Luc Portelette 
  
Pierre Guy 
  
Hervé Moulinec 
  
Mihail Garajeu 
email: mihai.garajeu@univ-amu.fr
  
Pierre-Guy Vincent 
  
Viscoplastic behavior of a porous polycrystal with similar pore and grain sizes: application to nuclear MOX fuel materials

Keywords: Porous media, Viscoplasticity, Polycrystal, Crystal plasticity, Fast Fourier Transform method, Nuclear MOX fuel

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

This paper follows the previous work of [START_REF] Wojtacki | A micromechanical model for the secondary creep of elasto-viscoplastic porous materials with two rate-sensitivity exponents: Application to a mixed oxide fuel[END_REF] dedicated to the micromechanical modeling of viscoplastic porous materials with two rate-sensitivity exponents for an application to a Mixed OXide (MOX) fuel.

MOX fuel is a nuclear fuel made from plutonium oxide mixed with uranium oxide. It has notably been used in French Pressurised Water Reactors since 1987 [START_REF] Oudinet | Characterization of plutonium distribution in MIMAS MOX by image analysis[END_REF]. The manufacturing process of MOX fuel has a significant impact on the microstructure of the resulting material. The present study concerns MIcronized MASter blend (MIMAS)

Reference [START_REF] Houston | Thermal creep of polycristalline UO 2 -PuO 2[END_REF] 10-17 1100-1330 1.95-1.98 3-15 90-94 22 - [START_REF] Evans | Compressive creep of Uraniu-Plutonia fuels[END_REF] 7-70 1475-1625 1.95-2 4-23 88-94 0-100 - [START_REF] Routbort | Compressive creep of mixed-oxide fuel pellets[END_REF] 7-110 1400-1675 1.83-1.99 10-47 95-97 25 65-93 [START_REF] Routbort | Creep of Mixed-Oxide Fuel Pellets at High Stress[END_REF] 69 1500-1600 1.883-1.994 5-44 90-97 22/25 30-93 [START_REF] Slagle | Fuel transient deformation[END_REF] 2.2-6.5 2175-2640 1.89-1.92 25 88-93 25 93 [START_REF] Caillot | Out-of-pile and in-pile viscoplastic behaviour of mixed-oxide fuels[END_REF] 40-80 1535 -5.5 95-96 6-10 -Table 1: Creep tests on MOX pellets where σ is the compressive stress, T the temperature, O/M the oxygen-to-metal ratio, d the grain size, and ρ the pellet density.

σ [MPa] T [ • C] O/M d [µm] ρ [%] PuO 2 wt[%] 235 U [%]
MOX fuels. During the MIMAS process, a micronisation of a mixture with 25-30% plutonium dioxide is first performed, then followed by a dilution with natural or depleted uranium dioxide [START_REF] White | Measurement and analysis of fission gas release from BNFL's SBR MOX fuel[END_REF][START_REF] Fisher | Microstructure of irradiated SBR MOX fuel and its relationship to fission gas release[END_REF]. As a result, a material with plutonium-rich agglomerates is obtained. The uranium dioxide powders used in the process can be produced by AUC (Ammonium Uranate Carbonyl) or ADU (Ammonium DiUranate) routes leading to distinct microstructures. The MIMAS-AUC presents rather a two-phase microstructure with Pu-rich agglomerates and a matrix with a mixed content of uranium dioxide and plutonium dioxide. The MIMAS-ADU has rather a three-phase microstructure with Pu-rich agglomerates, a UO 2 -rich matrix and a coating phase with intermediate Pu content [START_REF] White | Measurement and analysis of fission gas release from BNFL's SBR MOX fuel[END_REF]. During irradiation, the large Pu-rich agglomerates become highly porous due to the accumulation of fission gases and to the apparition of irradiation bubbles [START_REF] Noirot | Detailed characterisations of high burn-up structures in oxide fuels[END_REF]. Irradiation results in a variation of the physical properties of MOX fuel which is important to consider when estimating the loading applied by the fuel on the cladding, whose mechanical properties drastically change throughout their use in the reactor (see [START_REF] Vincent | Overall elastoplastic behavior of anisotropic metal-matrix composites reinforced by aligned inclusions. application to hydrided and irradiated zircaloy-4 cladding tubes[END_REF] among others). The specific microstructure of MOX fuel and its evolution during irradiation must be studied closely to derive models for the thermo-mechanical behavior of MOX fuel during nominal or power transient operations, or under accident conditions, such as a Reactivity Initiated Accident (RIA) [START_REF] Koo | A comparative analysis of UO2 and MOX fuel behavior under reactivity initiated accident[END_REF][START_REF] Schmitz | High burnup effects on fuel behaviour under accident conditions: the tests CABRI REP-Na[END_REF][START_REF] Sasajima | Behavior of irradiated ATR/MOX fuel under reactivity initiated accident conditions[END_REF][START_REF] Fuketa | Transient Response of LWR fuels (RIA)[END_REF]. The present study is devoted to the viscoplastic behavior of this fuel.

Earliest compression tests were conducted on UO 2 pellets for several temperatures, stresses, and strain rates [START_REF] Byron | Yield and flow of polycrystalline uranium dioxide[END_REF][START_REF] Bohaboy | Compressive creep characteristics of stoichiometric uranium dioxide[END_REF][START_REF] Seltzer | The stress dependence for high temperature creep of polycrystalline uranium dioxide[END_REF][START_REF] Seltzer | Review of Creep Behavior of Ceramic Nuclear Fuels[END_REF][START_REF] Burton | The influence of grain size on the creep of uranium dioxide[END_REF]. These studies mainly highlighted two stationary creep regimes. For low stresses, the strain rate was observed to vary linearly with stress ( ε ∝ σ). A point defect diffusion mechanism (together with a grain boundary sliding contribution) was attributed to this regime. For high stresses, the strain rate was observed to depend on the stress raised to a power close to 4.5 ( ε ∝ σ 4.5 ). The dominant creep mechanism for this regime seemed to be the dislocation motion (dislocation glide and dislocation climb can occur). Then, creep tests were performed on MOX pellets [START_REF] Houston | Thermal creep of polycristalline UO 2 -PuO 2[END_REF][START_REF] Evans | Compressive creep of Uraniu-Plutonia fuels[END_REF][START_REF] Routbort | Compressive creep of mixed-oxide fuel pellets[END_REF][START_REF] Routbort | Creep of Mixed-Oxide Fuel Pellets at High Stress[END_REF][START_REF] Slagle | Fuel transient deformation[END_REF][START_REF] Caillot | Out-of-pile and in-pile viscoplastic behaviour of mixed-oxide fuels[END_REF] and, similarly to UO 2 , two regimes were observed. Some features on the compression tests are reported in Table 1. Contrary to the tests performed on UO 2 pellets, the contents of Pu and 235 U are here systematically specified because they influence the mechanical behavior. Moreover, the tested materials reported in Table 1 remain understoichiometric. Stoichiometry is also known to influence their mechanical behaviors. Stresses are between 7 MPa and 110 MPa. Temperatures are between 1100 • C and 1700 • C, with the exception of [START_REF] Slagle | Fuel transient deformation[END_REF] in which tests are performed at temperatures higher than 2000 • C, representative of extreme temperatures which could be encountered in a fuel during a postulated RIA [START_REF] Suzuki | Thermal Stress Analysis of High-Burnup LWR Fuel Pellet Pulse-Irradiated in Reactivity-Initiated Accident Conditions[END_REF].

From these studies, the unidimensional constitutive relation is classically written under the form:

ε = A 1 exp - Q 1 RT σ n1 + A 2 exp - Q 2 RT σ n2 , (1) 
where ε and σ are respectively the strain rate and the creep stress along the compression direction. Parameters Q i , n i , and A i are respectively the activation energy, the stress exponent and the prefactor for the ith mechanism (index i = 1 for point defect diffusion and i = 2 for dislocation motion). Some noticeable features of these parameters are reported in Table 2. The discrepancies observed on these parameters according to the different studies on MOX reported here are probably due to specimen selections, test conditions and experimental procedures. Nevertheless, the activation energies and stress exponents obtained from these studies remain close to each other, suggesting that they probably involve the same mechanisms. Moreover, it appears that the values obtained for MOX remain close to the values obtained for UO 2 , probably indicating similar mechanisms involved. Furthermore, all these studies captured a grain-size dependency for the point defect diffusion mechanism, while no grain-size effect were found for the dislocation mechanism. [START_REF] Evans | Compressive creep of Uraniu-Plutonia fuels[END_REF] identified a dependency as the inverse of the cube of the grain size and attributed that to interstitial diffusion in grain boundaries [START_REF] Coble | A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials[END_REF]. The other authors found a dependency as the inverse of the square of the grain size and attributed that to vacancy diffusion in the grain bulk [START_REF] Nabarro | Deformation of crystals by the motion of single ions[END_REF][START_REF] Herring | Diffusional Viscosity of a Polycrystalline Solid[END_REF]. Later, compressive tests on UO 2 pellets were performed with higher stresses and strain rates [START_REF] Guerin | Etude par compression à hautes températures de la déformation plastique du bioxyde d'uranium polycristallin[END_REF][START_REF] Radford | Compressive Deformation of Polycrystalline UO 2[END_REF][START_REF] Tachibana | Dependence on Strain Rate and Temperature Shown by Yield Stress of Uranium Dioxide[END_REF][START_REF] Salvo | Experimental characterization and modelling of UO2 behavior at high temperatures and high strain rates[END_REF]. From these studies, it was observed an increase of the stress exponent with stress, pointing out the presence of another deformation mechanism. The dislocation glide mechanism controlled by Peierls force was mentioned. Unfortunately, such tests were not conducted on MOX fuel. However, considering the similarity between MOX and UO 2 fuels mentioned before, it is probable that the same deformation mechanism occurs for high stresses. The present study is focussed only on this gliding mechanism by extending the dislocation glide model developed for UO 2 [START_REF] Portelette | Crystal viscoplastic modeling of UO 2 single crystal[END_REF] to MOX polycristal. MOX fuel is known to have a higher creep rate than UO 2 fuel which is an important feature when estimating the Pellet-Cladding Interaction (PCI) [START_REF] Caillot | Out-of-pile and in-pile viscoplastic behaviour of mixed-oxide fuels[END_REF]. Furthermore, the porosities do not vary in the same way in the two fuels during irradiation and have a great impact on the viscoplastic behavior. In particular, irradiation and fission products help the development of pressurized bubbles surrounded by sub-grains. This is called the High Burn-up Structure (HBS). It is mainly located at the periphery of UO 2 fuel pellets (see [START_REF] Lozano | High magnification SEM observations for two types of granularity in a high burnup PWR fuel rim[END_REF] among others) while it is mainly located at the large Pu-rich clusters in MOX fuels [START_REF] Noirot | Detailed characterisations of high burn-up structures in oxide fuels[END_REF]. [START_REF] Noirot | Detailed characterisations of high burn-up structures in oxide fuels[END_REF] showed that the size of bubbles and grains in the Pu-rich spots results from complex phenomena. Near the periphery of pellet (but not in the extreme periphery), where the temperature is lower in nominal conditions than at the center of the pellet, they observed on an irradiated MOX fuel, that the bubbles in Pu-rich clusters had approximately the same size than the surrounding sub-grains (mean values about 1.2 µm for the sub-grains and 1.3 µm for the bubbles). In the extreme periphery, bigger bubbles were observed and were attributed to higher burn-up in the agglomerates. At mid-radius, bubbles were approximately twice the size of sub-grains (mean values about 1.7 µm for the grains and 3 µm for the bubbles). At zero-radius, they observed very large bubbles (several tens of microns), though the grains sizes remained very similar to the initial sizes (about 7 µm). Therefore, irradiation conditions influence the relative size of the bubbles with respect to the size of grains. Thus, [START_REF] Noirot | Detailed characterisations of high burn-up structures in oxide fuels[END_REF] clearly exhibited cases where bubbles and surrounding grains in Pu-rich clusters are similar in size. Fission gases exert internal pressure inside the bubbles, which consequently tends to round their shape. That's why, as a first approximation for modeling, one can consider spherical in shape bubbles. However it remains an approximation and deviations from the sphericity of the bubbles are therefore quite possible.

A 1 (d) Q 1 [kcal.mol -1 ] n 1 A 2 (d) Q 2 [kcal.mol -1 ] n 2
In a past study, [START_REF] Wojtacki | A micromechanical model for the secondary creep of elasto-viscoplastic porous materials with two rate-sensitivity exponents: Application to a mixed oxide fuel[END_REF] performed full-field simulations on periodic Representative Volume Elements (RVE) with an isotropic matrix, weakened by randomly distributed clusters of pores. The simulations were performed by a method based on Fast Fourier Transforms using the CraFT software [START_REF] Suquet | Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep[END_REF]. This method, first proposed by [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear mechanical properties of composites[END_REF] is particularly effective when dealing with complex microstructures. In [START_REF] Wojtacki | A micromechanical model for the secondary creep of elasto-viscoplastic porous materials with two rate-sensitivity exponents: Application to a mixed oxide fuel[END_REF], a random distribution of single-sized spherical clusters was used with single-sized pores randomly distributed inside the clusters. The porous clusters correspond to the large Pu-rich agglomerates in MOX fuel. The viscous strain in the matrix between the clusters and inside the clusters around the pores was described by two viscoplastic power-laws corresponding to two different creep mechanisms as described in equation (1) for MOX fuel. From these simulations, it was shown that the size of pores in the clusters has only a limited impact on the overall strain rate. The use of an isotropic viscoplastic behavior for the matrix surrounding the pores is legitimate when the cavities are larger than the surrounding grains and providing that the crystallographic orientation of the grains in the surrounding polycrystal be random. When cavities and grains have comparable sizes, the isotropy assumption is only motivated if the anisotropy introduced by the grains remains moderate. As stated above, the pores are subjected to internal pressure (P b ) due to the fission gas and the pores are said to be saturated. [START_REF] Wojtacki | A micromechanical model for the secondary creep of elasto-viscoplastic porous materials with two rate-sensitivity exponents: Application to a mixed oxide fuel[END_REF] only considered the case with a zero-pressure in the pores. In this case, the pores are said to be drained. This approach was motivated by a result demonstrated in [START_REF] Vincent | Porous materials with two populations of voids under internal pressure: I. instantaneous constitutive relations[END_REF]. In the case of an incompressible matrix, the macroscopic behavior in the saturated case can be obtained from the macroscopic behavior in the drained case by a simple shift along the axis of hydrostatic stresses. The macroscopic hydrostatic stress Σ m obtained in the drained case is replaced by Σ m + P b to treat the saturated case. This result is also used in the present study and only the drained case (P b = 0) is considered without loss of generality. Note that this result applies when the material surrounding the pores is incompressible. In the present work, concerning the local behavior of the grains surrounding the pores, a compressible elastic part is added to the viscoplastic part which is incompressible. As a result, the local behavior of the grains is not purely incompressible. Nevertheless, the present study focusses on the response of the material deep into the plastic range, where the elastic effects become negligible compared to the viscoplastic effects and where the local behavior of the grains is close to the incompressibility.

The objective of the present study is to analyze the effect of the anisotropy due to the grains surrounding the pores on the overall viscoplastic behavior of MOX fuel (stationary creep). The particular case of pores and grains with similar sizes is studied. Two distinct shapes of pores are considered (spherical and polyhedral). The anisotropic behavior of the grains is modeled through a crystal plasticity constitutive relation [START_REF] Portelette | Crystal viscoplastic modeling of UO 2 single crystal[END_REF]. Unlike [START_REF] Wojtacki | A micromechanical model for the secondary creep of elasto-viscoplastic porous materials with two rate-sensitivity exponents: Application to a mixed oxide fuel[END_REF], who considered simulations with several porous clusters embedded in a matrix, here, simulations are only performed on microstructures representative of porous clusters. FFT-based full-field simulations are performed on porous polycrystals. The paper is organized as follows. Section 2 presents the microstructures, the crystal plasticity model, and the loadings, together with some features about the FFT-based method used in the simulations. Results are shown in Section 3 and the main findings are discussed in Section 4.

Methods

Microstructure generation

In Pu-rich agglomerates near the pellet periphery, [START_REF] Noirot | Detailed characterisations of high burn-up structures in oxide fuels[END_REF] found a case where bubbles and grains have approximately similar diameters. The estimated local burnup was about 100 GWd/t in this zone, which corresponds to a maximum volume fraction of pores in the agglomerates (f p ) of about 15%. Hence, in the present study, the simulations were performed on polycrystals with porosity varying from 0 (dense case) to 15%, by step of 5%. For the reason stated in the introduction, the pores were considered to be spherical in shape. However, this is just an approximation, therefore, an additional case was also studied, considering pores of polyhedral shape. Thus, the effect of the shape of pores could also be estimated. To identify the potential effect of the relative size of pores compared to the size of the grains, two different cases were treated:

• the diameter of the pores is approximately equal to the diameters of the grains, d p ≈ d g ,

• the diameter of the pores is approximately twice the diameters of the grains, d p ≈ 2 d g .

The arrangement of the grains is based on a Poisson-Voronoi diagram [START_REF] Aurenhammer | Voronoi diagrams-a survey of a fundamental geometric data structure[END_REF][START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF]. A single set of n s = 1000 seeds was considered in the whole study to generate the periodic polycrystals. In addition, a single set of grain orientations was also considered following a uniform random distribution. This follows from a parametric study reported in Appendix A on the statistical representativeness. The FFT scheme used in the present study requires a discretization of the unit cell with a regular grid composed of voxels. Based on the parametric study reported in Appendix A, a grid with 500 3 voxels has been adopted for all the simulations. The average volume V g of the grains in the Voronoi tessellation is thus given by V /n s , where V = 1 is the volume of the unit cell. The average grain diameter d g , defined as the diameter of an equivalent sphere of same volume V g , is thus (6 V g /π)

1/3 .

Spherical voids

To create the microstructures with spherical voids, single sized non-penetrable spheres were randomly positioned in the unit cell of the dense polycrystalline microstructure and all voxels inside the spheres were set to 0 (value corresponding to the void material, in blue in Figure 1). The number of pores (n p ) is determined from the desired volume fraction of pores and their relative size with respect to grains using the following relations:

f p = n p V p V = n p n s d p d g 3 , (2) 
where V p is the volume occupied by a pore. First, imposing d p = d g leads to integer values of n p , n p = n s f p = 1000 f p . By doing so, a cell with 5% porosity and containing 50 pores will satisfy d p = d g . Thus, 10% porosity leads to 100 pores and 15% porosity leads to 150 pores. Secondly, imposing d p = 2 d g leads to n p = 125 f p and for the porosity values studied in this work (namely 5%, 10% end 15%) the value of n p is not integer. We used instead d p = (10) 

Polyhedral voids

For generating microstructures with polyhedral voids, some particular grains of the polycrystal were simply considered as void. They are called "voided grains" in the following. Two different procedures were applied for generating such microstructures.

1. Depending on the targeted porosity, a given number of voided grains can simply be randomly selected among the grains of the initial dense polycrystal. This procedure can only be used if the same grain and pore sizes are desired (d p ≈ d g ). In the following, the microstructures obtained from this procedure are called Voronoi-type microstructures with polyhedral voids. Moreover, it does not guarantee to reach the exact volume fraction of pores desired, because of the statistical fluctuations of the grain sizes. To overcome these two limitations, a second procedure is proposed which makes use of Laguerre tessellations.

2. Laguerre tessellations, also called power diagrams, are an extension of Voronoi tessellations where the euclidian distance -used in Voronoi tessellation to determine for each point of the volume which is the closest seed -is replaced by the "power distance" [START_REF] Aurenhammer | Power Diagrams: Properties, Algorithms and Applications[END_REF][START_REF] Lautensack | Random Laguerre Tessellations[END_REF]. Alternatively, Laguerre tessellations can be considered as the result of the crystal growth process where a set of seeds are positionned in space and time -each seed s is thus determined by the couple (x s , t s ) -and where each crystal grows from its corresponding seed with a constant growth rate G of the square of their distance to its seed, untill it reaches another crystal. In other words, a given point x is reached by the growth of crystal s at time t = d 2 (x, x s )/G + t s (where d(, ) denotes the euclidian distance), and at the end, x belongs to the crystal which reaches it first. As for the Voronoi tessellations, the cells of the Laguerre tessellations are convex polyhedra, but the choice of the times t s at which the crystals start to grow, and of the growth rate G enables to drive the sizes of the resulting cells. In the particular case where all the values of t s are equal, the resulting tessellation is a Voronoi diagram.

In order to obtain microstructures with similar voids distribution as the Voronoi-type microstructures with spherical voids we proceed in two steps. Firstly, the grains of the initial dense polycrystal (with n s = 1000 grains) which contain the centers of the spherical voids are selected. The seeds of these grains will be the seeds of the voided grains. Then the procedure applied in this study consists in fixing the nucleation time t s of the seeds of the voided grain to 0, and the nucleation time of the other grains to 1, and in searching the growth rate in order to reach the desired volume fraction with the following algorithm:

• the first estimate of the surface growth rate G is set arbitrarily,

• if it does not lead to the desired volume fraction, an extrapolation is made to define the next value,

• then, for the next iterations, G is estimated by interpolating the values already calculated, until the volume fraction of pores is reached (with a precision set to 10 -4 ).

In the following, the microstructures obtained from this procedure are called Laguerre-type microstructures with polyhedral voids.

Some examples of microstructures with polyhedral voids are shown in Figure 1 (b) and (d) and in Figure 2 (a).

Additional microstructures

For further discussions (section 4.1), two additional kinds of microstructures were generated. The first one is a polycrystal with spherical voids obtained by a slightly different method from that described in section 2.1.1. First, a Laguerre-type microstructure with polyhedral voids is considered. Second, the voided grains are replaced by dense grains and spherical pores of identical sizes are centered at the barycenters of these selected grains. In the following, this microstructure is called Voronoi-type microstructure with re-centered spherical voids.

The second one consists in generating a new set of positions of grain seeds, where the number of seeds n s is set to n p /f p . Some of these seeds are randomly selected to be the seeds of the voided grains. The number of voided grains is set as in 2.1.1. A Laguerre tessellation is then performed and the algorithm described above is used to get the desired volume fraction of porosity. All the voided grains thus obtained are then superimposed on the initial dense polycrystalline microstructure with 1000 grains. This lead to unrealistic microstructures because the faces of the voids do not depend on the surrounding grains (see Figure 2 (b)). In the following, the microstructures obtained by this procedure are called Laguerre-Voronoi-type microstructures with polyhedral voids.

To sum up, the main features for the different types of microstructures are summarized in Table 3.

Crystal plasticity model

By lack of single-crystal experiments available for MOX fuel, the crystal plasticity model of [START_REF] Portelette | Crystal viscoplastic modeling of UO 2 single crystal[END_REF], initialy proposed for UO 2 single crystals, is used to describe the behavior of the grains. This assumption is motivated by the fact that MOX and UO 2 fuels exhibit a fairly similar overall viscoplastic behavior. Moreover, PuO 2 and UO 2 have the same fluorite lattice structure.

Here, viscoplasticity is driven by the glide of dislocations on crystallographic planes, identified by their normal vectors n s . During the slip process, a shear strain is produced along directions m s colinear to Burgers vectors of type 1/2 110 . Each pair [m s ](n s ) defines a slip system. In a fluorite lattice, there are three families of slip systems given by different slip plane symmetries, usually named family I, II and III and corresponding to {100} slip planes, {110} slip planes and {111} slip planes, respectively. Therefore, there are 24 slip systems with 6 systems for family I, 6 systems for family II, and 12 systems for family III. Since in UO 2 the role of the third family seems to be less significant and is not yet very well understood, it is not considered in this study (see [START_REF] Portelette | Crystal viscoplastic modeling of UO 2 single crystal[END_REF] for more details). Detailed expressions of n s and m s vectors can be found in [START_REF] Portelette | Athermal dislocation strengthening in UO 2[END_REF].

The Cauchy stress tensor σ is related to the elastic strain tensor ε e through the fourth-order elastic tensor C:

σ = C : ε e . (3) 
The elastic strain tensor ε e is obtained from the difference between the total strain, ε, and the viscoplastic strain, ε vp :

ε e = ε -ε vp . (4)
The viscoplastic strain rate is the sum of the slip rates, γs , projected on each slip system s using the symmetric Schmid tensor µ s sym :

εvp = 12 s=1 γs µ s sym = {100} 6 s=1 γs µ s sym + {110} 12 s=7 γs µ s sym , (5) 
µ s sym = 1 2 (n s ⊗ m s + m s ⊗ n s ). ( 6 
)
The evolution of the slip rate in each slip system s, is given by equation ( 7). To account for the temperature dependency, T , an activation energy, ∆H i 0 , is defined for each slip family i. Note that the dependence of the slip rate on the stress is modelled by a hyperbolic cosine function. For each slip system family, a prefactor γ0 i is introduced as a parameter, together with a reference resolved shear stress denoted by τ i 0 :

γs = γi 0 exp - ∆H i 0 k b T cosh τ s τ i 0 -1 sign(τ s ). (7) 
Here, k b = 8.618 10 -5 eV.K -1 is the Boltzmann constant. The resolved shear stress τ s is defined as the projection of the stress on the slip system s:

τ s = σ : µ s sym . (8) 
The above constitutive equations were implemented in the CraFT software [START_REF] Suquet | Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep[END_REF]. Details on the timeintegration of the equations are given in Appendix B.

For each slip family, the three parameters ( γi 0 , ∆H i 0 , τ i 0 ) are adjusted in order to match with the experiments of [START_REF] Routbort | Compressive creep of mixed-oxide fuel pellets[END_REF] conducted on MOX fuel in the dislocation motion regime (see Appendix C for details). The obtained parameters are specified in Table 4. The elastic anisotropy is accounted for by assuming a cubic stiffness tensor C. The evolution of the three elastic constants (C 11 , C 12 , and C 44 in Voigt notations) with temperature are obtained by interpolations between the experimental results of [START_REF] Wachtman | Elastic constants of single crystal UO2 at 25°C[END_REF]. The introduction of an elastic part is useful for the time-integration of the constitutive equations (see Appendix B). Since the present study concerns the overall viscoplastic behavior, only the overall stress obtained at the end of the simulation is kept, when the elasticity effects become negligible (loadings specified in 2.4).

Even if [START_REF] Portelette | Crystal viscoplastic modeling of UO 2 single crystal[END_REF] considered finite strains, here, the constitutive equations are implemented under the small strain assumption, since the maximum strain investigated is rather low. In addition, both studies do not consider the isotropic hardening due to dislocation interactions. Indeed, [START_REF] Portelette | Athermal dislocation strengthening in UO 2[END_REF] determined the coefficients of the interaction matrix and it is shown in [START_REF] Portelette | Analyse des mécanismes de glissement des dislocations dans l'UO 2 à l'aide de la modélisation multi-échelles comparée à l'expérience[END_REF] that such hardening in a thermally-activated regime of dislocation glide is not relevant in UO 2 .

Note that, since the size of pores considered here is above a few microns (see section 1 about the microstructure of irradiated MOX fuel), the surface effects predominant for nanosized inclusions are not considered here [START_REF] Haller | Effective elastic properties of nanoporous materials with spherical and spheroidal voids [propriétés élastiques effectives des matériaux nanoporeux à cavités sphériques et sphéroïdales[END_REF][START_REF] Haller | Elastic behavior of porous media with spherical nanovoids[END_REF].

FFT-based homogenization method

The numerical simulations presented in this study are carried out using the CraFT code [START_REF] Suquet | Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep[END_REF]. This software is based on a full-field numerical method, introduced by Moulinec and Suquet (Moulinec andSuquet, 1994, 1998), which allows the calculation of the homogenized mechanical quantities of a given heterogenous material from the data of its microstructure and the properties of its constituents.This method basically consists in solving the Lippmann-Schwinger equation and makes an intensive use of Fast Fourier Transforms (FFT). A major feature of the method is that it relies on a discretization of the space according to a regular grid, i.e. on spatial data organized in the form of two-or three-dimensional images made of pixels or voxels. Thus, the microstructural data are provided by an image of the material, making possible the direct use of experimental results obtained by imaging techniques. The method was designed for numerical efficiency and has proven to converge mostly much faster in terms of spatial discretization than the more classical FEM-based methods on similar problems [START_REF] Shawish | Full-field polycrystal plasticity simulations of neutronirradiated austenitic stainless steel: A comparison between FE and FFT-based approaches[END_REF].

Following [START_REF] Joëssel | Viscoplasticity of voided cubic crystals under hydrostatic loading[END_REF] and [START_REF] Vincent | Porous polycrystal plasticity modeling of neutron-irradiated austenitic stainless steels[END_REF] on porous viscoplastic crystals and polycrystals, the numerical scheme used in the particular context of this study is a fixed-point iterative scheme (called "basic scheme" by some authors). The convergence criterion is here the one introduced by Bellis and Suquet (2019) which proved to be the most suitable mathematically.

Loadings

The overall stress (also called effective or macroscopic stress) is denoted by Σ and the overall strain is denoted by E. The effective response of dense polycrystal with the model presented in Section 2.2, is in good agreement with the experiments in the dislocation mechanism domain as shown in Appendix C. Therefore, in this study, the investigated temperature range was taken from 1400 • C to 1700 • C and the strain-rate range was from 10 -7 s -1 to 10 -4 s -1 .

The triaxiality diagram was explored using mechanical tests with imposed overall stress direction and controlled overall strain in the stress direction (see Appendix B in [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF] for more details). Note that this procedure is extremely useful to test the response of heterogeneous porous cells under different loading paths (as done here with the FFT based method), but also to test the response of analytical macroscopic models for porous media derived from a micromechanical approach on a material point (see for example [START_REF] Nkoumbou Kaptchouang | Cohesive GTN model for ductile fracture simulation[END_REF]).

Several overall stress triaxialities were prescribed to investigate the effect of porosities considering the first and the second stress invariants, i.e. the hydrostatic stress, Σ m , defined in equation ( 9) and the Von Mises equivalent stress defined in equation ( 10), in which the deviatoric stress tensor is defined by Σ d = Σ -Σ m I and I is the second-order identity tensor. The overall stress triaxiality is then defined by the ratio of the two invariants: T σ = Σ m /Σ eq . Note that the effect of the third stress invariant was not studied here.

Σ m = 1 3 tr (Σ) , (9) 
Σ eq = 3 2 Σ d : Σ d . ( 10 
)
An axisymmetric overall stress direction, Σ 0 , was prescribed:

Σ 0 =   -1 0 0 0 c 0 0 0 c   , (11) 
where, c is a scalar between -1 and 0.5 dedicated to control the stress triaxiality. Uniaxial compression tests (corresponding to the case where T σ = -1/3 and c = 0) were performed in order to allow a comparison with experimental results reported in the literature. Moreover, purely deviatoric (T σ = 0, c = 0.5) and purely hydrostatic compressions (T = -∞, c = -1) tests, corresponding to the two extreme triaxialities, and two intermediate tests ( (T σ = 1, c = -0.4) and (T σ = 3, c = -0.7273) ) were performed to cover the whole domain of triaxiality. For all cases investigated, it was chosen to deform until the projected strain, |E| = |E : Σ 0 |, reaches 1.5%. This value allows to estimate the asymptotic overall stress with reasonable accuracy. Uniaxial and deviatoric simulations were performed with 1500 constant time steps while 2500 to 3000 time steps were used for hydrostatic simulations, because numerical convergence is harder to achieve in hydrostatic case than for deviatoric and uniaxial loadings. The overall hydrostatic stress and the overall equivalent stress obtained at the end of the simulations are checked so that they vary less than 0.1 MPa in the last 100 time steps.

Tables D.1 and D.2 in appendix D summarize all the simulations achieved for each microstructure and loading.

3 Results

Uniaxial compression loading

Let us consider the case of uniaxial compression loading as defined in 2.4 (imposed direction of overall stress). Figure 3 (a) shows some stress-strain curves obtained on the dense polycrystal. As expected, the stress level deep in the plastic range decreases with the temperature and increases with the strain rate. The effect of porosity on the strain-stress curves at 1400 • C and 10 -7 s -1 is illustrated in Figure 3 In the following, the macroscopic stress obtained at the end of the computation is denoted by Σ (its component along the compression direction is Σ11 ). Figure 4 shows that the dependence of stress on strain rate is not linear in a log-log representation. Here, a hyperbolic cosine function is used to fit the evolution of the strain rate, | Ė11 |, with the stress, | Σ11 |, for each temperature T (dashed lines in Figure 4):

| Ė11 | = A exp - Q RT cosh | Σ11 | Σ 0 -1 (12)
where R = 8.314 J.mol -1 .K -1 is the gas constant. Here, a better fit is obtained with a hyperbolic cosine function than with an exponential or a hyperbolic sine function which are more often used in the literature. The parameters, determined by a least squares regression, are the prefactor A = 9.68 × 10 8 s -1 , the activation energy Q = 539 kJ.mol -1 (or ∆H 0 = 5.59 eV), and the referential stress Σ 0 = 20.5 MPa. Note that theses values are close to the values for family I and II reported in Table 4. The effect of porosity observed in a log-log representation (Figure 4) exhibits a global softening compared to the dense material, no matter the temperature and the strain rate. By adjusting the equation ( 12), the parameters with 15% porosity are A = 1.58 × 10 9 s -1 , Q = 549 kJ.mol -1 and Σ 0 = 13.5 MPa. Therefore, porosity markedly affects the prefactor and the referential stress while the activation energy does not change significantly. This means that porosity facilitates the dislocation motion but faintly influences the temperature dependency.

Figure 5 (a) shows the evolution of the stress -Σ11 -with respect to the porosity f p for some values of temperature and strain rate. Microstructures with similar in size pores and grains are considered. Voronoi-type microstructures with spherical voids, Laguerre-type microstructures with polyhedral voids, and Voronoi-type microstructures with polyhedral voids are considered. An almost linear evolution of the stress with respect to the porosity is observed. The dashed and dotted lines are linear functions adjusted by a least squares regression to highlight the trends for microstructures with spherical voids and polyhedral voids respectively. The slope is steeper at lower temperature and at higher strain rate. It appears that the simulations with polyhedral voids systematically induce more softening than the simulations with spherical voids.

Results for microstructures with d p ≈ d g and d p ≈ 2 d g are presented for 1400 • C and 10 -7 s -1 in Figure 5(b). First, it appears that the stress discrepancies due to the different draws of microstructures remain low for both relative size of pores and microstructures investigated. The discrepancies appear slightly higher for the microstructures with polyhedral voids than for microstructures with spherical voids. Also, the discrepancies obtained from the different draws of a given type of microstructure increase with the relative size of pore. Indeed, increasing the relative size of pore tends to decrease the number of pores in the unit cell, which induces a loss of representativeness. Nevertheless, the level of discrepancies remains relatively small showing a sufficient representativeness. Secondly, results obtained from Laguerre-type and Voronoi-type microstructures with polyhedral voids (described in Section 2.1.2) lie on the same interpolated line. Note that the porosity is not perfectly controlled for Voronoi-type microstructures with polyhedral voids, because of statistical fluctuations during the generation process. Thus, in Figure 5, the points associated with these microstructures correspond to porosities slightly scattered with respect to the desired porosities (5, 10 or 15%). This outlines the equivalence of the two ways of generating the microstructures with polyhedral voids. Thirdly, when the relative size of voids increases, the stresses obtained from the microstructures with polyhedral voids tend to the stresses obtained from the microstructures with spherical voids. To the end, it is observed that the effect of the relative size of voids with respect to the size of grains is negligible for microstructure with spherical voids (less than 1 MPa absolute difference and less than 1% relative differences). It appears to be more pronounced for microstructures with polyhedral voids (maximum relative difference about 5%).

Other loading conditions

Figure 6 shows the macroscopic equivalent stress as a function of the macroscopic hydrostatic stress obtained at the end of the simulations for different macroscopic stress triaxialities. Voronoi-type microstructures with spherical voids and Laguerretype microstructures with polyhedral voids are considered. The strain rate Ė is given by Ė : Σ 0 where Σ 0 is the imposed direction of macroscopic stress. In Figure 6 (a), it is observed that the higher the stress triaxiality (in absolute value), the higher the difference between the stresses for the sets of temperature and strain rate studied. From Figure 6 (b), it appears that the softening observed in uniaxial compression due to porosity is also noticeable for other loading conditions and increases with the stress triaxiality. In addition, the effect of the type of pores (spherical or polyhedral in shape) is also enhanced with stress triaxiality. Finally, it is observed in Figure 6 (c) that the effect of the relative size of pores remains small for microstructures with spherical voids for all the stress triaxialites investigated. For microstructures with polyhedral voids, it is more pronounced and it increases with stress triaxiality. Furthermore, when d p ≈ 2 d g , the behavior for the microstructures with polyhedral voids tends to be similar to the behavior of the microstructures with spherical voids.

As explained at the end of the section 4.1, for polyhedral voids, increasing the relative size leads to voids which are closer to the spherical shape. This could be the reason why the curves in Figure 6 (c) corresponding to spherical voids and to polyhedral voids with d p 2 d g are close to each other. In line with these arguments, the differences observed on curve corresponding to the polycrystal with polyhedral voids with d p d g , compared to the other curves, especially for high stress triaxiality, seem to be an effect of the shape of the cavities rather than a size effect. 

Discussion

Crystallinity and pore shape effects

In this study, it is observed that the relative size of pores with respect to the size of grains has a minor effect on the overall viscoplastic behavior in the case of spherical voids. Thus, in this case, the material seems insensitive to the crystallinity and the anisotropy of the grains surrounding the pores. This is in accordance with [START_REF] Lebensohn | Dilatational viscoplasticity of polycrystalline solids with intergranular cavities[END_REF], in which the numerical simulations and theoretical predictions for the viscoplasticity of polycrystalline solids containing intergranular spherical voids (grains and cavities with a similar size) indicate that the effective response of untextured voided solids was relatively insensitive to the crystallinity of the matrix.

It is observed in the present study, that the effect of the relative size of pores with respect to the size of grains on the overall viscoplastic behavior is quite pronounced for microstructures with polyhedral voids and negligible for microstructures with spherical voids. [START_REF] Wojtacki | A micromechanical model for the secondary creep of elasto-viscoplastic porous materials with two rate-sensitivity exponents: Application to a mixed oxide fuel[END_REF] observed a negligible increase of the strain rate for a constant porosity when the size of pores is decreasing. Their observation were based on simulations of creep tests on a material with an isotropic viscoplastic matrix and spherical pores organized into clusters representative to irradiated MOX fuel. [START_REF] Boittin | Numerical simulations and modeling of the effective plastic flow surface of a biporous material with pressurized intergranular voids[END_REF] studied the effect on the effective plastic flow surface of the relative size of intergranular lenticular cavities located along grain boundaries with respect to the mean grain size in a biporous material with spherical intragranular cavities. An isotropic matrix surrounding the intergranular lenticular cavities was considered. For a constant volume fraction of intergranular bubbles, the effective yield stress was found to reduce when decreasing the relative size of the bubbles. This effect was larger for a purely hydrostatic overall stress direction than for a purely deviatoric axisymmetric overall stress direction. These observations were in good agreement with those of [START_REF] Bilger | Effect of a nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis[END_REF] who carried out simulations of porous media composed of a perfectly plastic matrix with connected clusters of voids.

Figure 7 shows maps of equivalent strain obtained at the end of the simulation for a Voronoi-type microstructure with re-centered spherical voids (see section 2.1.3) and a Laguerre-type microstructure with polyhedral voids under hydrostatic compression. The equivalent strain seems highly localized in zones between neighboring voids. For both microstructures, a strong interaction between neighboring voids is thus obtained, which is in line with the results of [START_REF] Lebensohn | Dilatational viscoplasticity of polycrystalline solids with intergranular cavities[END_REF] for purely hydrostatic loading. Nevertheless, it appears that the spatial distribution of the equivalent strain at the extreme periphery of the voids is quite different considering spherical or polyhedral voids (see black circles in Figure 7). In some zones around the polyhedral voids, the equivalent strain may remain very low and in other zones around the polyhedral voids it may experience large values. In the case of spherical voids, a non-zero equivalent strain is typically observed all around the Portelette et al.

Postprint -International Journal of Solids and Structures cavities. Thus, it appears that the shape of the pores has an influence on the local fields.

Here, when d p ≈ d g , it is observed that the stresses obtained from microstructures with polyhedral pores are lower than the stresses obtained from microstructures with spherical pores. Nevertheless they are not generated with the same process. In one hand, the microstructures with spherical voids are generated by superimposing spherical cavities on an initial Voronoi tessellation. In the other hand, the microstructures with polyhedral voids are directly generated from a Voronoi or Laguerre tessellation (some cells of the tessellation are considered as voids). As a result, we investigate whether this difference in results is caused by the difference in the building process, one with overlap and the other without. Thus, an additional type of microstructures is considered with polyhedral voids (see Figure 2 and Section 2.1.3) with a superposition of cavities obtained from a Laguerre tessellation directly mapped onto a Voronoi tessellation. Figure 8 shows the results obtained from Voronoi-type and Laguerre-type microstructures with polyhedral voids under uniaxial compression (as in Figure 5), together with the results obtained from this additional type of microstructures with polyhedral voids. When d p ≈ d g it is observed that the different types of microstructures lead to similar results. It shows that the difference in the building process, with or without overlap cannot explain the difference in results obtained from microstructures with polyhedral and spherical pores. Moreover, Figure 8 shows that the results obtained from the additional microstructures with polyhedral pores are not very sensitive to the relative pore size (similar results for d p ≈ d g or d p ≈ 2 d g ). Thus the additional microstructures with polyhedral voids lead to a negligible size effect, unlike the other microstructures with polyhedral voids. Note that the polyhedral voids in the additional microstructures have larger and fewer facets than the voids in the Laguerre-type microstructures with polyhedral voids when d p ≈ 2 d g (see Figure 2). It could explain the specific behavior observed on these additional microstructures. Consequently, it indicates that the difference between results obtained on microstructures with polyhedral and spherical pores when d p ≈ d g mentioned above is probably due to the shape of pores.

To better understand the pore shape effect, local stress fields are shown in Figure 9 for hydrostatic and uniaxial compression loadings and for both types of microstructures. Note that the color bar is set to visualize the minimum and maximum values of stresses in the two microstructures and the color gradient is adjusted to get approximately the same colors for the same values around 0 MPa. The dispersion is larger in the case of polyhedral voids than spherical voids. For hydrostatic loading, the zones with small values of local hydrostatic stress are more spread in the case of the polyhedral voids than spherical voids. Even if it is less noticeable for the uniaxial loading, it seems that the same trend is emerging for the local stress in the compression direction. This means that the polyhedral void case contains more unloaded zones than the spherical void case. To quantify these differences, distributions of stresses are plotted in Figure 10. The peak observed at 0 MPa is mainly due to the stress-free voids. As expected, the spread of small stresses is larger in the case of the microstructure with polyhedral voids, especially under hydrostatic compression with a clear shift of the distribution. For uniaxial compression, the shift is less pronounced, but the amount of voxels with small stresses is clearly larger for the microstructure with polyhedral voids. Thus, it seems that the differences obtained on the microstructures with the two types of pore are due to the spread of small stress zones around the pores.

The non-spherical shape effect was largely discussed in the literature, first in 2D [START_REF] Zimmerman | Compressibility of Two-Dimensional Cavities of Various Shapes[END_REF]Kachanov et al., 1994;[START_REF] Tsukrov | Effective elastic properties of solids with defects of irregular shapes[END_REF][START_REF] Ekneligoda | Compressibility of two-dimensional pores having n-fold axes of symmetry[END_REF], showing that the overall compressibility in elasticity depends on the ratio of the square of the perimeter of pores over its surface area. Thus, they highlighted that the circular pore shape is the stiffest in 2D, since it gives the lowest perimeter for a given surface area. In 3D, many authors investigated the pore shape effect, considering regular pore shapes [START_REF] Sevostianov | On the Compliance Contribution Tensor for a Concave Superspherical Pore[END_REF][START_REF] Sevostianov | Compliance and resistivity contribution tensors of axisymmetric concave pores[END_REF][START_REF] Chen | Evaluation of the effective elastic and conductive properties of a material containing concave pores[END_REF][START_REF] Chen | Combined effect of pores concavity and aspect ratio on the elastic properties of a porous material[END_REF][START_REF] Markov | A unified methodology for calculation of compliance and stiffness contribution tensors of inhomogeneities of arbitrary 2D and 3D shapes embedded in isotropic matrix -open access software[END_REF][START_REF] Du | Numerical computation of compliance contribution tensor of a concave pore embedded in a transversely isotropic matrix[END_REF][START_REF] Du | Effective elastic properties of transversely isotropic materials with concave pores[END_REF] or irregular pore shapes [START_REF] Drach | Numerical modeling of carbon/carbon composites with nanotextured matrix and 3D pores of irregular shapes[END_REF][START_REF] Drach | Prediction of the effective elastic moduli of materials with irregularly-shaped pores based on the pore projected areas[END_REF][START_REF] Drach | Comparison of full field and single pore approaches to homogenization of linearly elastic materials with pores of regular and irregular shapes[END_REF][START_REF] Markov | A unified methodology for calculation of compliance and stiffness contribution tensors of inhomogeneities of arbitrary 2D and 3D shapes embedded in isotropic matrix -open access software[END_REF]. In a similar way to 2D, the ratio of the surface area of pores over their volume is of great importance for the overall compressibility in elasticity. This is well in line with the results of the present study, since the surface area of polyhedral pores is larger than the surface area of spherical pores of same volume. Furthermore, the fact that the discrepancy between the results obtained with Voronoi-type microstructure with spherical pores and those of Laguerre-type microstructures with polyhedral pores is reduced when d p 2 d g compared to the one of the case when d p d g (see Figure 6 (c)), can be explained by the more spherical aspect of the pores when d p 2 d g , which is well illustrated in Figure 1 (b) and(d). Oppositedly, as can be seen in 8, the Laguerre-Voronoi-type microstructures with polyhedral voids, with either d p d g or d p 2 d g have a mechanical response close to that of Laguerre-type microstructures with polyhedral voids with d p d g , probably because the shapes of the pores in the two cases are very similar -they only differ in their sizes -and thus present the same deviation to sphericity.

Modified porosity

From Figure 5, it seems that the case of polyhedral voids and d p ≈ d g can be derived from the case of spherical voids by multiplying the porosity by a constant q (to be determined). It could serve to extend the analytical model developed in [START_REF] Wojtacki | A micromechanical model for the secondary creep of elasto-viscoplastic porous materials with two rate-sensitivity exponents: Application to a mixed oxide fuel[END_REF] for spherical voids to polyhedral voids when the size of voids is similar to the size of grains. Multiplying the porosity by q in this analytical model could lead to an estimate when the pores are polyhedral with a size close to the size of grains. Since porosity have the highest influence in hydrostatic loadings, q is determined from the evolution of the hydrostatic stress with the porosity for hydrostatic loadings. Then the value of q is used, with no further fitting, to simulate the uniaxial tests and the purely deviatoric tests at different strain-rate levels and different temperatures. The overall hydrostatic stress at the end of the simulation versus porosity for microstructures with d p ≈ d g under hydrostatic compression is presented in Figure 11 (c) for different temperatures and strain rates. The evolution of overall hydrostatic 13) and ( 14) identified by a least squares regression and q values determined from equation ( 16).

stress with porosity is estimated for spherical voids and polyhedral voids respectively using the following relation:

| Σm | = A i ln(f p ) + B i . ( 13 
)
where i is the type of pore ('sv' for spherical voids and 'pv' for polyhedral voids). The logarithm function is inspired from the hollow sphere problem with Von Mises rigid plastic matrix under purely hydrostatic loading in the original Gurson analysis [START_REF] Gurson | Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I-Yield Criteria and Flow Rules for Porous Ductile Media[END_REF]. The coefficients A i and B i are determined using a least squares regression (see Table 5).

In Figures 11 (a) and (b), it is observed that the evolutions of Σeq and | Σ11 |, respectively for purely deviatoric and uniaxial compression loadings, with porosity are quite linear. Therefore, they are estimated by:

| Σeq,11 | = A i f p + B i . (14) 
The parameters A i and B i identified by the least squares regression are reported in Table 5 for both types of microstructure.

In Figure 11 (c), dashed and dotted lines correspond to the evolution of stress as a function of porosity for spherical voids and polyhedral voids respectively using the following relation:

| Σm | = A i ln(q i f p ) + B i . (15) 
The parameter q sv is adjusted for spherical voids to meet the relation for polyhedral voids where q pv = 1:

q sv = 1 f p exp A pv log(f p ) + B pv -B sv A sv . (16) 
A mean value for q sv is computed for each set of temperature and strain rate in Table 5. The obtained values are then averaged, leading to q sv = 1.3. It is checked in Figure 11 (c) that the dashed lines with q sv = 1.3 (simply denoted by q) remain close to the dotted lines for the different temperatures and strain rates.

In Figures 11 (a) and (b), dashed and dotted lines correspond to the evolution of stress as a function of porosity for spherical voids and polyhedral voids respectively using the following relation:

| Σeq,11 | = A i (q i f p ) + B i . ( 17 
)
with q sv = 1.3 and q pv = 1. The dashed lines with q sv = 1.3 (simply denoted by q) slightly underestimates the results for the microstructures with polyhedral voids. Nevertheless, the discrepancies remain below 5% of the stress for both loadings.

Conclusions

Porous polycrystalline microstructures with similar in size pores and grains are generated to analyze the effect of the anisotropy due to the grains surrounding the pores on the overall viscoplastic behavior. Such microstructures can be encountered in large Pu-rich clusters of irradiated MOX fuels. Two distinct shapes of pores are considered (spherical and polyhedral), together with two relative sizes of the voids with respect to the grains. Specific algorithms are derived to generate the different microstructures of Voronoi and Laguerre tessellations. The local deformation of the grains is assumed to follow a crystal plasticity law recently developed for UO 2 and adjusted here to fit with experimental results on MOX fuel. Full-field simulations using a Fast Fourier Transforms based method are performed imposing the direction of the overall stress. Different overall stress triaxilities are considered, corresponding to uniaxial compression, purely hydrostatic compression, and purely deviatoric axisymmetric loadings. To the end, the results are obtained from a massive computation plan, varying the temperature, the strain rate, the porosity, the pore shape, the relative size of pores with respect to the grains, and the stress triaxiality. As expected, the porosity has a softening effect on the effective viscoplastic behavior. The effect of the relative size of pores remains small for microstructures with spherical voids for all the stress triaxialities investigated, thus indicating a minor effect of the crystallinity and the anisotropy of the grains on the overall viscoplastic response. For further investigations, the effect of crystallinity should be assessed when additional local processes are taken into account, such as lattice rotation, strain hardening due to interactions between dislocations or between dislocations and point defects, or processes implying point defects diffusion, or dislocation climb. Coming from the fact that the crystal plasticity model is local, another limitation of this study could be that it does not take into account the possible effect of geometrically necessary dislocations induced by large strain gradients around the pores.

For microstructures with polyhedral voids, the effect of the relative size of pores is more pronounced and it increases with stress triaxiality. Furthermore, when the relative size of pores with respect to the size of grains increases, the behavior of the microstructures with polyhedral voids tends to the behavior of the microstructures with spherical voids. It seems that the difference between results obtained on microstructures with polyhedral and spherical pores is due to the shape of pores itself, leading to different spreads of small stress zones around the pores. It is shown that the case of polyhedral voids when the size of voids is equal to the size of grains can be derived with good accuracy from the case of spherical voids by multiplying the porosity by a constant q ≈ 1.3. It could be used to extend the analytical model developed in [START_REF] Wojtacki | A micromechanical model for the secondary creep of elasto-viscoplastic porous materials with two rate-sensitivity exponents: Application to a mixed oxide fuel[END_REF] for MOX fuel with spherical pores. Multiplying the porosity by q in this analytical model gives an estimate when the pores are polyhedral with a size close to the size of grains. A Parametric studies

A.1 Spatial discretization

Spatial discretization, which can be defined as the number of voxels/pixels per volume element, plays an important role on the accuracy of the calculation performed with FFT-based homogenization method. First, a high spatial discretization enables a fine description of the microstructure (and thus a simulation closer to the physical problem). Second, it enables a better estimate of the mechanical fields and the overall material properties.

To study the influence of spatial discretization, several simulations were performed on a canonical microstructure, considering the viscoplastic behavior of the material and the porosity. A microstructure composed of 85 viscoplastic crystals and 15 voided grains (Voronoi-type microstructure with polyhedral voids generated as described in 2.1.2) was subjected to a uniaxial compression test, with a strain rate of 10 -3 s -1 (see the description of the loadings in Section 2.4), at a temperature set to 1900 • C, for a spatial discretization varying from 1,250 to 3,430,000 voxels per grain. To be more specific, the discretization is defined here as the total number of voxels in the image, divided by the total number of grains, voided or not, in the volume.

The results are summarized in Figure A.1. It appears that the effective stress obtained at the end of the simulation converges toward an asymptotic value with an increasing spatial discretization (Figure A.1 (a)) and that the asymptotic value is nearly reached with the largest investigated discretization. The resuts are compared here to a reference value set to 39.9 MPa, which overestimates the value obtained with the highest resolution. Figure A.1 (b) shows that the difference between the calculated overall stress and this reference value is below 0.5 MPa, which corresponds to a relative difference of 1%, for spatial discretization over 100,000 voxels per grain.

To conclude, a spatial discretization of 125,000 voxels per grain has been retained for this study.

A.2 Macroscopic isotropy and representativeness

The goal of this parametric study is to determine the minimal number of grains in the unit cell of a dense polycrystal required to get, with a good accuracy, a macroscopic isotropic mechanical response. Eight classes of microstructures were considered which contained 10, 70, 100, 250, 400, 700, 1000 and 1500 grains, respectively, with a discretization of 125,000 voxels per grain. For each class, 30 realizations were generated. Examples of microstructures used in this study are presented in Figure A.2, for different numbers of grains.

Each cell was tested under three loading conditions corresponding to uniaxial compressions along the three directions of the space. The temperature was set to 1400 • C and the unit cell was loaded with constant overall strain rate (of 10 -4 s -1 ) until 1.5% of the corresponding overall axial strain was reached (see the description of the loadings in Section 2.4).

In Figure A.3 are compared the average values (over all realizations) of the effective uniaxial stresses obtained at the end of the simulations along the three directions of the space as functions of the number of grains. As expected, the standard deviation of the results within each class of microstructures decreases with the number of grains and it is less than 2,5% for classes containing more than 250 grains. For unit cells containing more than 700 grains these average values are visually indistinguishable.

Thus, it is reasonable to consider that a unit cell containing more then 700 grains is quite representative and gives an almost isotropic mechanical effective response. The numerical simulations presented in this paper are performed on unit cells containing 1000 grains. 

B Integration of the crystal plasticity model in CraFT

The crystal plasticity model introduced in 2.2 and used in this study can be summarized by the following set of constitutive equations: where the only unknown is the current stress σ(t), the current strain ε(t) and the strain ε(t -∆t) and the stress σ(t -∆t) at the previous time step being supposed to be known. Equation (B.3) is solved iteratively using the Newton-Raphson method.
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C Parameters of crystal plasticity model for MOX fuel

In this study, the crystal plasticity model developed by [START_REF] Portelette | Crystal viscoplastic modeling of UO 2 single crystal[END_REF] for UO 2 is used for MOX fuel. The two materials have the same fluorite lattice structure and a similar viscoplastic behavior. However, the parameters of the model should be adjusted in order to match with the experimental results. Since no experimental data are available for MOX single crystal, we use experimental measurements obtained by [START_REF] Routbort | Compressive creep of mixed-oxide fuel pellets[END_REF] on MOX pellets in the dislocation motion regime.

The three parameters γi 0 , ∆H i 0 and τ i 0 , of each slip family, are adjusted by comparing the experimental results with the results of numerical simulations. The simulations were performed on the dense polycrystal. The unit cell containing 1000 grains was submitted to a uniaxial compression and the effective axial stress is determined for different temperatures and strain rates.

In both materials (UO 2 and MOX) the viscoplastic strain-rate is the sum of the slip rates, γs , on each slip system. In order to preserve the same mechanism for the evolution of the viscoplastic strain-rate in the two materials, when adjusting the parameters mentioned before, we have kept the dominance of the slips of the family I compared to the ones of the family II. To evaluate it, the sum of slips of each family is normalized by the sum of slips of all slip systems (equations (C.1) and (C.2)): In Figure C.1 are reported these ratios for both materials and for different temperatures and strain rates. The choice of the parameters which is presented hereafter, ensure that the normalized slip of family I is always greater than the normalized slip of family II for all temperatures and all strain rates.

After several tries a good choice found of these parameters is the following:

• the values of ∆H i 0 are kept unchanged for both slip families, • the values of τ i 0 are 3.6 times larger than the corresponding values for UO 2 for both slip families, • the values of γ i 0 for family 1/2¡110¿100 are 11 times larger than the corresponding values for UO 2 , • the values of γ i 0 for family 1/2¡110¿110 are 22 times larger than the corresponding values for UO 2 .

It is worth noting that the procedure for adjusting these parameters is purely heuristic and other set of parameters could give similar results. In Figure C.2 are compared the experimental results of [START_REF] Routbort | Compressive creep of mixed-oxide fuel pellets[END_REF] with the results of the FFT simulations for three temperatures. The predictions of the model of [START_REF] Slagle | Fuel transient deformation[END_REF] with the parameters specified in [START_REF] Wojtacki | A micromechanical model for the secondary creep of elasto-viscoplastic porous materials with two rate-sensitivity exponents: Application to a mixed oxide fuel[END_REF], and the hyperbolic cosine model (equation ( 12)) are also plotted. The results of the numerical simulations show that, at least for the range of strain rates considered here, the set of parameters identified previously for the MOX fuel leads to an effective behavior which is close to the one observed in experiments, for the whole range of temperature. We can also remark that the model of [START_REF] Slagle | Fuel transient deformation[END_REF] accurately predicts the behavior of the dense polycrystal.

D Simulation cases

Tables D.1 and D.2 summarized all the simulation cases performed on Voronoi-type microstructures with spherical voids and Laguerre-type microstructures with polyhedral voids. Moreover, the simulations performed on the other types of microstructures are indicated in these tables:

• the simulation on the Voronoi-type microstructure with re-centered spherical voids is added in the column 'Spherical voids' with d p ≈ d g and is indicated in parentheses (.),

• simulations on Voronoi-type microstructures with polyhedral voids are added in the column 'Polyhedral voids' with d p ≈ d g and are indicated in braces {.},

• simulations on Laguerre-Voronoi-type microstructures with polyhedral voids are added in the column 'Polyhedral voids' and are indicated in square brackets [.]. 

Figure 1 :

 1 Figure 1: Periodic polycrystalline microstructures (500x500x500 voxels) with 15% porosity (voids in blue) (a) spherical voids with d p = d g , (b) polyhedral voids with d p ≈ d g , (c) spherical voids with d p ≈ 2 d g , (d) polyhedral voids with d p ≈ 2 d g .

Figure 2 :

 2 Figure 2: Slices of microstructures with 15% porosity, d p ≈ 2 d g and polyhedral voids following (a) the procedure presented in 2.1.2, (b) the procedure presented in 2.1.3.

Figure 3 :

 3 Figure 3: Macroscopic stress versus macroscopic strain in the compression direction (absolute values) during a uniaxial compression loading (a) on the dense polycrystal for different temperatures and strain rates, (b) on the dense polycrystal and Voronoi-type microstructures with polyhedral voids for d p ≈ d g , T = 1400 • C, and | Ė11 | = 10 -7 s -1 .

Figure 4 :Figure 5 :

 45 Figure 4: Strain rate versus stress for different temperatures obtained on the dense polycrystal and Voronoi-type microstructures with polyhedral voids and d p ≈ d g . Uniaxial compression loading.

Figure 6 :

 6 Figure 6: Equivalent stress versus hydrostatic stress of Voronoi-type microstructures with spherical voids, Laguerre-type microstructures with polyhedral voids (dotted and dashed lines are interpolations between the mean values obtained for each stress triaxiality) (a) for different temperatures and strain rates with d p ≈ d g and f p = 15%, (b) for different porosities with d p ≈ d g , T = 1400 • C, and | Ė| = 10 -7 s -1 , (c) for d p ≈ d g and d p ≈ 2 d g with f p = 15%, T = 1400 • C, and | Ė| = 10 -7 s -1 .

Figure 7 :Figure 8 :Figure 9 :Figure 10 :

 78910 Figure 7: Equivalent strain fields at the end of the simulation for f p = 15% under hydrostatic compression with d p ≈ d g , T = 1400 • C, and | Ė| = 10 -7 s -1 . (a) Voronoi-type microstructure with re-centered spherical voids (see section 2.1.3), (b) Laguerre-type microstructure with polyhedral voids. Isovalues are bounded with a maximum value set to 2.5%. In microstructures (a) and (b), pore centers have identical positions.

Figure 11 :

 11 Figure 11: Stress versus porosity for different temperatures and strain rates and d p ≈ d g for Voronoi-type microstructures with spherical voids, Laguerre-type and Voronoi-type microstructures with polyhedral voids under (a) purely deviatoric loading, (b) uniaxial compression loading, (c) purely hydrostatic compression loading.

  Figure A.1: (a) Effective stress on a 100 grains Voronoi-type microstructure with 15 polyhedral voids, at 1900 • C and 10 -3 s -1 , under uniaxial compression. (b) Absolute and relative differences of each simulation results with 39.9 MPa.

Figure

  Figure A.2: Microstructures of dense polycrystal for different number of grains: (a) 10 grains, (b) 70 grains, (c) 100 grains, (d) 250 grains, (e) 400 grains, (f) 700 grains, (g) 1000 grains, and (h) 1500 grains.

FigureFigure C. 1 :F

 1 Figure A.3: Effective uniaxial average stresses over all microstructure realizations containing the same number of grains, at the end of the simulations along the three directions of the space versus the number of grains at 1400 • C and 10 -4 s -1 . Bars indicate the standard deviation.

  Figure C.2: Comparison between Routbort et al. (1972) experiments (circles), simulations on the dense polycrystal (crosses), model of Slagle et al. (1984) with parameters specified by Wojtacki et al. (2020) (solid line) and hyperbolic cosine model (equation (12) -dashed line) for three temperatures.

Table 2 :

 2 Parameters of the constitutive model (1).

	Houston et al. (1970)	∝ 1/d 2	77	1.4	-	-	-
	Evans et al. (1971)	∝ 1/d 3	100	1	-	140	4,5
	Routbort et al. (1972) ∝ 1/d 2	92.5	1	-	136.8	4,4
	UO 2						
	Bohaboy et al. (1969) ∝ 1/d 2	90	1	-	132	4,5

  1/3 d g ≈ 2 d g which leads to n p = 100 f p . By doing so, a cell with 5% porosity and containing 5 pores will satisfy d p ≈ 2 d g .

		Thus, 10% porosity leads to
	10 pores and 15% porosity leads to 15 pores. Some examples of microstructures with spherical voids are shown in Figures 1
	(a) and (c). In the following, the microstructures obtained from this procedure are called Voronoi-type microstructures with
	spherical voids.	
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Table 3 :

 3 Main features for the different microstructures of the study.

	Name
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Table 4 :

 4 Parameters of the crystal plasticity model.

		1/2<110>{100} 1/2<110>{110}
	γ0 [s -1 ]	5.22×10 8	1.52×10 8
	∆H 0 [eV]	5.71	5.22
	τ 0 [MPa]	4.86	17.2
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Table 5 :

 5 Parameters of equations (

			T σ	Spherical voids Polyhedral voids	q sv
				A sv	B sv	A pv	B pv	5% 10% 15% mean
			-∞ -156.6 643.5 -167.1	626.4	1.24 1.30 1.34	1.29
	1400	10 -4	-1/3	-3.7	193.8	-4.5	193.8
			0	-3.3	186.5	-3.9	186.5
			-∞	-77.1	302.9	-79.7	286.7	1.30 1.33 1.35	1.33
	1400	10 -7	-1/3	-1.4	76.0	-1.7	76.0
			0	-1.1	68.5	-1.3	68.5
			-∞	-60.7	234.8	-60.5	218.1	1.31 1.30 1.30	1.30
	1700	10 -4	-1/3 -0.99	54.9	-1.17	54.9
			0	-0.77	48.1	-0.90	48.1
			-∞	-7.6	27.0	-7.2	24.2	1.33 1.28 1.25	1.29
	1700	10 -7	-1/3 -0.08	4.3	-0.09	4.3
			0	-0.05	3.5	-0.06	3.5
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T [ • C] | Ė| [s -1 ]

Table D .

 D • C] | Ė| [s -1 ] f p [%] T σ d p ≈ d g d p ≈ 2d g d p ≈ d g d p ≈ 2d g 1: Cases of simulations performed at 1400 • C.

					Spherical voids	Polyhedral voids
	T [ 1400	10 -7	0 5 5 5 5 5 10 10 10	-1/3 0 -1/3 -1 -3 -∞ 0 -1/3 -1	1 5 1 1 1 1 5 1	5 5	1 5+{5}+[5] 1+{1} 1 1 1+{1} 1+{1} 5+{5}+[5] 1	5+[5] 5+[5]
			10	-3	1		1	
			10	-∞	1		1	
			15	0	5	5	5+{1}	5
			15	-1/3	5	5	5+{5}+[5]	5+[5]
			15	-1	5	5	5	5
			15	-3	5	5	5	5
			15	-∞	5+(1)	5	5+{1}	5
			0	-1/3			1	
			5	0	1		1+{1}	
			5	-1/3	1		1+{1}	
		10 -4	5	-∞	1		1+{1}	
			10	0	1		1+{1}	
			10	-1/3	1		1+{1}	
			10	-∞	1		1+{1}	
			15	0	1		1+{1}	
			15	-1/3	1		1+{1}	
			15	-1	1		1	
			15	-3	1		1	
			15	-∞	1		1+{1}	
		10 -6	0	-1/3			1	
			15	-1/3			{1}	
		5×10 -5	0	-1/3			1	
			15	-1/3			{1}	
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