the different microstructures of Voronoi and Laguerre tessellations. The local deformation of the grains is assumed
to follow a crystal plasticity law recently developed for UO2 and adjusted here to fit with experimental results on MOX fuel.
Full-field simulations using a Fast Fourier Transforms based method are performed imposing the direction of the overall stress.
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(a)

Figure 11: Stress versus porosity for different temperatures and strain rates and dp ≈ dg for Voronoi-type microstructures
with spherical voids, Laguerre-type and Voronoi-type microstructures with polyhedral voids under (a) purely deviatoric
loading, (b) uniaxial compression loading, (c) purely hydrostatic compression loading.

Different overall stress triaxilities are considered, corresponding to uniaxial compression, purely hydrostatic compression, and
purely deviatoric axisymmetric loadings. To the end, the results are obtained from a massive computation plan, varying the
temperature, the strain rate, the porosity, the pore shape, the relative size of pores with respect to the grains, and the stress
triaxiality. As expected, the porosity has a softening effect on the effective viscoplastic behavior. The effect of the relative
size of pores remains small for microstructures with spherical voids for all the stress triaxialities investigated, thus indicating
a minor effect of the crystallinity and the anisotropy of the grains on the overall viscoplastic response.

For further investigations, the effect of crystallinity should be assessed when additional local processes are taken into
account, such as lattice rotation, strain hardening due to interactions between dislocations or between dislocations and point
defects, or processes implying point defects diffusion, or dislocation climb. Coming from the fact that the crystal plasticity
model is local, another limitation of this study could be that it does not take into account the possible effect of geometrically
necessary dislocations induced by large strain gradients around the pores.

For microstructures with polyhedral voids, the effect of the relative size of pores is more pronounced and it increases with
stress triaxiality. Furthermore, when the relative size of pores with respect to the size of grains increases, the behavior of the
microstructures with polyhedral voids tends to the behavior of the microstructures with spherical voids. It seems that the
difference between results obtained on microstructures with polyhedral and spherical pores is due to the shape of pores itself,
leading to different spreads of small stress zones around the pores. It is shown that the case of polyhedral voids when the
size of voids is equal to the size of grains can be derived with good accuracy from the case of spherical voids by multiplying
the porosity by a constant q ≈ 1.3. It could be used to extend the analytical model developed in (Wojtacki et al., 2020) for
MOX fuel with spherical pores. Multiplying the porosity by q in this analytical model gives an estimate when the pores are
polyhedral with a size close to the size of grains.
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Figure A.1: (a) Effective stress on a 100 grains Voronoi-type microstructure with 15 polyhedral voids, at 1900◦C and 10−3

s−1, under uniaxial compression. (b) Absolute and relative differences of each simulation results with 39.9 MPa.

A Parametric studies

A.1 Spatial discretization

Spatial discretization, which can be defined as the number of voxels/pixels per volume element, plays an important role
on the accuracy of the calculation performed with FFT-based homogenization method. First, a high spatial discretization
enables a fine description of the microstructure (and thus a simulation closer to the physical problem). Second, it enables a
better estimate of the mechanical fields and the overall material properties.

To study the influence of spatial discretization, several simulations were performed on a canonical microstructure, consid-
ering the viscoplastic behavior of the material and the porosity. A microstructure composed of 85 viscoplastic crystals and 15
voided grains (Voronoi-type microstructure with polyhedral voids generated as described in 2.1.2) was subjected to a uniaxial
compression test, with a strain rate of 10−3s−1 (see the description of the loadings in Section 2.4), at a temperature set to
1900◦C, for a spatial discretization varying from 1,250 to 3,430,000 voxels per grain. To be more specific, the discretization is
defined here as the total number of voxels in the image, divided by the total number of grains, voided or not, in the volume.

The results are summarized in Figure A.1. It appears that the effective stress obtained at the end of the simulation
converges toward an asymptotic value with an increasing spatial discretization (Figure A.1 (a)) and that the asymptotic
value is nearly reached with the largest investigated discretization. The resuts are compared here to a reference value set
to 39.9 MPa, which overestimates the value obtained with the highest resolution. Figure A.1 (b) shows that the difference
between the calculated overall stress and this reference value is below 0.5 MPa, which corresponds to a relative difference of
1%, for spatial discretization over 100,000 voxels per grain.

To conclude, a spatial discretization of 125,000 voxels per grain has been retained for this study.

A.2 Macroscopic isotropy and representativeness

The goal of this parametric study is to determine the minimal number of grains in the unit cell of a dense polycrystal required
to get, with a good accuracy, a macroscopic isotropic mechanical response.

Eight classes of microstructures were considered which contained 10, 70, 100, 250, 400, 700, 1000 and 1500 grains,
respectively, with a discretization of 125,000 voxels per grain. For each class, 30 realizations were generated. Examples of
microstructures used in this study are presented in Figure A.2, for different numbers of grains.

Each cell was tested under three loading conditions corresponding to uniaxial compressions along the three directions of
the space. The temperature was set to 1400◦C and the unit cell was loaded with constant overall strain rate (of 10−4 s−1)
until 1.5% of the corresponding overall axial strain was reached (see the description of the loadings in Section 2.4).

In Figure A.3 are compared the average values (over all realizations) of the effective uniaxial stresses obtained at the end
of the simulations along the three directions of the space as functions of the number of grains. As expected, the standard
deviation of the results within each class of microstructures decreases with the number of grains and it is less than 2,5% for
classes containing more than 250 grains. For unit cells containing more than 700 grains these average values are visually
indistinguishable.

Thus, it is reasonable to consider that a unit cell containing more then 700 grains is quite representative and gives an
almost isotropic mechanical effective response. The numerical simulations presented in this paper are performed on unit cells
containing 1000 grains.
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Figure A.2: Microstructures of dense polycrystal for different number of grains: (a) 10 grains, (b) 70 grains, (c) 100 grains,
(d) 250 grains, (e) 400 grains, (f) 700 grains, (g) 1000 grains, and (h) 1500 grains.

B Integration of the crystal plasticity model in CraFT

The crystal plasticity model introduced in 2.2 and used in this study can be summarized by the following set of constitutive
equations:

σ̇ = C : (ε̇− ε̇vp)

ε̇vp =
∑
s

γ̇sµssym

γ̇s = γ̇i0 exp

(
−∆Hi

0

kbT

)
(

cosh

(
τs

τ i0

)
− 1

)
sign(τs)

τs = σ : µssym

µssym =
1

2
(ns ⊗ms +ms ⊗ ns)

(B.1)
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Figure A.3: Effective uniaxial average stresses over all microstructure realizations containing the same number of grains, at
the end of the simulations along the three directions of the space versus the number of grains at 1400◦C and 10−4 s−1. Bars
indicate the standard deviation.
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Figure C.1: Normalized slip (equations (C.1) and (C.2)) of the two slip families of UO2 and MOX for different temperatures
and strain rates.

This model has been integrated in time in CraFT code by introducing a time increment ∆t and by discretizing the stress
rate and the strain rate in time as follows:

σ̇ =
σ(t)− σ(t−∆t)

∆t
,

ε̇ =
ε(t)− ε(t−∆t)

∆t
.

(B.2)

Thus, by developing (B.1), the following equation is obtained:

F (σ(t)) = 0, (B.3)

with

F (σ(t)) = σ(t)− σ(t−∆t)−C :
(
ε(t)− ε(t−∆t)

)
+ ∆t

∑
s

[
γ̇i0 exp

(
− ∆Hi

0

kbT

)(
cosh

(µssym : σ(t)

τ i0

)
− 1

)

sign(µssym : σ(t)) C : µssym

]
,

where the only unknown is the current stress σ(t), the current strain ε(t) and the strain ε(t−∆t) and the stress σ(t−∆t)
at the previous time step being supposed to be known.

Equation (B.3) is solved iteratively using the Newton-Raphson method.

C Parameters of crystal plasticity model for MOX fuel

In this study, the crystal plasticity model developed by (Portelette et al., 2018) for UO2 is used for MOX fuel. The two
materials have the same fluorite lattice structure and a similar viscoplastic behavior. However, the parameters of the model
should be adjusted in order to match with the experimental results. Since no experimental data are available for MOX single
crystal, we use experimental measurements obtained by Routbort et al. (1972) on MOX pellets in the dislocation motion
regime.

The three parameters γ̇i0, ∆Hi
0 and τ i0, of each slip family, are adjusted by comparing the experimental results with the

results of numerical simulations. The simulations were performed on the dense polycrystal. The unit cell containing 1000
grains was submitted to a uniaxial compression and the effective axial stress is determined for different temperatures and
strain rates.

In both materials (UO2 and MOX) the viscoplastic strain-rate is the sum of the slip rates, γ̇s, on each slip system. In
order to preserve the same mechanism for the evolution of the viscoplastic strain-rate in the two materials, when adjusting
the parameters mentioned before, we have kept the dominance of the slips of the family I compared to the ones of the family
II. To evaluate it, the sum of slips of each family is normalized by the sum of slips of all slip systems (equations (C.1) and
(C.2)):

γI

γtot
=

∑6
s=1 γ

s∑12
s=1 γ

s
, (C.1)
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γII

γtot
=

∑12
s=7 γ

s∑12
s=1 γ

s
. (C.2)

In Figure C.1 are reported these ratios for both materials and for different temperatures and strain rates. The choice of
the parameters which is presented hereafter, ensure that the normalized slip of family I is always greater than the normalized
slip of family II for all temperatures and all strain rates.

After several tries a good choice found of these parameters is the following:

• the values of ∆Hi
0 are kept unchanged for both slip families,

• the values of τ i0 are 3.6 times larger than the corresponding values for UO2 for both slip families,

• the values of γi0 for family 1/2¡110¿100 are 11 times larger than the corresponding values for UO2,

• the values of γi0 for family 1/2¡110¿110 are 22 times larger than the corresponding values for UO2.

It is worth noting that the procedure for adjusting these parameters is purely heuristic and other set of parameters could
give similar results.

In Figure C.2 are compared the experimental results of Routbort et al. (1972) with the results of the FFT simulations
for three temperatures. The predictions of the model of Slagle et al. (1984) with the parameters specified in (Wojtacki et al.,
2020), and the hyperbolic cosine model (equation (12)) are also plotted. The results of the numerical simulations show that,
at least for the range of strain rates considered here, the set of parameters identified previously for the MOX fuel leads to
an effective behavior which is close to the one observed in experiments, for the whole range of temperature. We can also
remark that the model of Slagle et al. (1984) accurately predicts the behavior of the dense polycrystal.

D Simulation cases

Tables D.1 and D.2 summarized all the simulation cases performed on Voronoi-type microstructures with spherical voids and
Laguerre-type microstructures with polyhedral voids. Moreover, the simulations performed on the other types of microstruc-
tures are indicated in these tables:

• the simulation on the Voronoi-type microstructure with re-centered spherical voids is added in the column ’Spherical
voids’ with dp ≈ dg and is indicated in parentheses (.),

• simulations on Voronoi-type microstructures with polyhedral voids are added in the column ’Polyhedral voids’ with
dp ≈ dg and are indicated in braces {.},

• simulations on Laguerre-Voronoi-type microstructures with polyhedral voids are added in the column ’Polyhedral voids’
and are indicated in square brackets [.].
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Spherical voids Polyhedral voids

T [◦C] |Ė| [s−1] fp [%] Tσ dp ≈ dg dp ≈ 2dg dp ≈ dg dp ≈ 2dg

1400

10−7

0 -1/3 1
5 0 1 1+{1}
5 -1/3 5 5 5+{5}+[5] 5+[5]
5 -1 1 1
5 -3 1 1
5 -∞ 1 1+{1}
10 0 1 1+{1}
10 -1/3 5 5 5+{5}+[5] 5+[5]
10 -1 1 1
10 -3 1 1
10 -∞ 1 1
15 0 5 5 5+{1} 5
15 -1/3 5 5 5+{5}+[5] 5+[5]
15 -1 5 5 5 5
15 -3 5 5 5 5
15 -∞ 5+(1) 5 5+{1} 5

10−4

0 -1/3 1
5 0 1 1+{1}
5 -1/3 1 1+{1}
5 -∞ 1 1+{1}
10 0 1 1+{1}
10 -1/3 1 1+{1}
10 -∞ 1 1+{1}
15 0 1 1+{1}
15 -1/3 1 1+{1}
15 -1 1 1
15 -3 1 1
15 -∞ 1 1+{1}

10−6 0 -1/3 1
15 -1/3 {1}

5×10−5 0 -1/3 1
15 -1/3 {1}

Table D.1: Cases of simulations performed at 1400◦C.
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Spherical voids Polyhedral voids

T [◦C] |Ė| [s−1] fp [%] Tσ dp ≈ dg dp ≈ 2dg dp ≈ dg dp ≈ 2dg

1700

10−7

0 -1/3 1
5 0 1 1+{1}
5 -1/3 1 1+{1}
5 -∞ 1 1+{1}
10 0 1 1+{1}
10 -1/3 1 1+{1}
10 -∞ 1 1+{1}
15 0 1 1+{1}
15 -1/3 1 1+{1}
15 -1 1 1
15 -3 1 1
15 -∞ 1 1+{1}

10−4

0 -1/3 1
5 0 1 1+{1}
5 -1/3 1 1+{1}
5 -∞ 1 1+{1}
10 0 1 1+{1}
10 -1/3 1 1+{1}
10 -∞ 1 1+{1}
15 0 1 1+{1}
15 -1/3 1 1+{1}
15 -1 1 1
15 -3 1 1
15 -∞ 1 1+{1}

10−6 0 -1/3 1
15 -1/3 {1}

5×10−5 0 -1/3 1
15 -1/3 {1}

1550

10−7 0 -1/3 1
15 -1/3 {1}

10−6 0 -1/3 1
15 -1/3 {1}

5×10−5 0 -1/3 1
15 -1/3 {1}

10−4 0 -1/3 1
15 -1/3 {1}

Table D.2: Cases of simulations performed at 1700◦C and 1550◦C.
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neutron-irradiated austenitic stainless steels. Journal of Nuclear Materials, 542, 2020. doi: 10.1016/j.jnucmat.2020.
152463. URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090875836&doi=10.1016%2fj.jnucmat.

2020.152463&partnerID=40&md5=80166a8b289df2d3b21a34091088552d.

J. B. Wachtman, M. L. Wheat, H. J. Anderson, and J. L. Bates. Elastic constants of single crystal UO2 at 25° C. Journal
of Nuclear Materials, 16(1):39–41, 1965. doi: 10.1016/0022-3115(65)90089-9. URL http://www.sciencedirect.com/

science/article/pii/0022311565900899.

R. J. White, S. B. Fisher, P. M. A. Cook, R. Stratton, C. T. Walker, and I. D. Palmer. Measurement and analysis of fission
gas release from BNFL’s SBR MOX fuel. Journal of Nuclear Materials, 288(1):43–56, 2001. doi: 10.1016/S0022-3115(00)
00591-2. URL https://www.sciencedirect.com/science/article/pii/S0022311500005912.

K. Wojtacki, P.-G. Vincent, P. Suquet, H. Moulinec, and G. Boittin. A micromechanical model for the secondary creep of
elasto-viscoplastic porous materials with two rate-sensitivity exponents: Application to a mixed oxide fuel. International
Journal of Solids and Structures, 184:99 – 113, 2020. doi: https://doi.org/10.1016/j.ijsolstr.2018.12.026. URL http:

//www.sciencedirect.com/science/article/pii/S0020768318305237.

R. W. Zimmerman. Compressibility of Two-Dimensional Cavities of Various Shapes. Journal of Applied Mechanics, 53(3):
500–504, 1986. doi: 10.1115/1.3171802. URL https://doi.org/10.1115/1.3171802.

Portelette et al. Postprint - International Journal of Solids and Structures 26

http://www.sciencedirect.com/science/article/pii/0022311570902060
http://www.sciencedirect.com/science/article/pii/0022311570902060
https://www.osti.gov/biblio/4728614-review-creep-behavior-ceramic-nuclear-fuels
https://www.osti.gov/biblio/4728614-review-creep-behavior-ceramic-nuclear-fuels
https://doi.org/10.1007/s10704-012-9754-7
https://doi.org/10.1007/s10704-012-9754-7
https://www.sciencedirect.com/science/article/pii/S0020722515002050
https://www.sciencedirect.com/science/article/pii/S0020722515002050
http://www.sciencedirect.com/science/article/pii/0029549384900451
http://www.sciencedirect.com/science/article/pii/0029549384900451
https://books.google.fr/books?id=oFDvAAAAMAAJ
https://www-sciencedirect-com.insis.bib.cnrs.fr/science/article/pii/S2210983812000077
https://www-sciencedirect-com.insis.bib.cnrs.fr/science/article/pii/S2210983812000077
https://www.tandfonline.com/doi/abs/10.1080/18811248.2008.9711904
https://www.tandfonline.com/doi/abs/10.1080/18811248.1976.9734063
http://www.sciencedirect.com/science/article/pii/S0020768301002852
http://www.sciencedirect.com/science/article/pii/S0020768301002852
https://www.scopus.com/inward/record.uri?eid=2-s2.0-73549101504&doi=10.1016%2fj.mechmat.2009.11.004&partnerID=40&md5=5e48d227533af75fa5e30a522a4fd80a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-73549101504&doi=10.1016%2fj.mechmat.2009.11.004&partnerID=40&md5=5e48d227533af75fa5e30a522a4fd80a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090875836&doi=10.1016%2fj.jnucmat.2020.152463&partnerID=40&md5=80166a8b289df2d3b21a34091088552d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090875836&doi=10.1016%2fj.jnucmat.2020.152463&partnerID=40&md5=80166a8b289df2d3b21a34091088552d
http://www.sciencedirect.com/science/article/pii/0022311565900899
http://www.sciencedirect.com/science/article/pii/0022311565900899
https://www.sciencedirect.com/science/article/pii/S0022311500005912
http://www.sciencedirect.com/science/article/pii/S0020768318305237
http://www.sciencedirect.com/science/article/pii/S0020768318305237
https://doi.org/10.1115/1.3171802

