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ON THE CONVERGENCE FROM BOLTZMANN TO

NAVIER-STOKES-FOURIER FOR GENERAL INITIAL DATA

PIERRE GERVAIS

Abstract. In this work, we prove the convergence of strong solutions of the
Boltzman equation, for initial data having polynomial decay in the velocity vari-
able, towards those of the incompressible Navier-Stokes-Fourier system. We show
in particular that the solutions of the rescaled Boltzmann equation do not blow
up before their hydrodynamic limit does. This is made possible by adapting the
strategy from [7] of writing the solution to the Boltzmann equation as the sum a
part with polynomial decay and a second one with Gaussian decay. The Gaussian
part is treated with an approach reminiscent of the one from [17].
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1. Introduction

1.1. The models. Let us present the main models considered in this paper, namely
the Boltzmann equation and the incompressible Navier-Stokes-Fourier system, and
how they are related.

1.1.1. The Boltzmann equation. Consider a rarefied gas whose particles number den-
sity at position x ∈ Ω (here Ω = Rd or Td, and d = 2, 3), traveling at velocity v ∈ Rd

at time t ∈ R+ is given by F (t, x, v). Assuming the particles undergo hard spheres
collisions, F evolves according to the Boltzmann equation

(1.1)

®
(∂t + v · ∇x)F = Q(F, F ),

F|t=0 = Fin,

which is a transport equation whose source term models the effect of binary collisions
between pairs of particles. The operator Q is called the Boltzmann operator or
collision operator and is an integral bilinear symmetric operator defined as

Q(F,G) :=
1

2
(Q+(F,G)−Q−(F,G) +Q+(G,F )−Q−(G,F )),

where the so-called gain and loss part are defined as

Q+(F,G)(v) :=

∫

Rd

∫

S
d−1
σ

|v − v∗|F
′G′

∗dv∗dσ,

Q−(F,G)(v) :=

∫

Rd

∫

S
d−1
σ

|v − v∗|FG∗dv∗dσ,

where we used the standard notation

– v and v∗ for the velocities of two particles after the collision,
– v′ and v′∗ for their velocities before the collision, given by

(1.2) v′ =
v + v∗

2
+

|v − v∗|

2
σ, v′∗ =

v + v∗
2

−
|v − v∗|

2
σ,

– F := F (v), F ′ := F (v′), G′
∗ := G(v′∗) and G∗ := G(v∗).

One can retrieve local macroscopic observables of the gas such as the mass den-
sity R(t, x), local temperature T (t, x) and bulk velocity U(t, x) ∈ Rd using the
moments of the particles number density:

R(t, x) :=

∫

Rd

F (t, x, v)dv,

(RU)(t, x) :=

∫

Rd

vF (t, x, v)dv,

R(|U |2 + dT )(t, x) :=

∫

Rd

|v|2F (t, x, v)dv.

Using the symmetries of Q which imply that Q(F, F ) is orthogonal to 1, v, |v|2, one
may show by integrating (1.1) against 1, v, |v|2 in v that these quantities satisfy the
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following conservation laws:

∂tR(t, x) +∇x · U(t, x) = 0,

∂tU(t, x) +∇x ·

∫

Rd

v ⊗ vF (t, x, v)dv = 0,

∂t(R|U |
2 + dRT )(t, x) +∇x ·

∫

Rd

v|v|2F (t, x, v)dv = 0.

The last physical quantity we wish to introduce is the entropy of the gas, defined as

H(t) :=

∫

Rd×Ω

F (t, x, v) logF (t, x, v)dvdx.

The celebrated H-theorem (second law of theormodynamics) states that H is a non-
negative non-increasing function and thus a Lyapunov functionnal. The entropy
minimizers are therefore equilibria, called Maxwellian distributions (see for instance
[42, Chapter 1]), which are Gaussians in the variable v, parametrized by the macro-
scopic observables:

MR,T,U(t, x, v) :=
R(t, x)

(2πT (t, x))d/2
exp

Å
−
|v − U(t, x)|2

2T (t, x)

ã
.

In this paper, we will denote the normal centered distribution (R = 1, U = 0, T = 1)
by

M(v) :=
1

(2π)d/2
exp

Å
−
|v|2

2

ã
,

and we define the corresponding so-called collision frequency

(1.3) ν(v) :=

∫

Rd

M∗|v − v∗|dv∗,

which is such that for some constants 0 < ν0 ≤ ν1, denoting 〈v〉 :=
√
1 + |v|2,

(1.4) ν0〈v〉 ≤ ν(v) ≤ ν1〈v〉.

Global weak solutions to (1.1), called renormalized solutions, were constructed by
R. DiPerna and P. L. Lions in [13] under very general assumptions, corresponding
to initial data with finite mass, energy and entropy.

In [41], strong solutions to (1.1) have been constructed for smooth (in x) initial
data with Gaussian decay. These solutions are global when the initial data is close to
some absolute Maxwellian MR,U,T (R, T > 0, U ∈ Rd), and local in time otherwise.
In [23], the authors exhibited strong solutions to (1.1) for smooth (in x) initial data
having algebraic decay and close to some absolute Maxwellian. Let us state their
existence theorem more precisely.

Theorem 1. Let α > 2, there exists some positive η = η(α) such that, for any
initial data Fin = Fin(x, v) with x ∈ T3 and v ∈ R3 satisfying

‖Fin −M‖L1
vL

∞
x (〈v〉αdv) < η(α),

there exists a unique global solution F ∈ C0
t L

1
vL

∞
x (〈v〉αdv) ∩ L1

t,vL
∞
x (〈v〉α+1dv) to

the Boltzmann equation (1.1).
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We also mention [24] in which perturbative solutions are constructed using a non-
linear energy method based on the so-called micro-macro decomposition (see Section
1.1.2), and [28] in which solutions are constructed near vacuum.

1.1.2. Micro-macro decomposition. A gas at thermodynamic equilibrium and close
to M , that is to say a thermodynamic equilibrium of the form M1+ρ,u,1+θ for some
small ρ, u, θ, behaves like the sum of M and a so-called infinitesimal Maxwellian:

M1+ρ,u,1+θ(v) =M(v) +

Å
ρ+ u · v +

1

2

(
|v|2 − d

)
θ

ã
M(v) + o(ρ, u, θ).

More generally, any fluctuation F (x, v) =M(v)+f(x, v) aroundM admits a unique
micro-macro decomposition (with respect to M)

f(x, v) =

Å
ρf (x) + uf(x) · v +

1

2

(
|v|2 − d

)
θf (x)

ã
M(v) + f⊥(x, v),(1.5)

ρf(x) :=

∫

Rd

f(x)dv, uf(x) :=

∫

Rd

f(x, v)vdv,

θf (x) :=
1

d

∫

Rd

f(x, v)
(
|v|2 − d

)
dv

where we call the macroscopic part of f the part
Å
ρf (x) + uf(x) · v +

1

2
(|v|2 − d)θf (x)

ã
M(v),(1.6)

which is given by the projection

Πf(x, v) :=

d+1∑

j=0

ϕj(v)M(v)

‖ϕjM1/2‖2L2
v

∫

Rd

f(x, v∗)ϕj(v∗)dv∗,(1.7)

ϕ0(v) = 1, ϕj(v) = vj, ϕd+1(v) = |v|2,

and f⊥ is the microscopic part of f , thus characterized by the fact that for almost
any x ∈ Ω, ∫

Rd

f⊥(x, v)ϕj(v)dv = 0, j = 0, . . . , d+ 1.

We say that f is well-prepared if it is macroscopic and satisfies furthermore the
incompressibility condition and the Boussinesq relation of (INSF):

∇x · uf = 0,

∇x (ρf + θf ) = 0.

To sum up, any f(x, v) can be decomposed uniquely as

f = Πf + f⊥ = fWP + fIP + f⊥,(1.8)
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where, denoting P the (Leray) projector on incompressible fields, the well-prepared
part of f writes

fWP(x, v) :=

Å
ρf(x) + uf(x) · v +

1

2

(
|v|2 − d

)
θf(x)

ã
,(1.9)

u := Pu, ρf := −θf :=
2ρf − dθf

2
,

and fIP := Πf − fWP is called the ill-prepared part.

Remark 1.1. Note that the micro-macro decomposition is orthogonal in L2
v (M

−1dv).

Remark 1.2. Note that, in the following, the Boussinesq relation ∇x(ρ+ θ) = 0 is
equivalent to ρ + θ = 0 as we will assume (ρ, θ) to be mean-free when Ω = Td or
integrable when Ω = Rd.

1.1.3. The hydrodynamic model. At the macroscopic level, the dynamics of an in-
compressible fluid is encoded at any point x ∈ Ω and any time t ∈ R+ by its bulk
velocity u(t, x) ∈ R

d, its mass density ρ(t, x), its temperature θ(t, x), as well as its
pressure p(t, x) (which can be deduced from u in the case of an incompressible fluid).
These quantities evolve according to the incompressible Navier-Stokes-Fourier sys-
tem:

(INSF)





∂tu+ u · ∇u− µ∆u = −∇p,

∂tθ + u · ∇θ − κ∆θ = 0,

∇ · u = 0,

∇(θ + ρ) = 0,

(u, θ, ρ)|t=0 = (uin, ρin, θin).

In this system, the positive scalars µ and κ denote respectively the kinematic vis-
cosity and heat conductivity coefficients. Global weak solutions were shown to exist
by J. Leray [15] under minimal physical assumptions on the initial data, and strong
solutions were conctructed by H. Fujita and T. Kato [16] for smooth initial data. Let
us present an existence result for (INSF) which is by nomean optimal but sufficient
for the study led in this paper and refer to [11, 31, 32, 16] for a proof.

Theorem 2. For any s ≥ d/2− 1 and (ρin, uin, θin) ∈ Hs
x satisfying

∇x · uin = 0,

∇x(ρin + θin) = 0,

there exists a time T ∈ (0,∞] such that the system (INSF) has a unique solution
in L∞

t ([0, T );Hs
x) ∩ L2

t ([0, T );H
s+1
x ) associated with the initial data (ρin, uin, θin).

Furthermore, there holds T = ∞ if the initial data is small enough (with respect
to µ).

1.1.4. Hydrodynamic limits. By choosing a system of reference values for length,
time and velocity (see for example [19, 40]), we obtain a dimensionless version
of the equation:

Ma ∂tF + v · ∇xF =
1

Kn
Q(F, F ),
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where Kn denotes the Knudsen number (the inverse of the average number of colli-
sions per unit of time) and Ma theMach number (the ratio of the bulk velocity to the
speed of sound, characterizing the compressibility of the fluid). To relate the Boltz-
mann equation to hydrodynamic models, several formal methods were proposed,
first by D. Hilbert [27], Chapman-Enskog [10], H. Grad [22], then made rigorous by
several works such as [5, 12, 8, 30]. At the beginning of the nineties, a systematic
approach was presented in [4, 3]: C. Bardos, F. Golse and D. Levermore showed
that the only possible point of accumulation for the renormalized solutions of (Bε)
when ε goes to zero are global weak solutions to Euler or Navier-Stokes equations.
In the case of the Navier-Stokes-Equations, choosing Ma = Kn = ε in the previous
scaled Boltzmann equation and performing the linearization F = F ε = M + εf ε,
the authors considered the following equation:




∂tf

ε = Lεf ε +
1

ε
Q(f ε, f ε),

f ε(0) = fin,
(Bε)

Lε := ε−2 (L− εv · ∇x) ,(1.10)

Lh := 2Q(M,h),(1.11)

and showed that if the fluctation profile f ε converges in some weak sense to some f 0

as ε goes to zero, then it must write

(1.12) f 0(t, x, v) :=

Å
ρ0(t, x) + u0(t, x) · v +

1

2
(|v|2 − d)θ0(t, x)

ã
M(v),

and the coefficients ρ0, u0 and θ0 are distributional solutions of (INSF) with the
initial condition

(
ρ0, u0, θ0

)
|t=0

=

Å
2ρin − dθin
d+ 2

,Puin,
−2ρin + dθin

d+ 2

ã
,

ρin(x) :=

∫

Rd

fin(x, v)dv, uin(x) :=

∫

Rd

vfin(x, v)dv,

θin(x) :=
1

d

∫

Rd

(|v|2 − d)fin(x, v)dv.

Recalling the definition of Section 1.1.2, this means f 0
|t=0 = fin,WP. Finally, the

diffusion coefficients in (INSF) can be expressed as

µ :=
1

(d− 1)(d+ 2)

∫

Rd

trace

Å
Φ (LΦ)T

ã
dv, κ :=

2

d(d+ 2)

∫

Rd

φLφdv,

where Φ and φ are the unique functions satisfying

LΦ =

Å
|v|2

2
Id− v ⊗ v

ã
M, Lφ = v

Å
d+ 2

2
−

|v|2

2

ã
M,

and orthogonal to the null-space of L (see [42]), which constists of macroscopic
distributions:

(1.13) N(L) :=
{
v 7→

(
a+ b · v + c(|v|2 − d)

)
M(v), a, c ∈ R, b ∈ R

d
}
.
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This means that the heat conductivity and kinematic viscosity only depend on the
physical properties of the reference equilibrium M and the collision operator Q. In
[20, 21], F. Golse and L. Saint-Raymond proved the compactness of these solutions
and thus the convergence. We also mention [33] in which different interactions
between particles are considered.

The derivation of the Navier-Stokes system from the Boltzmann equation in the
case of strong solutions was first considered by C. Bardos and S. Ukai in [5], for
initial data having Gaussian decay. Their approach relied on the properties of the
homogeneous linearized operator L studied by H. Grad in [22], and on the spectral
study of the full linearized operator L+ v ·∇x led by R. Ellis and M. Pinsky in [14],
completed by S. Ukai in [41]. They considered (Bε) in its integral form

(1.14) f ε = Uεfin +Ψε(f ε, f ε),

where we have denoted

Uε(t) := exp(tLε),

Ψε(f ε, f ε)(t) :=
1

ε

∫ t

0

Uε(t− t′)Q (f ε(t′), f ε(t′)) dt′,(1.15)

and proved continuity bounds (uniformly in ε) for Uε and Ψε in some space of
functions with Gaussian decay, which allowed to prove existence of strong global
solutions f ε to (1.14) through a fixed point argument for small initial data. They
also proved the convergence of Uε and Ψε as ε goes to zero to some U0 and Ψ0,
which implied strong convergence convergence of f ε to some f 0 satisfying

f 0 = U0f 0
in +Ψ0(f 0, f 0),(KINSF)

and we recall once again that f 0
|t=0 = f 0

in = fin,WP. We could call this equation the

kinetic formulation of the Navier-Stokes-Fourier system, as the results from [4, 3]
imply that f 0 is the same as (1.12) and thus describes the unique strong solution of
(INSF) (in the sense of Theorem 2).

In [17], I. Gallagher and I. Tristani improved this fixed point approach by consider-
ing the equation satisfies by f ε−f 0, where f 0 is known to exist thanks to Theorem 2.
This allowed to consider large initial data fin for the Boltzmann equation, and thus
large (ρ0in, u

0
in, θ

0
in) for the Navier-Stokes-Fourier system, and in particular, showed

that the solution f ε to (1.14) does not blow up before f 0 does. We state here their
result.

Theorem 3. Let s > d/2, β > d/2+1, and fin ∈ L∞
v H

s
x

(
M−1/2〈v〉βdv

)
. Denote f 0

the solution to (KINSF) with initial data f 0
in = fin,WP given by Theorem 2 on a time

interval [0, T ). For any small enough ε > 0, there exists a unique solution to (Bε)

f ε ∈ Cb
Ä
[0, T );L∞

v H
s
x

Ä
M−1/2〈v〉βdv

ää

where Cb(X ; Y ) denotes the set of bounded continuous functions from X to Y , and
it converges to f 0

– in L∞
t L

∞
v H

s
x

(
M−1/2〈v〉βdv

)
if fin = fin,WP,
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– in L∞
t L

∞
v H

s
x

(
M−1/2〈v〉βdv

)
+Lp

tL
∞
v (Hs

x +W s,∞)
(
M−1/2〈v〉βdv

)
otherwise,

where 2
d−1

< p <∞.

We also mention works led in similar functional spaces: [30, 12, 6, 25, 29] in which
strong hydrodynamic limits of the Boltzmann equation are considered, and [38, 9]
in which strong solutions to the incompressible Navier-Stokes-Fourier system are
derived from the Landau equation.

The case of strong solutions to the Boltzmann equation in polynomial spaces is not
different because Grad’s decomposition of the linearized operator L does not have
the same nice properties as in Gaussian spaces. In particular, Ψε can not be shown
to be a bounded operator in L∞

t L
1
v (〈v〉

αdv) using the same approach. The study of
strong solutions to the Boltzmann equation for polynomially decaying initial data
was initiated by M.P. Gualdani, S. Mischler and C. Mouhot who constructed in [23]
solutions to the Boltzmann equation for initial data close to a global Maxwellian
(see Theorem 1), or in other words (by a scaling argument), to (Bε) for fin small
and for ε = 1. This was made possible thanks to the development of the so-called
enlargement theory started by C. Mouhot in [36] and developped with S. Mischler
and M.P. Gualdani in [35, 23] which (loosely speaking) allows to prove spectral prop-
erties for a linear operator in large spaces under the condition that these properties
hold in a smaller space and the linear operator can be decomposed in a certain way.

In [7], M. Briant, S. Merino and C. Mouhot proved the solutions constructed
in [23] were bounded uniformly in ε, and thus, up to an extraction, converging
weakly to a solution of the incompressible Navier-Stokes-Fourier system.

We also mention [2] in which weak solutions to a modified Navier-Stokes-Fourier
system are derived from solutions to the Boltzmann equation for ganular media with
initial data having polynomial decay.

In this work, our main goal is to prove that the solutions constructed in [23]
converge strongly to solutions of the Navier-Stokes-Fourier system, at least when
the initial data is in some of the spaces considered by the [23]. To do so, we
draw inspiration from [7] and decompose the Boltzmann equation into a system of
two coupled equations, describing respectively the evolution of the macroscopic and
microscopic parts of the initial data fin = Πfin + fin,⊥.

– One equation is posed in a “small Gaussian space” and its solution, generated
by the macroscopic part Πfin, is shown to converge strongly to a solution of
the incompressible Navier-Stokes-Fourier system, by adapting the approach
from [5, 17].

– The other equation is posed in a “large polynomial space” and describes the
evolution of an initial layer generated by the microscopic part fin,⊥.

We also prove that when the initial data fin is large, the corresponding solution to
the Boltzmann equation exists at least up to the first singular time of the solution
to the incompressible Navier-Stokes-Fourier system with initial data fin,WP.

1.2. Statement of the main result. Before we state the main result, let us define
the functional spaces used in this paper.
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Notations 1.3. For any positive Borelian function m, we denote by Lp(m) the
weighted Lebesgue space defined by the following norm:

(1.16) ‖f‖Lp(m) := ‖fm‖Lp,

and recall that M(v) = (2π)−d/2 exp(−|v|2/2). We fix in this paper some s > d/2.
For any p ∈ [1,∞] and α > 0, we denote the norms

‖f‖Ep,α := ‖f〈v〉α‖Lp
vHs

x
,

‖f‖Eβ :=
∥∥fM−1/2〈v〉β

∥∥
L∞
v Hs

x
,

and corresponding functional spaces

Ep,α := {f = f(x, v) : ‖f‖Ep,α <∞} , p <∞,

E∞,α :=

ß
f = f(x, v) : ‖f‖E∞,α <∞, ‖f(·, v)‖Hs

x
〈v〉α −−−−→

|v|→∞
0

™
,

Eβ :=

ß
f = f(x, v) : ‖f‖Eβ <∞, ‖f(·, v)‖Hs

x
〈v〉βM−1/2 −−−−→

|v|→∞
0

™
.

We also define the auxiliary norm

‖h‖Ep,α
ν

:=
∥∥hν1/p

∥∥
Ep,α ,

with ν being defined in (1.3). Note that the assumption that the function vanishes
for large v in the case p = ∞ is made so that for any α > 0 and p1 ≥ 1, the

space
⋂

p≥p1

Ep,α is dense in E∞,α. Finally, for any real interval I and Banach space X,

we denote Cb(I;X) the set of bounded continuous functions from I to X.

Our main result is the following.

Theorem 4. Let p ∈ [1,∞] and β > d/2 + 1 (and recall that s > d/2), there exists
some α∗(p) > 0 such that, for any α > α∗(p), the following holds. Consider any
initial data fin ∈ Ep,α, decomposed according to (1.8):

fin = fin,WP + fin,IP + fin,⊥,

fin,WP(x, v) =

Å
ρ0in(x) + u0in(x) · v +

1

2
(|v|2 − d)θ0in(x)

ã
M(v).

We make the following additional assumptions depending on the spatial domain:

– In the case Ω = Td, we assume (ρ0in, u
0
in, θ

0
in) to be well-prepared, that is to

say ρ0in + θ0in = 0 and ∇x · u
0
in = 0. With the notations of Section 1.1.2, this

means Πfin = fin,WP, or equivalently fin,IP = 0. We also assume them to be
mean-free.

– In the case Ω = R2, we assume (ρ0in, u
0
in, θ

0
in) ∈ L1

x.

Let (ρ0, u0, θ0) be the unique solution to (INSF) on a time interval [0, T ) (in the
sense of Theorem 2) with initial data (ρ0in, u

0
in, θ

0
in), and define its kinetic counterpart

f 0(t, x, v) :=

Å
ρ0(t, x) + v · u0(t, x) +

1

2
(|v|2 − d)θ0in(t, x)

ã
M(v).

There exists some positive ε0 = ε0(fin, T ) such that
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– for any ε ∈ (0, ε0), the equation (Bε) has a unique solution

(1.17) f ε ∈ Cb ([0, T ); E
p,α) ∩ Lp ([0, T ); Ep,α

ν ) ,

– the solution splits as

f ε = f 0 + uε1 + uε∞ + uεac,

uε1(0) = fin,⊥, u
ε
∞(0) = 0, uεac(0) = fin,IP,

where uε1, u
ε
∞, u

ε
ac satisfy for some C, γ > 0 depending only on p, α and β

‖uε1(t)‖Ep,α ≤ Ce−γt/ε2‖fin,⊥‖Ep,α,(1.18)

lim
ε→0

Ç
sup

0≤t<T
‖uε∞(t)‖Eβ

å
= 0,(1.19)

uεac ⇀
∗ 0, in L∞

t E
β,(1.20)

furthermore, if Ω = Rd, then ‖uεac‖Lq
tW

s,∞
x (M−1/2〈v〉β) → 0 for any q > 2

d−1
.

– uεac = 0 if fin,IP = 0.

Remark 1.4. In the physically relevant case p = 1, we have α∗(1) = 3.

Remark 1.5. According to [34, Theorem 1], if the solution to (Bε) is bounded
in L∞

x L
1
v (〈v〉

3), the solution to (1.1) is non-negative if Fin is. This is indeed the
case since Ep,α ⊂ E1,3 whenever α > α∗(p), and E1,3 ⊂ L1

vL
∞
x (〈v〉3) ⊂ L∞

x L
1
v (〈v〉

3)
because s > d/2.

Remark 1.6. Let us make some comments on the assumptions made on the initial
data

– The mean-free assumption in the case of the torus is a compatibility condition
coming from the fact that if F ε =M+εf ε relaxes to the equilibrium M , then

∫

Rd×Td

f ε(t, x, v)

Ñ
1
v
|v|2

é
dvdx −−−→

t→∞

Ñ
0
0
0

é
,

and we recall that the following conservation laws hold:

∫

Rd×Td

f ε(t, x, v)

Ñ
1
v
|v|2

é
dvdx =

∫

Rd×Td

fin(x, v)

Ñ
1
v
|v|2

é
dvdx.

Thus, we need to assume

∫

Rd×Td

fin(x, v)

Ñ
1
v
|v|2

é
dvdx =

Ñ
0
0
0

é
.

– The well-preparedness assumption is made because in the case Ω = Td, the
acoustic waves generated by the ill-prepared part do not disperse.
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Remark 1.7. Suppose the initial data is smooth (i.e. Hs+1
x ). The part uε∞ vanishes

at a rate ε1/2, and if the macroscopic part of fin satisfies the incompressibility and
Boussinesq conditions (i.e. fin,IP = 0 and thus fin = fin,WP+fin,⊥) then u

ε
∞ vanishes

at a rate ε. Also, the accoustic part uεac is controled by εt
2

d−1 uniformly in (x, v).

1.3. Notations. We will use the following notations throughout the rest of this
paper. For any Banach spaces X and Y , we will denote B(X ; Y ) the set of bounded
linear operators from X to Y , and abbreviate B(X) when X = Y . The relation
denoted A . B is to be understood as A ≤ CB for some uniform constant C > 0.
Finally, we will denote the convolution f ∗g of maps f : [0,∞) → X , g : [0,∞) → Y
by

f ∗ g(t) =

∫ t

0

f(t− t′)g(t′)dt′

whenever the product f(t1)g(t2) makes sense. For instance, when f(t1) is an oper-
ator acting on the vector g(t2), or when both are operators and we consider their
composition. We introduce this definition so that, when the semigroup SL(t) = etL

generated by a linear operator L exists, the Duhamel principle applied to the evo-
lution equation

∂tu(t) = Lu(t) + v(t).

takes the simple form

u(t) = SL(t)u(0) + SL ∗ v(t)

In particular, when all terms make sense, the following factorization formula holds
for any linear operators L, P :

SL+P = SL + SL ∗ (PSL+P ) .

Furthermore, considering L = (L+ P )− P , one also has

SL = SL+P − SL+P ∗ (PSL) ,

and thus there holds

(1.21) SL+P = SL + SL ∗ (PSL+P ) = SL + SL+P ∗ (PSL) .

1.4. Main reductions. We use an idea from [7] and take advantage of the split-
ting of the linearized operator Lε = Bε + ε−2A introduced in [23] and recalled in
Section 2.1, where Bε+ λ/ε2 generates a C0-semigroup uniformly bounded in ε, and
there holds A ∈ B

(
Ep,α;Eβ

)
, for some p ∈ [1,∞] and positive α, λ, β. This allows

to decompose the unknown of (Bε) as f ε(t) = hε(t) + eε(t) ∈ Ep,α + Eβ where the
parts hε and eε satisfy the following system of coupled equations:

(1.22)





∂th
ε = Bεhε +

1

ε
Q (hε, hε) + 2ε−1Q (hε, eε) , hε|t=0 = fin,⊥,

∂te
ε = Lεeε + ε−1Q (eε, eε) +

1

ε2
Ahε, eε|t=0 = Πfin.

We will rewrite this system as a fixed point equation

Ξ(hε, eε) = (hε, eε)
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which will be solved using Banach’s contraction theorem. We thus need to define
properly Ξ on some product space X ×X and show contraction estimates for both
coordinates hε and eε. This means that we have to prove a priori estimates on both
equations, which will dictate our choice for X and X .

The equation on hε will be studied using an energy method (Lemma 2.6), which
requires coercivity estimates on Bε (Lemma 2.1) and bounds for Q (Lemma 2.4).

The equation on eε is — up to the coupling term ε−2Ahε — the same equation as
in [5, 17] posed in the same functional space. We thus use the same approach and
consider this equation in integral form:

eε = UεΠfin +Ψε (eε, eε) +
1

ε2
Uε ∗ Ahε,

where Ψε was defined in (1.15), so as to rely on previously established results.
Drawing inspiration from [17], the part eε will be constructed indirectly: we need
to identify a sub-part eε1 such that there holds eε = eε1 + gε, where gε → 0 in X as ε
goes to 0 and is what will actually be constructed during the fixed point argument.

– If one neglects the coupling term ε−2Uε ∗Ahε, previous works such as [5, 17]
suggest that eε should behave like f 0+Uε

dispfin, where f
0 is the unique smooth

solution to (KINSF) generated by fin,WP on some time interval [0, T ) (in the
sense of Theorem 2), and Uε

dispfin,IP = Uε
dispfin corresponds to acoustic waves

oscillating with a rate of order 1/ε (see Section 3.1 for the definition and
properties of Uε

disp).

– However, the coupling term ε−2Uε∗Ahε is not expected to vanish inX , which
will be (a weighted in time version of) L∞

t E
β, but satisfies (see Notations 4.6

for the definition of T ε
1 , T

ε
∞ and Lemma 4.7-4.8 for their respective estimates)

1

ε2
Uε ∗ Ahε = T ε

1 h
ε + T ε

∞h
ε,

∥∥T ε
q h

ε
∥∥
Lq
tE

β → 0, (ε → 0), q = 1,∞.

We therefore define the sub-part mentioned above as eε1 = f 0+Uε
dispfin+T ε

1 h
ε, thus

the pair (hε, gε) solves the system

(1.23)





∂th
ε = Bεhε +

1

ε
Q (hε, hε) +

2

ε
Q
(
hε, gε + f 0 + T ε

1 h
ε + Uε

dispfin
)
,

hε(0) = fin,⊥,

gε = Sε[hε] + Ψε(gε, gε) + Φε[hε]gε,

where we have denoted

Sε[hε] := Sε
0 +Ψε

(
T ε
1 h

ε + Uε
dispfin, 2f

0 + T ε
1 h

ε + Uε
dispfin

)
+ T ε

∞h
ε,

Sε
0 :=

(
Uε − Uε

disp − U0
)
Πfin +

(
Ψε −Ψ0

) (
f 0, f 0

)
,

Φε[hε] := 2Ψε
(
f 0 + T ε

1 [h
ε] + Uε

dispfin, ·
)
,

and we used the fact that Uε
disp = Uε

dispΠ (see Section 3.1). Note that fin, f
0 and T

are fixed so we do not indicate them in the notations above.
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1.5. Comparison with previous works. In [7], the authors considered the sys-
tem (1.22) in order to derive estimates on both parts uniformly in ε. They choose to
split the initial data as hε(0) = fin and eε(0) = 0, which allowed to rely on hypoco-
ercivity results from [6] valid for eε(0) small enough. Like in the present work, they

obtained the following control for the coupling term: ε−2Ahε(t) = O
Ä
ε−2e−λt/ε2

ä

which leads to a term of order O(1) in Gronwall estimates.
Here, we need to show that eε is not only bounded but converges strongly to f 0

as well when ε goes to zero. To this end, we use the integral formulation of the
equation on eε which allows to use the spectral study of the linearized operator Lε

led in such works as [14, 41, 18, 43], this is the approach used in [5, 17].
Note that if fin were purely macroscopic, then it would belong to Eβ and (1.22)

would reduce to the equation considered in [5, 17]. The latter differs from the
equation on eε in (1.22) by the coupling term ε−2Uε ∗Ahε, which may not be small
in L∞

t E
β, but is small in L∞

t E
β + L1

tE
β. This is made possible (1) by the splitting

of the initial data hε(0) = fin,⊥, (2) by generalizing some properties of Uε known
to hold in Eβ to the larger space Ep,α, using the theory of space enlargement from
[36, 35, 23].

1.6. Outline of the paper. In Section 2, we prove coercivity estimates for Bε and
bounds for Q which we use to prove the well-posedness of the following equation for
given source terms h and g

∂tf = Bεf +
1

ε
Q(h, h+ g).

In particular, we prove the stability estimate required for the mapping Ξ from Sec-
tion 1.4 to be a contraction.

In Section 3, we recall the spectral properties of L + εv · ∇x from [14, 41, 18,
17], which dictate the asymptotics of the semigroup Uε in some Gaussian space.
We then extend some asymptotic properties to polynomial spaces Ep,α using space
enlargement theory.

In Section 4, we prove the necessary estimates to solve

g = Ψε(g, g) + Φε[h]g + Sε[h]

for some unique small g when ε is small enough using a contraction argument. To be
more precise, we show that Ψε is uniformly bounded in ε, that Φε[h] is a contraction
with Lipschitz constant depending on a bound of h and for an equivalent norm
depending on f 0, and that Sε[h] vanishes as ε goes to zero.

2. Study in the polynomial space

2.1. Splitting of the linearized operator. In [23], the authors present a splitting
of the linearized Boltzmann operator L, defined as (1.11), in the form

L = Aδ + Bδ = −ν + Bδ +Aδ, δ ∈ (0, 1),
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and Aδ, Bδ are defined by

Aδf(v) :=

∫

Rd×Sd−1

Θδ (M
′
∗f

′ +M ′f ′
∗ −Mf∗) |v − v∗|dv∗dσ,

Bδf(v) :=

∫

Rd×Sd−1

(1−Θδ) (M
′
∗f

′ +M ′f ′
∗ −Mf∗) |v − v∗|dv∗dσ,

where we recall that ν is defined by (1.3), the notations v′, v′∗, g
′, g′∗, g∗ are defined

in Section 1.1.1, the function Θδ = Θδ(v, v∗, σ) is smooth, bounded by one on

{|v| ≤ δ−1, 2δ ≤ |v − v∗| ≤ δ−1, | cos θ| ≤ 1− 2δ},

and supported in

{|v| ≤ 2δ−1, δ ≤ |v − v∗| ≤ 2δ−1, | cos θ| ≤ 1− δ},

where cos θ := σ · (v − v∗)/|v − v∗|.

For any p ∈ [1,∞], α ≥ 0, β ≥ 0, and δ ∈ (0, 1), the operator Aδ is bounded
from Lp (〈v〉α) to L∞

(
〈v〉βM−1/2

)
as can be seen from Carleman’s representation:

Aδf(v) =

∫

Rd

kδ(v, v∗)f(v∗)dv∗,

where kδ ∈ C∞
c (Rd ×Rd) (see [23, (4.9)]). By its integral nature in v, it is clear that

(2.1) Aδ : E
p,α → Eβ

is also bounded. In the rest of the paper, we will be interested in the scaled version
of Bδ together with a transport term, which we denote

(2.2) Bε :=
1

ε2
(Bδ + εv · ∇x) .

Lemma 2.1. Let p ∈ [1,∞), there exists αB(p) > 2 such that for any α > αB(p),
if δ is small enough, Bδ is ν-bounded with relative bound less than one, and there
holds for any ε ∈ (0, 1) and h ∈ Ep,α

∫

Rd

〈Bεh, h〉Hs
x
‖h‖p−2

Hs
x
〈v〉pαdv ≤ −

σB(p, α)

ε2
‖h‖p

Ep,α
ν
,(2.3)

σB(p, α) = σB(p, α; δ) > 0,

where 〈·, ·〉Hs
x
denotes the usual inner product in Hs

x, and Ep,α
ν was defined in Nota-

tions 1.3.

Proof. In [23], the authors prove a control on Bδ in the space Ep,α by considering its
positive variant:

B̃δf(v) :=

∫

Rd×Sd−1

(1−Θδ) (M
′
∗f

′ +M ′f ′
∗ +Mf∗) |v − v∗|dv∗dσ,

so that one has by the triangle inequality

(2.4)
∥∥(Bδh)(v)

∥∥
Hs

x
≤

Å
B̃δ

(
‖h‖Hs

x

)ã
(v),
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and by proving the following estimate1 for any α > 2, where oδ(1) designates any
quantity that vanishes as δ → 0:

∥∥∥B̃δf
∥∥∥
Lp(〈v〉α)

≤ (φp(α) + oδ(1)) ‖νf‖Lp(〈v〉α),(2.5)

φp(α) :=
4

(α + 2)1/p(α− 1)1/p′
.

Let us now prove Lemma 2.1: by the definition of Bδ and the skew-adjointness
of v · ∇x in Hs

x for any v ∈ Rd, one has

∫

Rd

〈
Bδh+εv · ∇xh, h

〉
Hs

x
‖h‖p−2

Hs
x
〈v〉pαdv

= −‖h‖p
Ep,α
ν

+

∫

Rd

〈
Bδh, h

〉
Hs

x
‖h‖p−2

Hs
x
〈v〉pαdv

≤ −‖h‖p
Ep,α
ν

+

∫

Rd

‖Bδh‖Hs
x
‖h‖p−1

Hs
x
〈v〉pαdv.

Using (2.4) and denoting to lighten the notation g(v) := ‖ν1/ph(v)‖Hs
x
, we have

∫

Rd

‖Bδh‖Hs
x
‖h‖p−1

Hs
x
〈v〉pαdv

≤

∫

Rd

Ä
ν−1/p′B̃δν

−1/p
ä
(g)× gp−1〈v〉pαdv

≤
∥∥∥ν−1/p′B̃δν

−1/p
∥∥∥

B(Lp(〈v〉α))
‖g‖pLp(〈v〉α).

Using the estimate ν0〈v〉 ≤ ν(v) ≤ ν1〈v〉 and (2.5), one deduces that, under the
condition α > 2 + 1/p′, there holds

∥∥∥ν−1/p′B̃δν
−1/p

∥∥∥
B(Lp(〈v〉α))

=
∥∥∥ν−1/p′

Ä
B̃δν

−1
ä
ν1/q

∥∥∥
B(Lp(〈v〉α))

≤
∥∥∥ν−1/p′

∥∥∥
B(Lp(〈v〉α−1/p′);Lp(〈v〉α))

×
∥∥∥B̃δν

−1
∥∥∥

B(Lp(〈v〉α−1/p′))

×
∥∥ν1/p

∥∥
B(Lp(〈v〉α);Lp(〈v〉α−1/p′))

≤

Å
ν1
ν0

ã1/p′ Å
φp(α + 1/p′) + oδ(1)

ã
.

1This estimate is actually proved for Bδ in [23, (4.32)] , but as the authors point out in page 74,

the same estimate holds for B̃δ with the same proof.
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To sum up, we have shown
∫

Rd

〈Bεh, h〉Hs
x
‖h‖p−2

Hs
x
〈v〉pαdv

≤ −
1

ε2

Å
1−

Å
ν1
ν0

ã1/p′
φp(α + 1/p′) + oδ(1)

ã
‖h‖p

Ep,α
ν

=: −
σB(p, α)

ε2
‖h‖p

Ep,α
ν
.

The quantity σB(p, α) is positive as soon as α > αB(p) and δ is small enough, where
we defined

αB(p) := inf

®
α > 2 + 1/p′ :

Å
ν1
ν0

ã1/p′

φp(α + 1/p′) < 1

´
,(2.6)

which concludes the proof of the lemma. �

Remark 2.2. Note that the definition of σB(p, α) actually depends on the choice of δ,
but this does not make any difference in the rest of the paper as long as σB(p, α) =
σB(p, α; δ) > 0, so we do not mention it from now on as to lighten the notations.

Remark 2.3. The threshold αB(p) is monotonically increasing in p, and in the
cases p = 1 and p = ∞, this threshold is simply

αB(p) =




2, when p = 1,

1 + 4
ν1
ν0
> 5, when p = ∞.

2.2. A priori estimates. In this section, we present the estimates necessary to
the a priori study of the equation on hε in (1.23). We first prove a bound for the
collision operator Q (Lemma 2.4), define for functions t 7→ h(t) ∈ Ep,α a norm
which measures the exponential decay and moment gain induced by Bε in (1.23)
uniformly in ε reminiscent of the ones from [2, Section 5.1], and finally we give a
priori estimates for the equation on hε in (1.23) (Lemma 2.6).

This control on Q is inspired of [26, Lemma 2.3] in which the case p = 2 is treated
for hard potentials without cut-off.

Lemma 2.4. Let p ∈ [1,∞], there exists αQ(p) > 2 such that, for any α > αQ(p),
there exists some C = C(p, α) > 0 satifying

(2.7) ‖Q(f, g)‖Ep,α−1/p′ ≤ C (‖f‖Ep,α‖g‖Ep,α
ν

+ ‖f‖Ep,α
ν

‖g‖Ep,α) ,

and if p <∞,
∫

Rd

〈Q(f, g), h〉Hs
x
‖h‖p−2

Hs
x
〈v〉pαdv(2.8)

≤ C (‖f‖Ep,α‖g‖Ep,α
ν

+ ‖f‖Ep,α
ν

‖g‖Ep,α) ‖h‖p−1
Ep,α
ν
,
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Proof. In this proof, we denote q := p′ so as not to cause confusion with the pre-
collisional velocity notations v′, v′∗, and we define the threshold

αQ(p) := 2 +
d

q
.(2.9)

Step 1: Main reductions. First, note that the algebra structure of Hs
x implies

∣∣〈Q+(f(v), g(v)), h(v)〉Hs
x

∣∣ =
∣∣∣∣
∫

Rd

|v − v∗|〈f(v
′)g(v′∗), h(v)〉Hs

x
dv∗

∣∣∣∣

≤ ‖h(v)‖Hs
x

∫

Rd

|v − v∗|‖f(v
′)g(v′∗)‖Hs

x
dv∗

. ‖h(v)‖Hs
x
Q+
(
‖f(v)‖Hs

x
, ‖g(v)‖Hs

x

)
.

The same estimate holds for Q−, thus, denoting

F (v) := ‖f(v)‖Hs
x
, G(v) := ‖g(v)‖Hs

x
,

m(v) := 〈v〉α,

it is enough to prove
∣∣∣∣
∫

Rd

Q(F,G)Hmr dv

∣∣∣∣ ≤ C

Å
‖F‖Lp(〈v〉1/pm)‖G‖Lp(m)

+ ‖F‖Lp(m)‖G‖Lp(〈v〉1/pm)

ã∥∥Hmr−1〈v〉1/q
∥∥
Lq ,

where we recall the notation Lp(m) is defined in (1.16). Indeed, this control will
imply

– (2.7) for H(v) := ‖h(v)‖Hs
x
and r = 2, by duality,

– (2.8) for H(v) := ‖h(v)‖p−1
Hs

x
and r = p.

To do so, we only need to estimate the integral coming from Q−:
∣∣∣∣
∫

Rd

Q−(F,G)Hmrdv

∣∣∣∣ .
∫

|v − v∗||F∗||G||H|mrdvdv∗ =: I1,

and the one coming from Q+. For the latter, we use the following estimate from [1,
(2.1.15)]:

|m−m′| . sin

Å
θ

2

ãÇ
m′ + 〈v′∗〉 〈v

′〉
α−1

+ sin

Å
θ

2

ãα−1

m′
∗

å
,

where we recall the notations m′ := m(v′), m∗ := m(v∗) and m
′
∗ := m(v′∗). We will

use it under the simpler form

m . m′ + 〈v′∗〉〈v
′〉α−1 +m′

∗θ
α,
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which suggests the splitting
∣∣∣∣
∫

Rd

Q+(F,G)Hmrdv

∣∣∣∣ .
∫

|v − v∗||F
′
∗||G

′||H|m′mr−1dvdv∗dσ

+

∫
|v − v∗||F

′
∗||G

′||H|〈v′∗〉〈v
′〉α−1mr−1dvdv∗dσ

+

∫
|v − v∗||F

′
∗||G

′||H|θαm′
∗m

r−1dvdv∗dσ

=:I2 + I3 + I4.

Step 1: Estimating I1 and I3. We start by using the fact that

|v − v∗| ≤ 〈v〉〈v∗〉 ≤ 〈v〉1/p〈v〉1/q〈v∗〉,

which implies the following for I1:

I1 .

∫ Ä
|G|m〈v〉1/p

ä Ä
|H|mr−1〈v〉1/q

ä
dv

∫
|F∗|〈v∗〉dv∗

. ‖G‖Lp(m〈v〉1/p)

∥∥Hmr−1〈v〉1/q
∥∥
Lq ‖F‖L1(〈v〉)(2.10)

where we used Hölder’s inequality in the last line. We deal with I3 in a similar
fashion, using |v − v∗| = |v′ − v′∗| =≤ 〈v′∗〉〈v

′〉, which yields this time

I3 . ‖G‖Lp(m〈v〉1/p)
∥∥Hmr−1

∥∥
Lq ‖F‖L1(〈v〉2).

Step 2: Estimating I2. We use the following identity, which is a direct consequence
of (1.2)

|v − v∗| = |v′ − v′∗| =

…
1− cos θ

2
|v − v′∗|

and thus

|v − v∗| ≤ |v′ − v′∗|
1/p|v − v′∗|

1/q ≤ 〈v′〉1/p〈v〉1/q〈v′∗〉.

From this and Hölder’s inequality, we get the following control on I2:

I2 ≤

ï∫ Å
〈v′∗〉

1/p|F ′
∗|

1/p|G′|〈v′〉1/pm′

ãp

dvdv∗dσ

ò1/p

×

ï∫ Å
〈v′∗〉

1/q|F ′
∗|

1/q|H|〈v〉1/qmr−1

ãq

dvdv∗dσ

ò1/q
.

Using the change of variables (v, v∗) 7→ (v′, v′∗) in the first integral and v∗ 7→ v′∗ in
the second, whose respective Jacobian determinants are

∣∣∣∣
d(v, v∗)

d(v′, v′∗)

∣∣∣∣ = 1,

∣∣∣∣
dv′∗
dv∗

∣∣∣∣ =
1 + cos θ

8
,
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we obtain the estimate

I2 ≤

ï∫ Å
〈v∗〉

1/p|F∗|
1/p|G|〈v〉1/pm

ãp

dvdv∗

ò1/p

×

ï∫ Å
〈v∗〉

1/q|F∗|
1/q|H|〈v〉1/qmr−1

ãq

dvdv∗dσ

ò1/q
.

We conclude that I2 satisfies (2.10) using again Hölder’s inequality on each integral.

Step 3: Estimating I4. We use this time the bound

|v′ − v| =

…
1− cos θ

2
|v − v∗| . θ−1|v − v∗|,

which yields

|v′ − v| . θ−1/q|v − v′|1/q|v′ − v′∗|
1/p . θ−1/q〈v′〉〈v′∗〉

1/p〈v〉1/q.

Plugging this estimate in I4, we get

I4 .

∫
θα−(1+1/q) (〈v〉|g|)′

Ä
|F |m〈v〉1/p

ä′
∗

Ä
|H|mr−1〈v〉1/q

ä
dvdv∗dσ

.

(∫
θα−(1+1/q) (〈v〉|g|)′

ï Ä
|F |m〈v〉1/p

ä′
∗

òp
dvdv∗dσ

)1/p

×

(∫
θα−(1+1/q) (〈v〉|G|)′

Ä
|H|mr−1〈v〉1/q

äq
dvdv∗dσ

)1/q

where we used Hölder’s inequality. Using then (v, v∗) 7→ (v′, v′∗) in the first integral

and v′ 7→ v∗ in the second one, which is such that

∣∣∣∣
dv∗
dv′

∣∣∣∣ . θ−2, one gets

I4 . ‖G‖
1/p

L1(〈v〉)‖F‖Lp(m〈v〉1/p) ×

(∫
θα−(3+1/q) (〈v〉|G|)′

Ä
|H|mr−1〈v〉1/q

äq
dvdv′dσ

)1/q

.

Recall that θ is the angle formed by (v − v∗, σ), we have to replace it by the an-
gle ψ formed by (v− v′, σ) before rewriting the previous integral factor in spherical
coordinates. The following relations hold:

ψ =
π − θ

2
, cosψ =

v − v′

|v − v′|
· σ.

We then bound I4 as

I4 .

Å∫
(π − 2ψ)α−(3+1/q) sinψd−2dψ

ã
× ‖G‖L1(〈v〉)‖F‖Lp(m〈v〉1/p)

∥∥Hmr−1〈v〉1/q
∥∥
Lq



20 PIERRE GERVAIS

Because of the assumption on α, we have α− (3+ 1/q) > −1, therefore the integral
factor is finite. Finally, we have that, for some positive C0 = C0(α),

Ij ≤ C0‖G‖Lp(m〈v〉1/p)

∥∥Hmr−1〈v〉1/q
∥∥
Lq ‖F‖L1(〈v〉2)

≤ C0‖〈v〉
(2−α)q‖

1/q

L1 ‖G‖Lp(m〈v〉1/p)

∥∥Hmr−1〈v〉1/q
∥∥
Lq ‖F‖Lp(m).

The conclusion follows with C = C0‖〈v〉
(2−α)q‖

1/q

L1 , which is finite because the as-
sumption on α implies (2− α)q < −d. �

We now prove the a priori estimates for the equation on hε from (1.23), but first
let us introduce a norm which measures the exponential decay and the moment gain
induced by Bε.

Notations 2.5. For any p ∈ [1,∞], α > αB, σ ∈
(
0, σB

)
and ε ∈ (0, 1), where αB

and σB are defined in Lemma 2.1, denote the functional spaces

X p,α,σ
ε = Cb ([0, T ); E

p,α) ∩ Lp ([0, T ); Ep,α
ν ) ,

where Cb is defined in Notations 1.3, T in Section 1.4, and endowed with the norm

‖h‖p
X p,α,σ

ε
:= sup

0≤t≤T

(
1

p

Ä
eσt/ε

2

‖h(t)‖Ep,α

äp
+
σB − σ

ε2

∫ t

0

Ä
eσt

′/ε2‖h(t′)‖Ep,α
ν

äp
dt′

)
,

if p <∞, and

‖h‖X∞,α,σ
ε

:= sup
0≤t≤T

∥∥∥eσt/ε2h(t)
∥∥∥
E∞,α

otherwise.

Lemma 2.6. Let α > max{αB, αQ}, σ ∈ (0, σB), β ≥ 0. For any h ∈ L∞ ([0, T ); Ep,α)∩
Lp ([0, T ); Ep,α

ν ) and g ∈ L∞([0, T );Eβ), the evolution equation



∂th = Bεh+

1

ε
Q(h, h) +

1

ε
Q(h, g),

h(0) ∈ Ep,α,

has a unique solution h ∈ X p,α,σ
ε . Furthermore, it satisfies for some C = C(p, α, β)

(2.11)
∥∥h
∥∥
X p,α,σ

ε
≤ Cε ‖h‖X p,α,σ

ε

Å
‖h‖X p,α,σ

ε
+ ‖g‖L∞

t Eβ

ã
+ ‖h(0)‖Ep,α,

as well as the stability estimate for any pair of solutions h1, h2 and corresponding
source terms h1, g1, h2, g2:

∥∥h1 − h2
∥∥
X p,α,σ

ε
≤Cε ‖h1 − h2‖X p,α,σ

ε

Å
‖h1 + h2‖X p,α,σ

ε
+ ‖g1‖L∞

t Eβ

ã

+ Cε ‖h2‖X p,α,σ
ε

‖g1 − g2‖L∞
t Eβ + ‖h1(0)− h2(0)‖Ep,α.(2.12)

Proof. We will denote in this proof Xε = X p,α,σ
ε , E = Ep,α, Eν = Ep,α

ν to lighten the
notations. As the constant C in Lemma 2.4 is such that lim supp→∞C(p, α) <∞, it
is enough to assume p <∞ first and conlude the case of p infinite by letting p→ ∞.
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We will only prove (2.11) because the stability estimate (2.12) comes from similar
calculations.

We start by assuming p <∞. Applying (2.3) to the identity

d

dt

Å
‖h‖pE

ã
= p

∫

Rd

〈
∂th, h

〉
Hs

x
‖h‖p−2

Hs
x
〈v〉pαdv,

we obtain the differential inequality

d

dt

Å
1

p
‖h‖pE

ã
+
σB
ε2

‖h‖pEν

≤
1

ε

∫

Rd

〈
Q(h, h) +Q(h, g), h

〉
Hs

x
‖h‖p−2

Hs
x
〈v〉pαdv

≤
C

ε

ï
‖h‖E‖h‖Eν + ‖h‖Eν‖g‖E + ‖h‖E‖g‖Eν

ò
‖h‖p−1

Eν
,

where we used Lemma 2.4, from which the constant C = C(p, α) is from and satisfies
lim supp→∞C(p, α) <∞. Multiplying both sides by exp(tpσ/ε2) (recall σ ∈ (0, σB))

and using the continuous inclusion Eβ ⊂ E , we get

d

dt

Å
1

p
eσpt/ε

2

‖h‖pE

ã
+
σB − σ

ε2
eσpt/ε

2

‖h‖pEν

≤
C

ε
(‖h‖E + ‖g‖Eβ)

Ä
eσt/ε

2

‖h‖Eν
ä Ä
eσt/ε

2

‖h‖Eν
äp−1

.

Integrating and using Hölder’s inequality with the exponents
Ä
∞, p, p

p−1

ä
, one gets

∥∥h
∥∥p
Xε

≤
C

ε

Å
‖h‖Xε

+ ‖g‖L∞
t Eβ

ã
× sup

0≤t≤T

®Å∫ t

0

Ä
eσt

′/ε2‖h(t′)‖Eν
äp

dt′
ã1/p

×

Å∫ t

0

Ä
eσt

′/ε2‖h(t′)‖E
äp

dt′
ãp−1

p

}
,

from which we deduce
∥∥h
∥∥p
Xε

≤
C

ε

Å
‖h‖Xε

+ ‖g‖L∞
t Eβ

ã (
ε2 ‖h‖pXε

)1/p Ä
ε2
∥∥h
∥∥p
Xε

äp−1
p

≤ Cε

Å
‖h‖Xε

+ ‖g‖L∞
t Eβ

ã
‖h‖Xε

∥∥h
∥∥p−1

Xε
.

This concludes the proof. �

3. Bounds and asymptotics of the semigroup

In this section, we establish integrability properties and asymptotics on the semi-
group Uε, necessary to prove the vanishing of the coupling term ε−2Uε ∗ Ahε

in L1
tE

β + L∞
t E

β (Lemmas 4.7-4.8) and the vanishing of the source term Sε[hε]
from (1.23) (Lemma 4.10). This will require to generalize some estimates proved
in [17, 5] in Eβ to the larger space Ep,α. To do so, we draw inspiration from the
factorization techniques used in [5, Section 5], using this time the splitting of the



22 PIERRE GERVAIS

linearized operator L recalled in Section 2.1. For the sake of completeness, we prove
some results already present in [5, 17].

3.1. The eigenprojectors and partial semigroups on the Gaussian space.

Let us first recall the spectral study originally led in [14] for hard cutoff potentials in
the space L2

(
M−1/2

)
. We also mention the founding paper [37] which has initiated

the study of the spectrum of the linearized Boltzmann operator, and such works as
[18, 43, 39] in which these results were partially generalized.

For a family of operator (T (ξ))ξ∈Rd acting on the v-variable, we define the Fourier
multipliers T (D) acting on functions u = u(x, v) by

÷T (D)u(ξ, v) :=

Å
T (ξ)û(ξ, ·)

ã
(v),

where u 7→ û represents the Fourier transform with respect to the variable x ∈ Ω.
Note that such operators commute with D = −i d

dx
and any Fourier multiplier f(D).

Spectral decomposition and expansions in Fourier space. According to
[18, Theorems 1 and 2], there exist r > 0 (which can be assumed as small as
necessary) and a = a(r) ∈ (0, ν0), where ν0 was presented in Section 1.1.1, a family

of projectors
Ä
P

(ℓ)
♭,j (ξ)

ä
ξ∈Rd

uniformly bounded in B
(
L2
v

(
M−1/2

))
, complex numbers

(λj(ξ))ξ∈Rd, and closed operators (L♯(ξ))ξ∈Rd in C
(
L2
v

(
M−1/2

))
, with j = −1, . . . , 2

and ℓ = 0, 1, 2, such that the following spectral decomposition holds in Fourier space
for any ξ ∈ Rd:

L+ iv · ξ =
2∑

j=−1

λj(ξ)P♭,j(ξ) + L♯(ξ),(3.1)

P♭,jL♯ = L♯P♭,j = P♭,jP♭,k = 0, j 6= k,(3.2)

and the operator L♯(ξ)+a generates a bounded C0-semigroup, uniformly in ξ. These
eigenprojectors and eigenvalues expand around ξ = 0:

λj(ξ) = λ
(1)
j |ξ|+ λ

(2)
j |ξ|2 +O(|ξ|3), λ

(1)
j ∈ iR, λ

(2)
j < 0,(3.3)

P♭,j(ξ) = P
(0)
♭,j

Ä
ξ̃
ä
+ |ξ|P

(1)
♭,j (ξ) , ξ̃ :=

ξ

|ξ|
,(3.4)

and the zeroth order eigenprojectors sum to the L2
v(M

−1/2) orthogonal projection
on the null space of L:

(3.5) Π =

2∑

j=−1

P
(0)
♭,j

Ä
ξ̃
ä
.

In [18], the projectors P♭,j(ξ) and eigenvalues λj(ξ) are actually defined for small
frequencies |ξ| ≤ r, we assume here for simplicity that they are defined for any ξ ∈ Rd

but vanish for |ξ| > r, and we denote χ the characteristic function of {|ξ| ≤ r}.
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Transposition to the physical space. Let us denote by H the following weighted
Sobolev space:

(3.6) H := L2
vH

s
x

Ä
M−1/2

ä
= Hs

xL
2
v

Ä
M−1/2

ä
,

endowed with the norm

‖f‖2H =

∫

Rd×Rd

∣∣∣f̂(ξ, v)
∣∣∣
2

〈ξ〉2sM−1(v)dvdξ, if Ω = R
d,

‖f‖2H =
∑

ξ∈Zd

〈ξ〉2s
∫

Rd

∣∣∣f̂(ξ, v)
∣∣∣
2

M−1(v)dv, if Ω = T
d.

Following the previous spectral decomposition in Fourier space, we define for the
scaled linearized operator ε−2 (L+ iεv · ξ) the approximate hydrodynamic projector
and associated partial semigroup:

Pε
♭ :=

2∑

j=−1

P♭,j(εD),(3.7)

Uε
♭ := UεPε

♭ = Pε
♭U

ε =

2∑

j=−1

exp
(
tλj(εD)/ε2

)
P♭,j(εD).(3.8)

Since the operator L is non-positive on L2
v

(
M−1/2

)
(see [42, Proposition 2.11])

and v · ∇x is skew-adjoint in Hs
x for any v ∈ Rd, the scaled linearized opera-

tor ε−2 (L+ εv · ∇x) is non-positive and thus Uε is a contraction semigroup on H .

We deduce by the uniform bounds on P
(ℓ)
♭,j (ξ) that for some C > 0

‖Pε
♭‖B(H) ≤ C,

‖Uε
♭ (t)‖B(H) ≤ C.(3.9)

We also define the complementary projector and partial semigroup:

Pε
♯ := Id−Pε

♭ ,

Uε
♯ := UεPε

♯ = Pε
♯U

ε = exp
(
tL♯(εD)/ε2

)
.

By the boundedness of Pε
♭ and the fact that L♯(D) + a generates a bounded C0

semigroup on H , we may also assume that the constant C is such that
∥∥Pε

♯

∥∥
B(H)

≤ C,
∥∥Uε

♯ (t)
∥∥

B(H)
≤ Ce−at/ε2.(3.10)

Asymptotic behavior of U ε

♭
. The coefficients in the expansion of the scaled eigen-

values λj(ξ) and the corresponding eigenmodes indicate (see [14, 18], [17, Proposition
A.3] and [42, Remark 2.2.12]) that, for j = 0, 2, the eigenvalues correspond to the
diffusion terms in (INSF), and the projectors to the corresponding subspaces of
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macroscopic distributions

Å
ρ(x) + u(x) · v + 1

d
(|v|2 − d)

ã
M(v):

ε−2λ0(εD) ≈ −λ
(2)
0 ∆x = κ∆x,

P♭,0 (εD) ≈ P
(0)
♭,0

Ä‹D
ä
= H-orthogonal projection on ρ+ θ = 0,

ε−2λ2(εD) ≈ −λ
(2)
2 ∆x = µ∆x,

P♭,2 (εD) ≈ P
(0)
♭,2

Ä‹D
ä
= H-orthogonal projection on ∇x · u = 0,

where we recall that µ and κ are respectively the kinematic viscosity and thermal

conductivity of the fluid represented by M , and ‹D is the pseudodiferential operator

associated witjh the symbol ξ̃ = ξ/|ξ|. This means that P
(0)
♭,0

Ä‹D
ä
+ P

(0)
♭,2

Ä‹D
ä
is the

projector on well-prepared distributions defined in (1.9), and also that we have the
following expression for the semigroup of the incompressible Navier-Stokes-Fourier
system in its kinetic formulation (KINSF), presented in [5]:

U0(t) := eκt∆xP
(0)
♭,0

Ä‹D
ä
+ eµt∆xP

(0)
♭,2

Ä‹D
ä
,(3.11)

Ψ0(t)(f, g) :=

∫ t

0

U0 (t− t′)
Ä
P

(1)
♭,0

Ä‹D
ä
+ P

(1)
♭,2

Ä‹D
ää
Q (f(t′), g(t′)) dt′.(3.12)

Similarly, for j = ±1, denoting c the speed of sound in the gas represented by M ,
we have the following asymptotics:

ε−2λ±1(εD) ≈± i
c

ε
|D|+ κ∆x,

P
(0)
♭,1

(
εD
)
+ P

(0)
♭,−1 (εD) ≈P

(0)
♭,1

(‹D)+ P
(0)
♭,−1

Ä‹D
ä

=H-orthogonal projection on

ill-prepared macro. distributions.

We define the semigroup Uε
disp corresponding to these acoustic waves through

(3.13) Uε
disp(t)e

−tκ∆x := eit
c
ε
|D|P

(0)
♭,1

Ä‹D
ä
+ e−it c

ε
|D|P

(0)
♭,−1

Ä‹D
ä
,

so as to highlight the presence of the wave operator. Using the notations of Sec-
tion 1.1.2, the orthogonality relation (3.2) implies that

U0Uε
disp = Uε

dispU
0 = 0,

U0f = U0fin,WP, U
ε
dispf = Uε

dispfin,IP(3.14)

These hydrodynamic semigroups U0 and Uε
disp were shown in [5] to drive the dy-

namics of Uε
♭ , which is made explicit by this next lemma adapted from [17, Lemma

3.5]

Lemma 3.1. For any β > d/2 and f ∈ Eβ, there holds

lim
ε→0

Å
sup
t≥0

〈t〉1/2
∥∥∥∥
Å
Uε
♭ (t)− U0(t)− Uε

disp(t)

ã
Πf

∥∥∥∥
Eβ

ã
= 0.
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Proof. Recalling that Uε
♭ = Uε − Uε

♯ (our notations are consistent with [17]), this
lemma comes simply from a density argument applied to [17, Lemma 3.5, (3.12)-
(3.13)] which we explain for clarity. This is possible because of the finite-dimensional
(in v) nature of Πf :

(3.15) Πf(x, v) =

Å
ρf(x) + uf(x) +

1

2

(
|v|2 − d

)
θf (x)

ã
M(v),

where ρf , uf , θf areH
s
x functions and thus can be approximated by smooth functions.

�

Let us also recall that the authors of [5] proved that Ψε(f, g) → Ψ0(f, g) in a
weaker topology than that of L∞

t E
β, and those of [17] proved it when f = g = f 0

by using the properties of the limit system (INSF), we cite [17, Lemma 4.1] here

Lemma 3.2. For any β > d/2 + 1, there holds

lim
ε→0

Å
sup

0≤t<T
χΩ(t)

∥∥Ψε(f 0, f 0)−Ψ0(f 0, f 0)
∥∥
Eβ

ã
= 0,

where χΩ(t) = 〈t〉1/4 if Ω = R2, and χΩ(t) = 1 otherwise.

Finally, the acoustic part was shown in [17] to be bounded, decay for large times,
and vanish in a weaker topology when the domain Ω is the whole space, as explained
by this lemma.

Lemma 3.3. For any β > d
2
, there exists C > 0 such that

‖Uε
disp(t)f‖Eβ ≤ C‖f‖Eβ ,(3.16)

〈t〉d/4‖Uε
disp(t)f‖Eβ ≤ C

(
‖f‖L2

vL
1
x(M−1/2) + ‖f‖Eβ

)
,(3.17)

furthermore, if Ω = Rd and f is a Schwartz function, there holds for some Cf > 0

(3.18) ‖Uε
disp(t)f‖L∞

v W s,∞
x (〈v〉βM−1/2) ≤ Cf

(ε
t

)d−1
2

.

Note that the estimate (3.16) comes from (3.13) and the fact that P
(0)
♭,±1

Ä‹D
ä
f is

a linear combination of functions of the formÅ∫
Rd

〈f(v∗, ·), g〉Hs
x
P1(v∗)M(v∗)dv∗

ã
P2M

for some polynomials P1, P2 and g ∈ Hs
x. The estimate (3.17) is [17, (3.25)],

and (3.18) is a direct consequence of the last estimate of [17, p. 587].

3.2. Spectral properties on the polynomial spaces. We now extend some of
the properties of Uε

♭ proved on B(H) in [17] to B
(
Ep,α;Eβ

)
. This will be made

possible using factorization techniques with the Gualdani-Mischler-Mouhot decom-
position L = A+ B and Grad’s decomposition (see [22, 42]):

(3.19) L = −ν +K
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Figure 1. Spectrum of 1
ε2
(L+ εv · ∇x)

0

iR

λ+1(εξ)/ε
2

λ−1(εξ)/ε
2

λ0(εξ)/ε
2

− a

ε2
+ iR−ν0

ε2
+ iR

λ2(εξ)/ε
2

The blue part corresponds to (INSF). The red part, which gets closer to the
imaginary axis as ε→ 0, corresponds to the acoustic waves. The hatched part may

contain spectral values, and the solid part is included in the spectrum.

where ν was defined by (1.3), and K satisfies the following regularization property:

(3.20) ∀β ≥ 0, K ∈ B
(
H ;E0

)
∩ B

(
Eβ;Eβ+1

)
.

As a first step, we will study operators Rε
j and Rε

j (Lemmas 3.4 and 3.6) which
appear in factorization formulas ((3.27) and (3.31)) for P♭,j(εD), this will allow
to prove boundedness properties (Lemma 3.5 and 3.7) for the coefficients in the
expansion (coming from (3.3))

P♭,j(εD) = P
(0)
♭,j

Ä‹D
ä
+ ε|D|P

(1)
♭,j (εD).

These properties will be used to prove bounds and asymptotics on Uε
♭ and Uε

♯ (Lem-
mas 3.8-3.10).

We recall that αB,A,B,B
ε were defined in Section 2.1, and that

Bε =
1

ε2
(B + ε · ∇x) .

Lemma 3.4. For any p ∈ [1,∞], α > αB, j = −1, . . . , 2, the following operator is
well-defined and bounded uniformly in ε ∈ (0, 1):

Rε
j :=

1

ε2
A
(
ε−2λj(εD)− Bε

)−1
χ(εD) ∈ B (Ep,α;H) ,

where the inverse is to be understood on the range χ(εD)Ep,α. It expands as

Rε
j = −AB−1 + ε|D|Rε,1

j ,

with Rε,1
j ∈ B(Ep,α;H) uniformly in ε ∈ (0, 1), and every term commutes with D.
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Proof. In this proof, we drop the subscript j and denote

Ep,α
r/ε := χ(εD)Ep,α =

ß
f ∈ Ep,α : f̂(ξ) = 0 if ε|ξ| > r

™
,

T ε := εv · ∇x − λ(εD),

so that the regularizing operator rewrites

(3.21) Rε = −A (B + T ε)−1 χ(εD).

In the two first steps, we will prove the following properties:

Bν−1 is invertible on Ep,α
r/ε and its inverse is bounded by c > 0,(3.22)

∥∥T εν−1
∥∥

B

Ä
Ep,α
r/ε

ä ≤
1

2c
,(3.23)

T ε = ε|D|T ε,1 and
∥∥T ε,1ν−1

∥∥
B

Ä
Ep,α
r/ε

ä ≤ c,(3.24)

and then use them in a third step to prove the lemma.

Step 1: Proof of (3.22). According to [23, (4.33)], B − ν is ν-bounded with relative
bound less that 1 (see Lemma 2.1), thus,

Bν−1 = Id + (B − ν)ν−1,

which implies (3.22) because ‖(B − ν) ν−1‖
B

Ä
Ep,α
r/ε

ä < 1.

Step 2: Proof of (3.23) and (3.24). By (3.3), T εν−1 is a Fourier multiplier in x
whose symbol is of the form

−iεξ ·
v

ν
−
λ(1)

ν
ε|ξ|+O

Å
ε2|ξ|2

ν

ã

= ε|ξ|

Ç
ξ̃ ·

v

ν
−
λ(1)

ν
+O (ε|ξ|)

å
,

so there holds indeed

T ε = ε|D|T ε,1.

Furthermore, on Ep,α
r/ε , we have by definition ε|ξ| ≤ r, it is then clear that the

operators T εν−1 and T ε,1ν−1 are bounded on Ep,α
r/ε uniformly in ε ∈ (0, 1). Finally,

up to a reduction of r, there also holds ‖T εν−1‖
B

Ä
Ep,α
r/ε

ä ≤ 1/2c.

Step 3: Proof of the lemma. Because of assumptions (3.22) and (3.23), the following
operator is well-defined on Ep,α

r/ε and bounded by 1/2ν0:

(B + T ε)−1 = ν−1
(
Bν−1 + T εν−1

)−1

Combined with (3.21) and the regularization property (2.1), this yields the bound-
edness property Rε ∈ B (Ep,α;H) uniformly in ε ∈ (0, 1). Let us now tun to its
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expansion; there holds on Ep,α
r/ε :

(B + T ε)−1 = B−1 + B−1
(
T εν−1

) (
Bν−1 + T εν−1

)−1

= B−1 + ε|D|B−1
(
T ε,1ν−1

) (
Bν−1 + T εν−1

)−1

=: B−1 + ε|D|Sε,

where Sε ∈ B(Ep,α
r/ε ) uniformly in ε ∈ (0, 1). We deduce that

Rε = −A (B + T ε)−1 χ(εD)

= −ABχ(εD) + ε|D|Sεχ(εD)

= −AB + ε|D|Rε,1,

where we let

Rε,1 := Sεχ(εD) + (ε|D|)−1 (Id − χ(εD))AB−1,

which is a bounded operator in virtue of the inequality 1− χ(εξ) ≤ ε|ξ|/r.
�

Lemma 3.5. For any p ∈ [1,∞] and α > αB, there exists C > 0 such that

‖P♭,j(εD)f‖H ≤ C‖f‖Ep,α,(3.25)
∥∥∥P(1)

♭,j (εD)f
∥∥∥
H
≤ C‖f‖Ep,α.(3.26)

where we recall that H = L2
vH

s
x

(
M−1/2

)
.

Proof. From the relations (3.1)-(3.2) and the splitting Lε = ε−2A+ Bε, there holds

P♭,j(εD)Lε = P♭,j(εD)ε−2λj(εD) = P♭,j(εD)
(
ε−2A+ Bε

)
,

which can be rearranged as

P♭,j(εD)
(
ε−2λj(εD)− Bε

)
= ε−2P♭,j(εD)A,

and thus the following factorization formula holds:

(3.27) P♭,j(εD) = P♭,j(εD)Rε
j ,

where Rε
j is that of Lemma 3.4. Thanks to the boundeness of Rε

j proved in
Lemma 3.4, and the boundedness P♭,j(εD) ∈ B(H) recalled in the beginning of the
section, we deduce that, uniformly in ε ∈ (0, 1), there holds P♭,j(εD) ∈ B (Ep,α;H).

Furthermore, injecting the expansion from Lemma 3.4 and the one of P♭,j(εD)
in (3.27), we get

P♭,j(εD) = −P
(0)
♭,j

Ä‹D
ä
AB−1

+ ε|D|

Å
P

(1)
♭,j (εD)Rj + P

(0)
♭,j

Ä‹D
ä
Rε,1

j

ã
,

and thus, identifying the first order coefficient, we have

P
(1)
♭,j (εD) = P

(1)
♭,j (εD)Rε

j + P
(0)
♭,j

Ä‹D
ä
Rε,1

j .
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Since P
(1)
♭,j (εD) ∈ B(H) uniformly in ε, we conclude that P

(1)
♭,j (εD) ∈ B(Ep,α;H)

uniformly in ε ∈ (0, 1) thanks to Lemma 3.4.
�

Lemma 3.6. For any j = −1, . . . , 2, the following operator is well-defined:

Rε
j := K (λj(εD)− ν + εv · ∇x)

−1 χ(εD),

furthermore, it expands as

Rε
j = −Kν−1 + ε|D|Rε,1

j ,

where each term commutes with D and for any β ≥ 0, we have,

Rε
j , R

ε,1
j ∈ B

(
H ;E0

)
∩ B

(
Eβ;Eβ+1

)
,

uniformly in ε ∈ (0, 1).

Proof. This result can be proved in the same way as was Lemma 3.4, but using
Grad’s decomposition (3.19) and the role of A (resp. B) is replaced by K (resp. ν).

�

Lemma 3.7. For any p ∈ [1,∞], β ≥ 0, α > αB, there exists C > 0 such that

‖P♭,j(εD)f‖Eβ ≤ C‖f‖Ep,α,(3.28)
∥∥∥P(1)

♭,j (εD)f
∥∥∥
Eβ

≤ C‖f‖Ep,α,(3.29)

in particular, we have thanks to (3.7) that

(3.30) ‖Pε
♭f‖Eβ ≤ C‖f‖Ep,α.

Proof. First, note that by Lemma 3.6, there holds

(Rε
j)

1+β = (−Kν−1)1+β + ε|D|R̃ε
j ∈ B

(
H ;Eβ

)
,

R̃ε
j ∈ B

(
H ;Eβ

)
,

uniformly in ε ∈ (0, 1). One shows a factorization formula in the spirit of (3.27),
which iterated gives

(3.31) P♭,j(εD) =
(
Rε

j

)1+β
P♭,j(εD).

We get (3.28) by combining the bound of (Rε
j)

1+β and (3.25). Let us now inject the

expansion of (Rε
j)

1+β and P♭,j(εD) in the previous relation:

P♭,j(εD) =
Ä
(−Kν−1)1+β + ε|D|R̃ε

j

ä Ä
P

(0)
♭,j

Ä‹D
ä
+ ε|D|P

(1)
♭,j (εD)

ä

=(−Kν−1)1+βP
(0)
♭,j

Ä‹D
ä

+ ε|D|
Ä
(−Kν−1)1+βP

(1)
♭,j (εD) + R̃ε

jP♭,j (εD)
ä
,

which leads to the identification

P
(1)
♭,j (εD) = (−Kν−1)1+βP

(1)
♭,j (εD) + R̃ε

jP♭,j (εD) ,

where we have

(3.32)
(
Rε

j

)1+β
P♭,j(εD) = P♭,j(εD) ∈ B

(
H ;Eβ

)
.
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uniformly in ε ∈ (0, 1). Once again, we get (3.29) by combining the bound of R̃ε
j

and (−Kν−1)1+β =
(
Rε

j

)
|ε=0

with (3.26).

�

Corollary 3.8. For any p ∈ [1,∞], β > d/2 and α > αB, there exists C = C(p, α, β)
such that

‖Uε
♭ (t)f‖Eβ ≤ C‖f‖Ep,α,(3.33)

‖Uε
♯ (t)f‖Eβ ≤ Ce−at/ε2‖f‖Eβ .(3.34)

Proof. Estimate (3.33) comes from the combination of (3.9) with (3.30). To get
estimate (3.34), we apply the Duhamel formula (1.21) to Grad’s decomposition
(3.19):

Uε = Sε +
1

ε2
Sε ∗KUε,

where we denoted

Sε(t)h(x, v) := exp
(
ε−2t(−ν + εv · ∇x)

)
h(x, v)

= e−
ν(v)t

ε2 h(x− vt, v).(3.35)

Compose from the right with Pε
♯ to get by the definition of Uε

♯

Uε
♯ = SεPε

♯ +
1

ε2
Sε ∗KUε

♯ .

Note that in both cases X = H or Eγ (where γ ≥ 0), we have thanks to (1.4)

‖Sε(t)‖
B(X) . exp

Å
−
ν0t

ε2

ã
,

which implies in particular

1

ε2

∫ ∞

0

‖Sε(t)‖
B(X) dt .

1

ε2

∫ ∞

0

e−ν0t/ε2dt . 1,

‖Sε(t)‖
B(X) . 1.

Combined with the regularization property (3.20), we get

‖Uεf‖L∞
t E0 . ‖Sεf‖L∞

t E0 +
1

ε2

∫ t

0

‖Sε(t− t′)‖
B(E0)

∥∥Uε
♯ (t

′)f
∥∥
L∞
t H

dt′

. e−ν0t/ε2 ‖f‖E0 +
1

ε2

∫ t

0

e−ν0(t−t′)/ε2
∥∥Uε

♯ (t
′)f
∥∥
L∞
t H

dt′,

and also for any γ ≥ 0

∥∥Uε
♯ (t)f

∥∥
L∞
t Eγ+1 . ‖Sε(t)f‖Eγ+1 +

1

ε2

∫ ∞

0

‖Sε(t− t′)‖
B(Eγ+1)

∥∥Uε
♯ (t

′)f
∥∥
Eγ dt

′

. e−ν0t/ε2 ‖f‖Eγ+1 +
1

ε2

∫ t

0

e−ν0(t−t′)/ε2
∥∥Uε

♯ (t
′)f
∥∥
L∞
t Eγ dt

′
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Using the following relation valid for any a, b > 0,
∫ t

0

e−a(t−t′)e−bt′dt′ ≤
e−min{a,b}t

|b− a|
,

one gets by induction on γ, and using (3.10) as an initilization, that

‖f‖Eβ . e−ν0t/ε2‖f‖Eβ + e−min{a,ν0}t/ε2‖f‖H.

We conclude to (3.34) using the continuous inclusion Eβ ⊂ H as β > d/2. �

Lemma 3.9. For any p ∈ [1,∞], β ≥ 0, α > αB, there exists C = C(p, α, β) such
that for any f ∈ Ep,α

‖Uε
♭ (t) (Id− Π) f‖Eβ ≤ Cmin

{
‖f‖Ep,α,

ε

t1/2
‖f‖Ep,α, ε‖∇xf‖Ep,α

}
.

Proof. First, recall that we have from (3.3), and from (3.2) and (3.5) that

P♭,j(εD) = P
(0)
♭,j

Ä‹D
ä
+ ε|D|P

(1)
♭,j (εD),

P
(0)
♭,j Π = ΠP

(0)
♭,j = P

(0)
♭,j ,

therefore, there holds

etλ(εD)/ε2P♭,j(εD) (Id − Π) = etλ(εD)/ε2ε|D|P
(1)
♭,j (εD) (Id − Π) .

Thanks to (3.29), we deduce the two estimates
∥∥∥etλ(εD)/ε2P♭,j(εD) (Id − Π) f

∥∥∥
Eβ

.
∥∥∥χ(εD)ε|D|etλ(εD)/ε2

∥∥∥
B(Eβ)

‖f‖Ep,α,
∥∥∥etλ(εD)/ε2P♭,j(εD) (Id − Π) f

∥∥∥
Eβ

.
∥∥∥εχ(εD)etλ(εD)/ε2

∥∥∥
B(Eβ)

‖∇xf‖Ep,α.

The operators χ(εD)ε|D|etλ(εD)/ε2 and χ(εD)etλ(εD)/ε2 are Fourier multiplier in x,
and (3.3) implies that Reλj(ξ) ≤ −c|ξ|2 for some c > 0, thus, recalling that χ is the
characteristic function of {|ξ| ≤ r}, we have on the one hand

∥∥∥χ(εD)ε|D|etλ(εD)/ε2
∥∥∥

B(Eβ)
. sup

|εξ|≤r

∣∣∣εξe−ct|ξ|2
∣∣∣

. min
{ ε

t1/2
, 1
}
,

and on the other hand ∥∥∥χ(εD)etλ(εD)/ε2
∥∥∥

B(Eβ)
. 1.

These estimates yield the conclusion thanks to (3.8). �

Lemma 3.10. For any p ∈ [1,∞], α > αB, β ≥ 0, there holds for any f ∈ Ep,α

lim
ε→0

sup
t≥0

Å
〈t〉1/2‖Uε

♭ (t) (Id−Π) f‖Eβ

ã
= 0,(3.36)

lim
ε→0

sup
t≥0

Å
〈t〉1/2‖Uε

♯ (t)Πf‖Eβ

ã
= 0.(3.37)
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Proof. First, note that αB(1) = 2 and αB(∞) > 5, thus, when p = ∞, there is
some α′ > 2 such that E∞,α ⊂ E1,α′

continuously, so we assume p < ∞. Second,
since Lemma 3.9 implies that

〈t〉1/2‖Uε
♭ (t) (Id−Π) f‖Eβ . ‖f‖Ep,α,

it is enough to check that the convergence holds on a dense subset of Ep,α, for
instance C∞

c (Rv × Ωx). This is indeed the case for (3.36) thanks to Lemma 3.9.

The proof of (3.37) is similar, one just needs to notice that

〈t〉1/2‖Uε
♯ (t)Πf‖Eβ = 〈t〉1/2‖Uε

♯ (t)P
ε
♯Πf‖Eβ

. e−at/ε2〈t〉1/2‖Pε
♯Πf‖Eβ

. ‖ (Pε
♭ − Π)Πf‖Eβ .

Moreover, we have from (3.4) and (3.5)

Pε
♭ − Π =

2∑

j=−1

ε|D|P
(1)
♭,j (εD),

so by a similar density argument as in the previous step, one shows that (Pε
♭ − Π) g

vanishes as ε goes to zero for any g ∈ Ep,α, which concludes the proof.
�

4. Study in the Gaussian space

Let us define the threshold appearing in Theorem 4 as

(4.1) α∗(p) := max{αQ, αB}+ 1,

where αQ, αB are defined respectively in (2.9) and (2.6). In particular, α∗(1) = 3.

In this section, we prove the estimates necessary to the study of the equation
on gε in (1.23). Namely, we show that g 7→ Ψε(f, g) (Lemma 4.2-4.4) and Φε[h]
(Lemma 4.9) have small operator norms in several cases (depending on f). Following
the idea of [17], the particular case of f = f 0 being the solution to (KINSF) will
be dealt with by introducing an equivalent norm, which we introduce now. Several
results are already present in [17], we prove them for the sake of completeness.

Notations 4.1. For any λ > 0 and β ≥ 0, we denote Xβ
λ the set of continuous

functions g ∈ Cb
(
[0, T );Eβ

)
satisfying ‖g‖Xβ

λ
<∞, where

‖g‖Xβ
λ
:= sup

0≤t<T
‖Λ(t, λ)χΩ(t)g(t)‖Eβ ,

Λ(t, λ) := exp

Å
−λ

∫ t

0

‖f 0(t′)‖3
Eβ
dt′
ã
,

and we denoted χΩ(t) := 〈t〉1/4 if Ω = R2, and χΩ(t) := 1 otherwise.
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The function t 7→ ‖f 0(t)‖Eβ lies in L∞ ∩ L2 according to Theorem 2 and thus, in
particular, in L3 (any q > 2 would suffice but we chose the smallest admissible integer
for clarity, see Remark 4.5). This norm therefore satisfies for some C = C(λ) > 0

and any f ∈ Xβ
λ

(4.2) ‖f‖L∞
t Eβ ≤ ‖χΩf‖L∞

t Eβ ≤
1

C
‖f‖Xβ

λ
≤ C‖χΩf‖L∞

t Eβ ,

showing that f 7→ ‖χΩf‖L∞
t Eβ and f 7→ ‖f‖Xβ

λ
are equivalent norms. The factor Λ

allows not to assume f 0 (and thus fin,WP) to be small thanks to the relation

(4.3) Λ(t, λ)3
∫ t

0

∥∥Λ(λ, t′)−1f 0(t′)
∥∥3
Eβ dt

′ . λ−1,

and the factor χΩ makes the bilinear operator Ψε bounded.

Lemma 4.2. For any λ > 0, β > d/2 + 1 and ω > 0, there holds for some positive
constant C = C(λ, ω)

‖Ψε(f, g)‖Xβ
λ
≤ C ‖f‖Xβ

λ
‖g‖X,

λ
(4.4)

‖Ψε(f, g)‖Xβ
λ
≤ Cε ‖f‖Xβ

λ

Å
sup

0≤t<T

∥∥∥eωt/ε2g(t)
∥∥∥
Eβ

ã
.(4.5)

Proof. Step 1: Reductions. Using the same notations, a factorization similar to the
one used in the proof of (3.34) holds:

Ψε(f, g) =
1

ε
Uε ∗Q(f, g)

=
1

ε
Sε ∗Q(f, g) +

1

ε2
Sε ∗KUε ∗Q(f, g)

=: Ψε
0(f, g) +

1

ε2
Sε ∗KΨε(f, g).(4.6)

Again, denoting (X, Y ) = (Eγ , Eγ+1) for any γ ≥ 0, or (X, Y ) = (H,E0) (where
we recall H = Hs

xL
2
v

(
M−1/2

)
), the regularization property K ∈ B (X ; Y ) and the

decay of Sε imply that:

‖χΩS
ε ∗KΨε(t)(f, g)‖Y .

Ç
χΩ(t)

∫ t

0

e−ν0(t−t′)/ε2

χΩ(t′)
dt′
å
‖χΩΨ

ε(f, g)‖L∞
t X

. ε2‖χΩΨ
ε(f, g)‖L∞

t X ,

where we used Lemma A.1 in the second line. By induction, it is then enough to
prove

(4.7) ‖χΩΨ
ε(f, g)‖L∞

t Eβ . ‖χΩΨ
ε
0(f, g)‖L∞

t Eβ + ‖χΩΨ
ε(f, g)‖L∞

t H .

Step 2: Estimate of Ψε
0. Note that for any h = h(x, v), by (3.35), one has

‖Sε(t)h(v)‖Hs
x
= exp

(
−ν(v)t/ε2

)
‖h‖Hs

x
,
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thus, we have

χΩ(t)〈v〉
β‖Ψε

0(f, g)(t, v)‖Hs
x
≤

1

ε
〈v〉βχΩ(t)

∫ t

0

e−ν(v)(t−t′)/ε2‖Q(f, g)(t′, v)‖Hs
x
dt′

≤
1

ε
〈v〉χΩ(t)

∫ t

0

e−ν(v)(t−t′)/ε2‖f(t′)‖Eβ‖g(t′)‖Eβdt′

≤

Ç
1

ε
χΩ(t)

∫ t

0

e−ν(v)(t−t′)/ε2〈v〉

χΩ(t′)2
dt′
å
‖χΩf‖L∞

t Eβ‖χΩg‖L∞
t Eβ

where we used in the second line the following estimate from [17, (B.5)]

‖Q(f, g)‖Eγ . ‖f‖Eγ+1‖g‖Eγ+1.

The factor between parenthesis is bounded uniformly in t, ε and v by Lemma A.1
and (1.4), therefore we obtain

(4.8) ‖χΩΨ
ε
0(f, g)‖L∞

t Eβ . ε‖χΩf‖L∞
t Eβ‖χΩg‖L∞

t Eβ .

Step 2: Proof of (4.4). Recall that the microscopic laws of elastic collisions im-
ply ΠQ = 0 (see for instance [42, (1.2.7)]), thus one may write

Ψε(f, g) =
1

ε
Uε ∗Q(f, g) =W ε ∗Q(f, g),

W ε :=
1

ε
Uε (Id −Π) .

By using the decay estimate [17, Lemma 3.2] ofW ε then the bounds [17, (B.5)-(B.6)]
on Q(f, g), one has

‖W ε(t− t′)Q(f(t′), g(t′))‖H . χ̃Ω(t− t′)‖Q(f(t′), g(t′))‖H∩L2
vL

1
x(M−1/2)

. χ̃Ω(t− t′)‖f(t′)‖Eβ‖g(t′)‖Eβ .

where we have denoted for some σ > 0

(4.9) χ̃Ω(t) :=

®
t−1/2e−σt, Ω = Td,

t−1/2〈t〉−d/4, Ω = Rd,

We thus have the control

‖χΩΨ
ε(f, g)‖L∞

t H .

∫ t

0

‖χΩ(t)W
ε(t− t′)Q(f(t′), g(t′))‖H dt′

.

Å
χΩ(t)

∫ t

0

χ̃Ω(t− t′)

χΩ(t′)2
dt′
ã
‖χΩf‖L∞

t Eβ‖χΩg‖L∞
t Eβ

. ‖χΩf‖L∞
t Eβ‖χΩg‖L∞

t Eβ ,

where the last line comes from Lemma A.2. Combined with (4.8), this yields (4.7)
hence (4.4).
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Step 3: Proof of (4.5). Similarly, we have

‖χΩΨ
ε(f, g)‖L∞

t H .

∫ t

0

‖χΩ(t)W
ε(t− t′)Q(f(t′), g(t′))‖H dt′

.

Ç
χΩ(t)

∫ t

0

χ̃Ω(t− t′)e−ωt′/ε2

χΩ(t′)

å
‖χΩf‖L∞

t Eβ

Å
sup

0≤t′≤T

∥∥∥eωt′/ε2g(t′)
∥∥∥
Eβ

ã
.

Thanks to Lemma A.2 and the control e−ωt/ε2 . εt−1/2, this implies

‖χΩΨ
ε(f, g)‖L∞

t H . ε‖χΩf‖L∞
t Eβ

Å
sup

0≤t′≤T

∥∥∥eωt′/ε2g(t′)
∥∥∥
Eβ

ã

Again, combined with (4.7) and (4.8), we deduce (4.5).
�

The next lemma deals with the part of the source term Sε from Section 1.4
associated with the acoustic waves. These waves, generated by the ill-prepared
part fin,IP of the initial data, satisfy dispersive estimates when Ω = Rd (see (3.18)),
and are absent when Ω = Td thanks to the well-prepared assumption fin,IP = 0.

Lemma 4.3. Under the assumptions of Theorem 4, for any λ > 0, and β > d/2+1,
there holds ∥∥Ψε

(
Uε
dispfin, ·

)∥∥
B(Xβ

λ)
−−→
ε→0

0, if Ω = Rd,

Ψε
(
Uε
dispfin, ·

)
= 0, if Ω = Td.

Proof. Note that Uε
dispfin = Uε

dispfin,IP by (3.14), so the well-prepared assumption in

the case Ω = T
d concludes the proof in this case. We only deal with case Ω = R

d in
the following.

Step 1: Reductions. Let us denote by X the space

X :=

®
Hs

x, if Ω = R3,

Hs
x ∩ L

1
x, if Ω = R2,

As Uε
dispfin = Uε

dispfin,IP by (3.14) and fin,IP is macroscopic in the sense of Nota-
tions 1.1.2, it writes

fin(x, v) =

Å
ρ(x) + u(x) · v +

θ(x)

2
(|v|2 − d)

ã
M(v)

for some functions ρ, u, θ ∈ X. Consider a sequence of C∞
c functions ρn, un, θn

converging to ρ, u, θ inX, and denote fn the corresponding macroscopic distribution.
In both cases, there holds thanks to (3.16) and (3.17)

χΩ(t)
∥∥Uε

disp(fin,IP − fn)
∥∥
Xβ

λ

. ‖fin,IP − fn‖L∞
v Xx(〈v〉βM−1/2) −−−→n→∞

0.

Therefore, by the continuity (4.4) of Ψε on Xβ
λ , one only need to check that for

each n ∈ N, ∥∥Ψε
(
Uε
dispfn, ·

)∥∥
B(Xβ

λ)
−−→
ε→0

0.
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Note that by (3.16), there holds Uε
dispfin,IP ∈ Xβ

λ thus we do not need to deal with Ψε
0

as we have already proved (4.8).

Step 2: Convergence for smooth functions. Thanks to the following bound for Q
from [17, (B.4)]:

‖Q(f, g)‖Hs
xL

2
v(M−1/2) . ‖f‖L∞

v W s,∞
x (〈v〉βM−1/2)‖g‖Eβ

we can use (3.18), thus we have

∥∥Ψε
0

(
Uε
dispfn, g

)∥∥
Xβ

λ

. Cfnε
1/2

Å
χΩ(t)

∫ t

0

χ̃Ω(t− t′)

χΩ(t′)(t′)1/2
dt′
ã
‖g‖Xβ

λ
,

where Cfn is the constant of (3.18) and χ̃Ω was defined in (4.9). The integral is
bounded uniformly in t by Lemma A.2. We conclude the proof thanks to (4.7)
and (4.8). �

The next lemma shows how the equivalent norm ‖·‖Xβ
λ
defined in Notations 4.1

makes the norm of the operator Ψε(f 0, · ) arbitrarily small when ε ≪ 1 and λ≫ 1.
Thisis why we do not need to assume that the well-prepared part of the initial data
(which generates f 0) to be small.

Lemma 4.4. For any β > d/2+ 1, there exists a constant C > 0 (independent of λ
and ε) such that ∥∥Ψε(f 0, g)

∥∥
Xβ

λ
≤ C
Ä
λ−1/5 + ε

ä
‖g‖Xβ

λ
.

Proof. Note that t 7→ Λ(λ, t), defined in Notations 4.1, is a decreasing function, thus
for any positive functions φ = φ(t), ψ = ψ(t), one has

(4.10) Λ(λ, ·)

Å
φ ∗ ψ

ã
≤ φ ∗

Å
Λ(λ, ·)ψ

ã
,

which implies that the bootstrap leading to (4.7) is still valid for the norm of Xβ
λ ,

uniformly in λ:

‖Ψε(f, g)‖Xβ
λ
. ‖Ψε

0(f, g)‖Xβ
λ
+ ‖χΩΛ(λ, ·)Ψ

ε(f, g)‖L∞
t H .(4.11)

The term involving Ψε
0 is estimated the same way as for (4.8) thanks to (4.10):

∥∥Ψε
0(f

0, g)
∥∥
Xβ

λ
. ε ‖g‖Xβ

λ
.

The same goes for Ψε; the proof of (4.4) leads to the bound

∥∥Ψε(f 0, g)
∥∥
Xβ

λ
. sup

t≥0

Å
Λ(λ, t)χΩ(t)

∫ t

0

χ̃Ω(t− t′)‖f 0(t′)‖Eβ‖g(t′)‖Eβ dt′
ã

. sup
t≥0

Å∫ t

0

χΩ(t)χ̃Ω(t− t′)

χΩ(t′)
× χΩ(t

′)Λ(λ, t′)‖f 0(t′)‖Eβ dt′
ã
‖g‖Xβ

λ

where χ̃Ω is defined in (4.9) and we used the fact that t 7→ Λ(λ, t) is non-increasing.
The Hölder inequality with exponents (3/2, 3) yields thanks to (4.3)

∥∥Ψε(f 0, g)
∥∥
Xβ

λ

. λ−1/3 ‖g‖Xβ
λ
,
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which concludes the proof. �

Remark 4.5. Note that in the previous proof, we use Hölder’s inequality with expo-
nents (3/2, 3), but we could actually use any (q, q′) as long as q ∈ (1, 2) so that the
singularity of χ̃Ω be integrable.

Let us now study the convolution term ε−2Uε ∗A appearing in the equation for gε

in (1.23). We start by introducing its splitting mentionned in Section 1.4, then we
prove estimates on both parts.

Notations 4.6. For any f = f(t, x, v), we denote

T ε
1 f :=

1

ε2
Uε
♯ ∗ Af −Pε

♭ exp (tB
ε) f(0),

T ε
∞f :=

1

ε2
Uε ∗ Af − T ε

1 f,

where Uε
♯ and Pε

♭ are defined in Section 3.1.

Lemma 4.7. Let p ∈ [1,∞], α > αB (defined in (2.6)), σ ∈ (0, σB) (defined in
Lemma 2.1), β > d/2. There holds for some C = C(p, α, β, λ) and any f ∈ X p,α,σ

ε

(4.12) ‖T ε
1 f(t)‖Eβ ≤ Ce−ωt/ε2 ‖f‖X p,α,σ

ε
,

with ω := min{σ, a}, a being defined in Section 3.1.

Proof. Thanks to the decay estimate (3.34) combined with the boundedness of teh
operator A : Ep,α → Eβ , the definition of the norm ‖f‖Xε

from Notations 2.5, and
the decay of SBε coming from (2.3), we have

‖T ε
1 f(t)‖Eβ .

∥∥∥∥
1

ε2
Uε
♯ ∗ Af

∥∥∥∥
Eβ

+ ‖Pε
♭SBε(t)f(0)‖Eβ

.
1

ε2
‖f‖Xε

∫ t

0

e−a(t−t′)/ε2e−σt′/ε2dt′ + ‖f(0)‖Ep,α‖SBε(t)‖B(Ep,α)

. e−ωt/ε2 ‖f‖Xε
.

The lemma is proved. �

Lemma 4.8. Let p ∈ [1,∞], α > α∗ (defined in (4.1)), σ ∈ (0, σB) (defined in
Lemma 2.1), β > d/2 + 1. For any h ∈ L∞ ([0, T ); Ep,α) ∩ Lp ([0, T ); Ep,α

ν ) and
any g ∈ L∞([0, T );Eβ), the solution h given by Lemma 2.6 to the equation

(4.13)




∂th = Bεh+

1

ε
Q(h, h) +

1

ε
Q(h, g),

h(0) ∈ Ep,α,

is such that for some C = C(p, α, β, λ)
∥∥T ε

∞h
∥∥
Xβ

λ

≤ Cε ‖h‖X p,α,σ
ε

Ä
‖h‖X p,α,σ

ε
+ ‖g‖Xβ

λ

ä
+
∥∥Uε

♭ h(0)
∥∥
Xβ

λ

.(4.14)
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Furthermore, if h1, h2 are two solutions of the equation (4.13) associated with (h1, g1)
and (h2, g2) respectively, one has the stability estimate

∥∥T ε
∞

(
h1 − h2

)∥∥
Xβ

λ

≤Cε ‖h1 − h2‖X p,α,σ
ε

Ä
‖h1 + h2‖X p,α,σ

ε
+ ‖g1‖Xβ

λ

ä

+ Cε ‖g1 − g2‖Xβ
λ
‖h2‖X p,α,σ

ε

+
∥∥Uε

♭

(
h1(0)− h2(0)

)∥∥
Xβ

λ

.(4.15)

Proof. In the first step of the proof, which is entirely algebraic, we derive an expres-
sion of T ε

∞h in terms of h(0), h and g. In the next steps, we prove the estimates (4.14)
and (4.15). To lighten the notations, we denote

Xε = X p,α,σ
ε , E = Ep,α, Eν = Ep,α

ν ,

where X p,α,σ
ε is defined in Notations 2.5, and Ep,α, Ep,α

ν in Notations 1.3. We will
also need the following factorization formula for semigroups (1.21) applied to the
decomposition Lε = Bε + ε−2A:

Uε = SBε +
1

ε2
Uε ∗ ASBε,(4.16)

SBε(t) := exp (tBε) .

Step 1: Finding an expression for T ε
∞. Using Duhamel’s formula, h writes

h = SBεh(0) +
1

ε
SBε ∗Q(h, h) +

1

ε
SBε ∗Q (h, g) ,

and thus, convolving with ε−2UεA, we have

1

ε2
Uε ∗ Ah =

1

ε2
Uε ∗ ASBεh(0)

+
1

ε2
Uε ∗ ASBε ∗

Å
1

ε
Q(h, h)

ã

+
1

ε2
Uε ∗ ASBε ∗

Å
1

ε
Q(h, g)

ã
.

Thanks to (4.16), this expression rewrites as

1

ε2
Uε ∗ Ah = (Uε − SBε) h(0)

+ (Uε − SBε) ∗

Å
1

ε
Q(h, h)

ã

+ (Uε − SBε) ∗

Å
1

ε
Q(h, g)

ã

or, in a more compact way

(4.17)
1

ε2
Uε ∗ Ah = Uεh(0)− SBεh(0) + A1 + A2,
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where we denoted

A1 := −
1

ε
SBε ∗Q(h, h)−

1

ε
SBε ∗Q(h, g),

A2 :=
1

ε
Uε ∗Q(h, h) +

1

ε
Uε ∗Q(h, g).

Using the definitions Uε
♭ = Pε

♭U
ε, Pε

♯ = Id − Pε
♭ and Uε

♯ = Pε
♯U

ε from Section 3.1,
we deduce from (4.17)

1

ε2
Uε ∗ Ah = Pε

♭

Å
1

ε2
Uε ∗ Ah

ã
+Pε

♯

Å
1

ε2
Uε ∗ Ah

ã

= Uε
♭ h(0)−Pε

♭SBεh(0) +Pε
♭A1 +Pε

♭A2 +
1

ε2
Uε
♯ ∗ Ah,

which allows to identify T ε
∞ as

T ε
∞h = Pε

♭A1 +Pε
♭A2 + Uε

♭ h(0).

Step 2: Estimate of T ε
∞. According to Lemma 2.6, there holds

‖A1‖Xε
. ε ‖h‖Xε

Ä
‖h‖Xε

+ ‖g‖Xβ
λ

ä
,

therefore, by the boundedness of Pε
♭ : E → E and exp(−σt/ε2)χΩ(t) . 1, one has

(4.18) ‖Pε
♭A1‖Xβ

λ
. ε ‖h‖Xε

Ä
‖h‖Xε

+ ‖g‖Xβ
λ

ä
.

To estimate the term Pε
♭A2, recall that the laws of elastic collisions imply ΠQ = 0

(see for instance [42, (1.2.7)]), thus, by Lemma 3.9 (because α− 1 > αB by (4.1)):

1

ε
‖χΩ(t)U

ε
♭ ∗Q(h, h)(t)‖E ≤ χΩ(t)

∫ t

0

(t− t′)−1/2 ‖Q(h(t′), h(t′))‖Ep,α−1 dt
′

and then, by (2.7) and because α− 1/p > αQ (by (4.1)),

1

ε
‖χΩ(t)U

ε
♭ ∗Q(h, h)(t)‖E . χΩ(t)

∫ t

0

(t− t′)−1/2‖h(t′)‖Ep,α−1/p‖h(t′)‖
E
p,α−1/p
ν

dt′

. χΩ(t)

∫ t

0

(t− t′)−1/2‖h(t′)‖2Edt
′.

Using the estimates

‖h(t)‖E . e−σt/ε2 ‖h‖Xε
. εt−1/2 ‖h‖Xε

,

χΩ(t)‖h(t)‖E . ‖h‖Xε
,

we also have thanks to Lemma A.2

1

ε
‖χΩ(t)U

ε
♭ ∗Q(h, h)(t)‖E . ε ‖h‖2Xε

Å
χΩ(t)

∫ t

0

dt′

(t− t′)1/2(t′)1/2χΩ(t′)
dt′
ã

. ε ‖h‖2Xε
.

By performing the same computation for the term involving g, one can show

(4.19) ‖Pε
♭A2‖Xβ

λ
. ε ‖h‖Xε

Ä
‖h‖Xε

+ ‖g‖Xβ
λ

ä
.
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We conclude to the estimate of T ε
∞ thanks to (4.18)-(4.19).

Step 3: Stability estimate. To obtain the stability estimates, notice that

∂t(h1 − h2) = Bε
(
h1 − h2

)
+

1

ε
Q (h1 − h2, h1 + h2 + g1) +

2

ε
Q (h2, g1 − g2) .

By adapting the previous steps, we get the result. Lemma 4.8 is proved. �

This next lemma provides estimates for the operator Φε[h] which was defined in
Section 1.4 for any h = h(t, x, v) as

Φε[h] := 2Ψε
(
f 0 + T ε

1 h + Uε
dispfin, ·

)
.

Lemma 4.9. Consider p ∈ [1,∞], α > α∗, σ ∈ (0, σB), β > d/2 + 1 and A > 0.

There holds for any g ∈ Xβ
λ , h ∈ X p,α,σ

ε satisfying ‖h‖X p,α,σ
ε

≤ A

‖Φε[h]g‖Xβ
λ
≤ Cε,λ,A ‖g‖Xβ

λ
,

and the following stability estimate

‖Φε[h1]g1 − Φε[h2]g2‖Xβ
λ
≤ Cε,λ,A

Ä
‖g1 − g2‖Xβ

λ
+ ‖h1 − h2‖X p,α,σ

ε

ä
,

for some constant Cε,λ,A > 0 that vanishes as max{ε, 1/λ} → 0 with A fixed..

Proof. The conclusion is a direct consequence of Lemma 4.4 (for f 0), (4.5) combined
with Lemma 4.7 (for T ε

1 h
ε), and Lemma 4.3 (for Uε

dispfin). For the same reason, the
stability estimate holds if one notices that

Φε[h1]g1 − Φε[h2]g2 = Φ[h1](g1 − g2) + 2Ψε(T ε
1 (h1 − h2), g2).

This proves the lemma. �

This next lemma provides estimates for Sε, which we recall is defined in Section 1.4
as

Sε
[
h
]
:= Sε

0 +Ψε
(
T ε
1 h+ Uε

dispfin,IP, 2f
0 + T ε

1 h + Uε
dispfin,IP

)
+ T ε

∞h

Sε
0 :=

(
Uε − Uε

disp − U0
)
(fin − fin,⊥) +

(
Ψε −Ψ0

) (
f 0, f 0

)
.

Lemma 4.10. Let p ∈ [1,∞], α > max{αB, αQ}, σ ∈ (0, σB), β > d/2 + 1, and
any A > 0. For any h ∈ L∞ ([0, T ); Ep,α) ∩ Lp ([0, T ); Ep,α

ν ), any g ∈ L∞([0, T );Eβ)
such that ‖g‖Xβ

λ
+ ‖h‖X p,α,σ

ε
≤ A, the solution h given by Lemma 2.6 to the equation




∂th = Bεh+

1

ε
Q(h, h) +

1

ε
Q(h, g),

h(0) = fin,⊥,

is such that

(4.20)
∥∥Sε

[
h
]∥∥

Xβ
λ

≤ ηε(λ,A, p, α),

where ηε(λ,A) −−→
ε→0

0 with λ and A fixed. Furthermore, one has the stability estimate

(4.21)
∥∥Sε[h1]− Sε[h2]

∥∥
Xβ

λ

≤ CεA
Ä
‖h1 − h2‖X p,α,σ

ε
+ ‖g1 − g2‖Xβ

λ

ä
,

where C = C(p, α, λ).
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Proof. Step 1: Proof of (4.20). One may rewrite Sε
0 as

Sε
0 =

(
Uε − Uε

disp − Uε
♯ − U0

)
Πfin

+ Uε
♯Πfin

+
(
Ψε −Ψ0

) (
f 0, f 0

)
.

The first line vanishes in Xβ
λ in virtue of [17, Lemma 3.5], the second one by (3.37),

and the third one by [17, Lemma 4.1].

The term involving Ψε expands as

Ψε(T ε
1 h+ Uε

dispfin,IP, 2f
0+T ε

1 h+ Uε
dispfin,IP) =

Ψε
(
T ε
1 h, 2f

0 + T ε
1 h + Uε

dispfin,IP
)

+Ψε
(
Uε
dispfin,IP, 2f

0 + T ε
1 h + Uε

dispfin,IP
)
.

The first term is estimated using Lemma 4.7 and (4.5), the second one using
Lemma 4.3.

Finally, the term T ε
∞h is estimated using (4.14) and (3.36). This proves (4.20).

Step 2: Proof of (4.21). Note that

Sε[h1]− Sε[h2] =T ε
∞

(
h1 − h2

)

+Ψε
(
T ε
1

(
h1 − h2

)
, T ε

1

(
h1 + h2

))

+ 2Ψε
(
T ε
1

(
h1 − h2

)
, Uε

dispfin,IP
)
.

Using (4.15), and (4.5) with Lemma 4.7, we get
∥∥Sε[h1]− Sε[h2]

∥∥
Xβ

λ

. εA
Ä
‖h1 − h2‖X p,α,σ

ε
+ ‖g1 − g2‖Xβ

λ

ä
,

which concludes the proof of (4.21), hence of Lemma 4.10.
�

5. Proof of Theorem 4

Let us fix p ∈ [1, α], β > d/2 + 1, and recall that fin, f
0 and T are fixed. We now

prove Theorem 4 using Banach’s fixed point theorem. To do so, we introduce the
metric space in which we work:

XA,λ,ε = X
p,α,σ,β
A,λ,ε :=

ß
(h,g) ∈ X p,α,σ

ε ×Xβ
λ : ‖h‖X p,α,σ

ε
≤ 2‖fin,⊥‖Ep,α, ‖g‖Xβ

λ
≤ A,

∃
Ä
h̃, g̃
ä
∈ X p,α,σ

ε ×Xβ
λ ,
∥∥∥h̃
∥∥∥
X p,α,σ

ε

≤ 2‖fin,⊥‖Ep,α, ‖g̃‖Xβ
λ
≤ A,

∂th = Bεh+
1

ε
Q
Ä
h̃, h̃
ä
+

1

ε
Q
Ä
h̃, g̃
ä
, h(0) = fin,⊥

™
,

endowed with the norm

‖(h, g)‖XA,λ,ε
:= ‖h‖X p,α,σ

ε
+ ‖g‖Xβ

λ
.
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Note that by Lemma 2.6, for ε small enough, this space is non-empty as it contains
for instance

(
etB

ε
fin,⊥, 0

)
.

The map Ξ on wich we will apply the fixed-point theorem is defined as

Ξ : XA,λ,ε → XA,λ,ε, Ξ(h, g) :=
(
h, g
)
,

∂th = Bεh+
1

ε
Q (h, h) +

2

ε
Q
(
h, g + f 0 + T ε

1 h+ Uε
dispfin

)
, h(0) = fin,⊥,

g = Sε[h] + Ψε(g, g) + Φε[h]g,

where we recall the notations

Sε[h] := Sε
0 +Ψε

(
T ε
1 h + Uε

dispfin, 2f
0 + T ε

1 h+ Uε
dispfin

)
+ T ε

∞h,

Sε
0 :=

(
Uε − Uε

disp − U0
)
Πfin +

(
Ψε −Ψ0

) (
f 0, f 0

)
,

Φε[h] := 2Ψε
(
f 0 + T ε

1 h + Uε
dispfin, ·

)
.

Proof of Theorem 4. We prove in Step 1 that Ξ is a well-defined contraction of XA,λ,ε

so that the system (1.23) has a unique solution (h, g) by Banach’s fixed point the-
orem. As explained in Sections 1.4, the functions f := h + g will therefore be a
solution of the scaled Boltzmann equation (Bε). In Step 2, we show that this so-
lution is the unique solution to (1.1) satisfying (1.17). In Step 3, we define the
terms uε∗ and prove they vanish in appropriate topologies.

Step 1: Ξ is a well-defined contraction. Let (hj , gj) ∈ XA,λ,ε for j = 1, 2, and denote

their images by Ξ by
(
hj, gj

)
:= Ξ(hj, gj). According to Lemma 2.6 and (4.2), there

holds for some C(λ) > 0
∥∥hj
∥∥
X p,α,σ

ε
≤ C(λ)ε(1 + A) + ‖fin,⊥‖Ep,α,

∥∥h1 − h2
∥∥
X p,α,σ

ε
. C(λ)(1 + A)ε ‖(h1, g1)− (h2, g2)‖XA,λ,ε

.

Furthermore, according to Lemma 4.9, (4.20) and (4.4), we may assume that C(λ)
also satisfies

∥∥gj
∥∥
Xβ

λ

. ‖Sε[hε]‖Xβ
λ
+ ‖Ψε(gj, gj)‖Xβ

λ
+ ‖Φε[hj ]gj‖Xβ

λ

. ηε(λ, 2‖fin,⊥‖Ep,α + A) +

Å
C(λ)A+ Cλ,ε,2‖fin,⊥‖Ep,α+A

ã
A(5.22)

‖g1 − g2‖Xβ
λ
≤‖Sε[h1]− Sε[h2]‖Xβ

λ
+ ‖Ψε (g1 + g2, g1 − g2)‖Xβ

λ

+ ‖Φε[h1]g1 − Φε[h2]g2‖Xβ
λ

.
(
εC(λ)(1 + A) + C(λ)A+ Cε,λ,2‖fin,⊥‖Ep,α

)
‖(h1, g1)− (h2, g2)‖XA,λ,ε

.

First, set A = 1. By Lemma 4.9, one must choose ε ≪ 1 and λ ≫ 1 so that the
values Cε,λ,2‖fin,⊥‖Ep,α and Cε,λ,2‖fin,⊥‖Ep,α+A are small. Then, thanks to Lemma 4.10,

there holds up to a reduction of A and ε that
∥∥hj
∥∥
X p,α,σ

ε
≤ 2‖fin‖Ep,α and

∥∥gj
∥∥
Xβ

λ

≤ A

(the map Ξ is well defined) and
∥∥(h1, g1)− (h2, g2)

∥∥
XA,λ,ε

≤ 1
2
‖(h1, g1)− (h2, g2)‖XA,λ,ε

(the map Ξ is a contraction).
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We conclude that Ξ has a unique fixed point (hε, gε) ∈ XA,λ,ε, and thus the
system (1.23) has a unique solution (hε, gε) ∈ XA,λ,ε. Therefore, we have constructed
a solution f ε := hε + gε to the Boltzmann equation (Bε).

Step 2: Uniqueness of the solution. To show uniqueness, we may assume that the
solution f ε constructed previously satisfies the bound

(5.23) ∀t ∈ [0, T ), ‖f ε(t)‖E <
σB
2Cε

where C is the constant of Lemma 2.4. Furthermore, by the definitions of α∗ (4.1)
and αQ (2.9), one has

α > α∗(p) ≥ 3 +
d

p′
,

thus there exists γ > α∗(1) = 3 such that Ep,α ⊂ E1,γ continuously. We therefore
assume in this step that p = 1. Consider now another solution to (Bε)

f ε
1 ∈ Cb ([0, T ); E) ∩ L

p ([0, T ); Ep,α
ν )

such that f ε
1 (0) = fin and define

D := f ε − f ε
1 ,

S := f ε + f ε
1 .

These functions satisfy the following equation:

∂tD = LεD +
1

ε
Q(D,S) = BεD +

1

ε2
AD +

1

ε
Q(D,S).

Similar calulations as in the proof of Lemma 2.6 yield for some constant C > 0

d

dt
‖D‖E ≤ −

σB
ε2

‖D‖Eν +
C

ε

Å
‖D‖E‖S‖Eν + ‖D‖Eν‖S‖E +

1

ε
‖D‖E

ã
,

which may be rewritten as

d

dt

Å
e−φ‖D‖E

ã
+
e−φ‖D‖Eν

ε2

Å
σB − Cε‖S‖E

ã
≤ 0,(5.24)

φ(t) :=
C

ε

∫ t

0

‖S (t′)‖Eν dt
′ +

Ct

ε2
.

Define I = {t ∈ [0, T ) : D(t) = 0}. It is relatively closed in [0, T ) because D is
continuous, and non-empty since 0 ∈ I. For any t ∈ I, assumption (5.23) imply

Cε‖S(t)‖E = 2Cε‖f ε(t)‖E < σB,

thus, by the continuity of S, there exists some δ > 0 such that

∀t′ ∈ [t, t+ δ), Cε‖S(t′)‖E < σB.

We conclude thanks to (5.24) that [0, t+ δ) ⊂ I, thus I is both relatively closed and
open in [0, T ) and therefore I = [0, T ).
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Step 3: Convergence of the terms uε∗. We define the error terms of Theorem 4 in
the following way:

uε∞(t) := g(t),

uε1(t) := h(t) + T ε
1 h(t),

uεac(t) := Uε
disp(t)fin.

The term uε1 satisfies by construction and Lemma 4.7

‖uε1‖X p,α,σ
ε

. ‖fin‖Ep,α,

which yields the estimate of Theorem 4 by the definition of the norm ‖·‖X p,α,σ
ε

in
Notations 2.5. The term uεac vanishes in the senses stated in Theorem 4 thanks to the
estimates of Lemma 3.3. Finally, uε∞ vanishes uniformly because up to a reduction
of the parameters (G, 1/λ, ε) in Step 1, one have from (5.22) and Lemma 4.10

‖uε∞‖Xβ
λ
. ηε → 0, (ε→ 0).

�

Appendix A. Technical estimates

Lemma A.1. Let a, ω0 > 0, there exists some C = C(a, ω0) > 0 such that for
any ω ≥ ω0 and t ≥ 0 ∫ t

0

e−ωt′

〈t− t′〉a
dt′ ≤

C

ω〈t〉a
.

Proof. First, note that there holds

〈t〉 ≤ 〈t′〉〈t− t′〉,

thus we have
∫ t

0

e−ωt′

〈t− t′〉a
dt′ ≤ 〈t〉−a

∫ t

0

e−ωt′〈t′〉adt′

. 〈t〉−a

∫ t

0

e−ωt′(1 + (t′)a)dt′

.
1

ω〈t〉a
+ 〈t〉−a

∫ t

0

e−ωt′(t′)adt′.

Let us perform an integration by parts:
∫ t

0

e−ωt′(t′)adt′ =
a

ω

∫ t

0

e−ωt′(t′)a−1dt′ −
e−ωt

ω
ta

.
1

ω

Å∫ ∞

0

(t′)a−1e−ω0t′dt′ − e−ω0tta
ã
.

The factor between parenthesis is bounded because a−1 > −1 and thus the integral
term converges. �
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Lemma A.2. For any a, α, c, γ ∈ [0, 1) and b, β ≥ 0 such that




a+ α ≤ 1,

c ≤ a+ b,

γ ≤ α + β,

there exists a constant C > 0 such that∫ t

0

dt′

(t− t′)a〈t− t′〉b(t′)α〈t′〉β
≤ C〈t〉1−c−γ.

Proof. Let us start with the change of variable t = t′u:
∫ t

0

dt′

(t− t′)a〈t− t′〉b(t′)α〈t′〉β
= t1−a−α

∫ 1

0

du

(1− u)a〈t(1− u)〉buα〈tu〉β
.

This quantity is bounded uniformly in t ∈ [0, 1] because a+ α ≤ 1. Furthermore,
∫ t

0

dt′

(t− t′)a〈t− t′〉b(t′)α〈t′〉β
≤ t1−a−α

∫ 1

0

du

(1− u)a〈t(1− u)〉c−auα〈tu〉γ−α
,

and note that for any m ∈ R,

tm(t−1 + s)m . 〈ts〉m,

thus the integral can be controled by
∫ t

0

dt′

(t− t′)a〈t− t′〉b(t′)α〈t′〉β
. t1−c−γ

∫ 1

0

du

(1− u)a(t−1 + 1− u)c−auα(t−1 + u)γ−α
.

The last thing to check is that this integral factor in the right hand side is bounded
uniformly in t ≥ 1; on the one hand

(1− u)−a(t−1 + 1− u)a−c ≤

®
(1− u)−a(2− u)a−c, if a ≥ c,

(1− u)−c, if a ≤ c,

and on the other hand

u−α(t−1 + u)α−γ ≤

®
u−α(1 + u)α−γ, if α ≥ γ,

u−γ, if α ≤ γ.

In each case, the integral converges because of the assumption a, α, c, γ ∈ [0, 1),
which concludes the proof. �
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