
HAL Id: hal-03517911
https://hal.science/hal-03517911

Submitted on 31 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Requirements engineering and enterprise
architecture-based software discovery and reuse
Abdelhadi Belfadel, Jannik Laval, Chantal Cherifi, Nejib Moalla

To cite this version:
Abdelhadi Belfadel, Jannik Laval, Chantal Cherifi, Nejib Moalla. Requirements engineering and
enterprise architecture-based software discovery and reuse. Innovations in Systems and Software
Engineering, 2022, 18 (1), pp.39-60. �10.1007/s11334-021-00423-5�. �hal-03517911�

https://hal.science/hal-03517911
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Requirements Engineering and Enterprise
Architecture-based Software Discovery and Reuse

Abdelhadi Belfadel · Jannik Laval ·
Chantal Bonner Cherifi · Nejib Moalla

Received: date / Accepted: date

Abstract Organizations’ business processes need to be adapted in response
to changing internal and external environments that are becoming increasingly
complex. We target in this research work the exploitation of a software capa-
bility profile based on requirements engineering and enterprise architecture
to respond to stakeholder requirements and efficiently reuse existing technical
solutions. We provide an exploitation methodology based on the alignment of
enterprise architecture actions with a requirement engineering process. These
latter evolve together helping to investigate the highest compatibility of the
desired functionalities and their related constraints. Our contribution aims to
produce a ready-to-use application based on the defined requirements and the
selected software capability profiles for accelerating business application de-
velopment. Implementation and a case study are proposed to demonstrate the
effectiveness of this approach.

Keywords Enterprise architecture · Capability profile · Requirements
engineering · Service reuse · Software reuse

A. Belfadel
University Lumière Lyon 2, DISP Laboratory, Lyon, France
E-mail: Abdelhadi.Belfadel@gmail.com

J. Laval
University Lumière Lyon 2, DISP Laboratory, Lyon, France
E-mail: Jannik.Laval@univ-lyon2.fr

C. Bonner Cherifi
University Lumière Lyon 2, DISP Laboratory, Lyon, France
E-mail: Chantal.BonnerCherifi@univ-lyon2.fr

N. Moalla
University Lumière Lyon 2, DISP Laboratory, Lyon, France
E-mail: Nejib.Moalla@univ-lyon2.fr

2 Abdelhadi Belfadel et al.

1 Introduction

Modernizing or designing a new business process by reusing the functional-
ity of existing software can be of great benefit to organizations. Leveraging
previous developments and considering internal company solutions enriched
with external ones, can help facilitate the development of complex systems at
controlled costs while maintaining delivery times.

When developing software, the first thing to do is to understand and de-
scribe in a precise way the problem that the software must solve. Requirements
for a targeted system describe what the system should do, what the services
it should provide, and what quality or constraints it must have to make it at-
tractive and acceptable to the owner [1]. These requirements reflect the needs
of customers for a system. The process of analyzing, eliciting, and checking
these services and constraints is called requirements engineering [2].

To maximize the reuse opportunities for companies, a component view
with a concise evaluation model of software components (that describe in de-
tail the capabilities of software) provides an overview of existing solutions and
facilitates the discovery, selection, and decision to reuse [3]. This, combined
with an organization of the different artifacts (an artifact is a more granu-
lar architectural work product that describes an architecture from a specific
viewpoint. Examples include a class diagram, a server specification, a list of
architectural requirements...) resulting from this evaluation model, aligned
with a requirement engineering approach, aims to reduce the complexity when
searching and selecting software components to reuse. In addition, focusing on
service-oriented solutions, many opportunities for reuse of functionality will
arise, resulting in more efficient use of existing resources.

To reduce the complexity of the description of software components that
result from the evaluation model and to present the required detail of informa-
tion at each level of its exploitation, enterprise architecture is of great value.
Enterprise Architecture (EA) is the definition and representation of a high-
level view of IT systems and enterprises’ business processes. By considering
an enterprise architecture-based approach, it is possible to organize the differ-
ent artifacts in a way that enables an analysis of the reuse possibilities for an
organization and ensure the feasibility of a targeted system or project. The in-
sights or information provided by an enterprise architecture is needed, on the
one hand, to determine, from a business perspective, the needs, and priorities
for change [4] and, on the other hand, to organize the various components and
technical artifacts and assess how an organization can exploit them.

With reference to this context, this research is an extended work of an al-
ready published work in [5]. The latter was focused on the design of a software
capability profile implemented as a semantic model to gather description of
the capabilities of existing solutions from several perspectives (organizational,
business, technical and technological aspects). For the sake of readability, the
proposed model and contributions published in [5] are presented in the fol-
lowing sections, as well as the new contributions related to the exploitation
of the capability profiles through the alignment of a requirements engineering

RE and EA-based Software Discovery and Reuse 3

approach and an enterprise architecture method. As discussed earlier, the ob-
jective of this research work is to leverage the model already published in [5] to
address stakeholder requirements and efficiently reuse existing solutions, by in-
vestigating the highest functional and non-functional compatibility of existing
software capability profiles with stakeholder’s desired features to be imple-
mented. The expected result from this work is an exploitation process of the
software capability profiles, based on the Architecture Development Method
from TOGAF [6], aligned to a requirements engineering approach implemented
using Volere Specification [1]. However, the problem we faced is how to align
requirements and architecture artifacts in an engineering cycle, to help in the
refinement of requirements and select the best candidate components to serve
as building blocks in a new system?

To respond to this research problem, this paper is organized as follows:
Section 2 focuses on the related work. We focus afterward on the principal
building blocks of the proposed solution and present first the Enterprise Ar-
chitecture Capability Profile (EACP) in section 3. Section 4 presents a concrete
use case scenario on which this approach has been applied, and that serves as
an example throughout the description of the exploitation process in section
5. Section 6 presents an implementation of the proposed approach. Section 7
discusses our work and finally a conclusion is drawn in Section 8.

2 Related Work

2.1 Requirements Engineering in Software Development Process and Service
Reuse

Classical techniques for software solution specification are structured analysis
and object-oriented techniques [7]. The view of requirement engineering as so-
lution specification is taken by the IEEE 830 standard [8] and by other authors
on requirements [1] [9]. In this view, and as mentioned by [7], a requirements
specification consists of a specification of the context where the system oper-
ates, desired system functions, the semantic definition of these functions, and
quality attributes of the functions.

Several research works and methods ([10], [11] or [12]) exist in the litera-
ture to enhance software requirement specifications and for feature selection.
[1] propose Volere as a basis for a requirement specification. It is a result
of many years of practice, consulting, and research in requirement engineer-
ing and business analysis. Volere provides template sections for each of the
requirement types appropriate to today’s software systems. [13] propose a
paradigm for software service engineering to reuse services for developing new
applications more rapidly with the aim to satisfy individualized customer re-
quirements. The proposed approach uses service context as a mediating facility
to match a service requirement with a service solution. The requirements are
defined by the targeted business functionality, service performance, and value.
However, no details about the service pattern description or repository, the

4 Abdelhadi Belfadel et al.

requirement template nor implementation of the approach are proposed. [14]
propose a method that allows users of services to express their requirements.
The authors propose a meta-model for elements required in service consump-
tion such as process, goal, or role. The proposed method helps to discover errors
and conflicts during requirement refinement. [15] propose a service selection
algorithm based on textual requirements expressed by the service consumer.
The service selection is based on a discovery algorithm, that uses XQuery
and WordNet and focuses on the disambiguation and completeness of the re-
quirements and retrieving discovered services from the UDDI registry. There
is additional ontology-based research work such as [16], where the authors
took the CORE Ontology (for Core Ontology for Requirements) [17] for re-
quirement elicitation, and established a relationship with the concepts of Web
Service Modeling Ontology (WSMO) [18].

2.2 Knowledge Management and Service Repositories for Service Reuse

Research on repositories for effective and useful management and discovery of
services for service-oriented paradigm has recently earned significant impulse.
Some specifications as UDDI [19] or ebXML Registry [20] has provided primary
support to register, discover and integrate services. Due to limited capabilities
offered by existing registry specifications for services discovery, some research
works in the literature aim at improving service repositories with ontology-
based discovery facilities. Later, semantic models have been proposed to enrich
the service registry with semantic annotations, combined with matchmaking
algorithms to match service capabilities.

Based on the systematic analysis of relevant research works regarding ser-
vice discovery with consideration of our needs, Table 1 classifies the related
service registry and discovery works published between 2002 and 2019 ac-
cording to the following criteria: C1) Organizational level: exploitation based
on the identification of the stakeholders, business problems, goals, and ob-
jectives of the targeted project. C2) Functional level: exploitation based on
service interfaces, the business functions, and related inputs and outputs. C3)
Technical level: exploitation based on the identification of relevant techni-
cal requirements, interoperability requirements, and technology constraints.
C4) Technology level: exploitation based on the identification of the platforms
and infrastructure. C5) Non-functional properties (QoS, Security...). C6) Ex-
ploitation based on a Requirements Engineering Process (it involves all the
mentioned levels)

Out of Table 1, we notice that several research works considered the func-
tional level and QoS to manage service repository and matchmaking, but few
of them considered the other levels such as the organizational level, the tech-
nical or technology level. We notice also that few research works considered
the exploitation of the service registry in a software engineering cycle using
a requirement engineering process to manage the user requirements for ser-
vice discovery and matchmaking. Software architecture helps to manage the

RE and EA-based Software Discovery and Reuse 5

complexity of software by providing an abstraction of the system. The require-
ments engineering process drives the architecture actions, whereas decisions
made in the architectural phase can affect the achievement of initial require-
ments and thus change them. We should go through these two fundamental
activities namely requirement engineering and software architecting during the
engineering process. These activities should evolve together to offer support to
the developer or architect for formalizing the requirements and architectural
artifacts to enable software and service discovery and reuse. There is, how-
ever, no structured solution (as depicted in Table 1) on how to perform the
co-development of requirements and architecture actions to select the suitable
software or services to reuse for the development of new business software.

Service Repository and Discovery C1 C2 C3 C4 C5 C6
[21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32] [33]

+ +

[15] + + +
[34] +
[35], [36], [37] +

[38], [39], [40] + (+)
[41], [42], [43] +
[44], [45] + (+)
[46] + +
[47] + +
[48] + (+)
[49] + + +
[50] + + (+)
[51] +
[52], [53] + + +
[54] + + (+)

Table 1 Service repository and discovery for reuse

2.3 Scientific relevance and discussion

From the state-of-the-art on service-oriented software reuse, we analyzed that
currently ad-hoc methods are still used to identify the most suitable service-
oriented software or artifacts to reuse, and a methodology or standardized
process enabling this is still missing. Moreover, the description, the capabil-
ity, or qualification of this software are lacking wider view qualification taking
into consideration the business, operational and technical views of the soft-
ware and their related services [5]. In addition, no solution has been provided
to fit the requirements engineering along with the impact of architecture on
requirements when dealing with the identification of the most suitable com-
ponents and avoiding the misevaluation during the selection phase. Therefore,
enhancing the capability description of the software and its related services
in different levels of service description, along with its exploitation based on

6 Abdelhadi Belfadel et al.

requirement engineering and architecting actions is a big challenge. This analy-
sis highlighted the need for an Enterprise Architecture-based methodology for
describing and classifying different artifacts to be available as building blocks
for reuse in future projects.

From the above analysis, we propose the following research directions: (i)
Improve software and related service capability profile to bring value-in-use of
the qualified feature for an organization that is interested in reuse; (ii) Shape
a mechanism to identify the most suitable software with specific features or
functionalities helping to overcome the use of ad-hoc methods; (iii) Improve
the reuse of service-oriented solutions by considering a process that includes
requirements engineering and enterprise architecture for formalizing the re-
quirements.

3 Qualification Model - Software Capability Profile

To bring the value-in-use of existing software and facilitate the discovery and
reuse, we present in this section the meta-model of the Software Capability
Profile (see Figure 1) and its related EACP Ontology that is presented in detail
in [5] and depicted in Figure 2. The meta-model is inspired mainly from TO-
GAF [6], ISO 16100 [55], Microsoft Application Architecture Guide [56] and
ISO 25010 [57]. It aims to gather functional and non-functional specifications;
the organizational impact of an organizations’ software; and it links the busi-
ness services to their related physical components to offer a wider view qual-
ification and improve the reuse when developing a new business application.
The proposed meta-model is composed of 6 packages. i) Organization pack-
age: Composed by the organizational unit, with its related business goals and
objectives that guided the development of existing software. ii) Architecture
Building Blocks package: This entity is constructed according to the life-cycle
creation of Architecture Building Blocks (ABBs) based on the ADM Method.
An ABB describes the business problem for which this component was devel-
oped for, its implementation specification, standards used, the stakeholders
concerned. It provides other details such as the operational vision of the com-
ponent, the definition of the business function of the ABB, its attributes and
constraints, data and application interoperability requirements and design-
time quality attributes. iii) Solution Building Blocks package: SBBs represent
the physical equivalent of ABBs and describe the components exposed by soft-
ware. The SBB is linked to the exposed service or API for instance over the
web in case of a REST-based application. This latter is defined by the URI,
the HTTP method needed to get access to the resource, the related parameters
and the serialization used in communication (for instance JSON). It defines
run-time and transversal quality attributes which might be updated according
to the defined frequency for each attribute. iv) Application package: Describes
the technical requirements of the service-oriented software in general with its
exposed components (for instance REST services). It also describes the exe-
cution environments on which the application is running. v) Business Process

RE and EA-based Software Discovery and Reuse 7

package: This package is used in the exploitation phase and represents the “to-
be” business application to realize. vi) Requirements package: This package is
used in the exploitation phase and represents the requirements elicitation pro-
cess, helping to guide the developer or the architect during the engineering
life-cycle. The requirements are elicited in each phase of the ADM, going from
the definition of project driver to the definition of the use cases and require-
ments in different levels.

Fig. 1 Proposed meta-model

The resulting EACP profile instances are saved in a semantic repository
called in this context the Enterprise Architecture Knowledge Repository (EAKR
repository) as an ontology instance. Regarding the design effort of the EACP
Ontology, we identified from state-of-the-art solutions some existing ontologies
to reuse. We have selected those that cover some of our needs and that are
well-defined, consistent, and reused in other projects. We selected Basic For-
mal Ontology (BFO) which is a top-level ontology and four domain ontologies,
namely Ontology Web Language for Services (OWL-S) [58], The Open Group
Architecture Framework ontology (TOGAF-Ontology) [59], BPMN 2.0 Ontol-
ogy [60] and Information Artifact Ontology (IAO) [61]. Third, we managed the
selected foundational and domain ontologies, by integrating and extending in

8 Abdelhadi Belfadel et al.

SBB

BFO: hasContinuantPart
Software module

specification

IsA

Software method
specification

BFO: hasContinuantPart

Function

BFO: hasContinuantPart

Goals

Objective specification

IsA

Process

BFO:realizedBy

Activity

Ressource

Ressource role

IsA

Material entity

IsA

RO: participatesIn

BFO: hasRole

Role

InputOutput

 ABB
RO: IsAbout

Service profile

IsA

IsA

BFO: hasContinuantPart

Application
Architecture
Component

RO: IsAbout

RO:IsAbout

 REST service

IsAIsA

Sofware library

IsA

Platform Service

BFO: hasContinuantPart

IsA

Application software
function

Software module
function

Software method
function

BFO: hasContinuantPart

BFO: hasContinuantPart

Software function

BFO: hasContinuantPart

IsA

>

IsA IsA

RO: IsAbout

RO: IsAbout

IsA

BFO:hasFunction

IsA

BFO:hasContinuantPart

Service category

Security
category

Manageability
category

SBB service
category

IsAIsA

Service parameter

IsA IsAIsA

Communication
Protocol FrequencyAuthorization

IsA

BFO: hasContinuantPart

BFO:hasContinuantPart

IAO: Data item

IsA IsA
Objectives

BFO:hasContinuantPart

IsA

Driver

Stakeholder

Object aggregate

IsA

Object

IsAIsA

KPI

IsA

Business use case

Information content
entity

IsAIsA

Data entity

IsA

Requirement

Conditional
specification

IsA

IsA

Constraint IsA

Implementation constraint

...

Interoperability constraint

IsA

IsA

Functional requirement

Technical requirement

...

IsA

IsA

IsA

IsA

IsA

IsAbout

event

Process

IsA

Application Programming
Interface

IsAbout

IsA

BFO:hasContinuantPart
BFO:hasContinuantPart

IAO:isAbout

BFO:hasContinuantPart
Workpackage

ABB service
category

IsAIsA
Configurability

category

IsA
IsA

... ...

IsA
IsA

BFO: hasContinuantPart

Organisational unit

IsA

IsA

IsA

Business service

IsA
Measure

IsA

TOGAFBFO IAO

OWL-S EACPBPMN

Fig. 2 Basic pattern of the main classes and relationships in the EACP ontology

a coherent way the different ontologies into the targeted EACP ontology us-
ing the Protégé Ontology Editor. Finally, we evaluated the consistency of the
resulted model using the Fact++ reasoner. An extract of the related Ontology
to EAKR repository is presented in Figure 2.

The scope of this paper does not concern the presentation of the qualifica-
tion model and the design of its ontology mentioned above and presented in
[5], however, the elements presented above are enough for the understanding
of the exploitation phase that will follow.

4 Use Case Scenario

This section presents the use case that will serve as an example for the de-
scription of the following exploitation process. This use case scenario involves
two companies. The first company is specialized in plastic manufacturing, and
the second in metal manufacturing. Both companies have significant expertise
in engineering and transforming plastic and metal, respectively, parts using
several technologies. Their key business issue is the difficulty to detect the

RE and EA-based Software Discovery and Reuse 9

Fig. 3 Screenshots of the targeted business application

most appropriate business collaboration opportunities among common cus-
tomer projects. Starting from a Computer-Aided Design (CAD) description of
customer projects, the companies’ consortium needs to quickly detect the set
of projects that they are enabled to produce. The proposed use case aims to
accelerate and maintain a collaboration channel in two complementary busi-
ness domains. The objectives are to reduce project quotation costs and reduce
the delay of customer quote treatment.

Currently, clients send product requests to one of the companies in the form
of CAD/PDF files. Then, the chosen company decomposes all the project’s
features (e.g. parts, dimensions, type of surface, and type of raw material)
to understand customer needs to verify the feasibility of the product and to
determine the relevance of the business opportunity in terms of return on
investment. After the decomposition and if there is a need for subcontracting
(especially for multi-physical and complex products), the two companies will
carry out a succession of negotiations, explore several ways to reach the client’s
requirements, and submit their best offer to the client. For this purpose, we
derive from this use case all needed requirements that we need to discover
existing technical services that allow reducing cost and development time. In
what follows, we present how the developer goes through an architecture and
requirement elicitation process to discover existing services and develop the
needed business application. We present an example of the inputs needed in
each phase of the exploitation process. A screenshot of the developed prototype
is presented in Figure 3.

5 Exploitation Process

To design a new business application reusing technical services from the EAKR,
the architect or developer goes through a requirement elicitation process. This

10 Abdelhadi Belfadel et al.

Requirements Patterns
Volere Specification

Architecture Artifacts
TOGAF

Architecture Artifacts
Phase APhase A.

Architecture Vision

Phase B.
Business

Architecture

Phase C.
Information System

Architecture

Phase D.
Technology
Architecture

EAKR Repository

Requirement Patterns
Phase AArchitecture

Artifacts
Phase A

Requirements
Phase A

Architecture Artifacts
Phase B

Architecture
Artifacts
Phase B

Requirements
Phase B

Architecture Artifacts
Phase C

Architecture
Artifacts
Phase C

Requirements
Phase C

Architecture Artifacts
Phase D

Architecture
Artifacts
Phase D

Requirements
Phase D

Requirement Patterns
Phase B

Requirement Patterns
Phase C

Requirement Patterns
Phase D

Implemented BPMN

Fig. 4 Exploitation Plan

process depicted in Figure 4 is structured in several phases starting with the
architectural vision, going through the business architecture, data, applica-
tion, and technology architecture phase, leading to the generation of an im-
plemented BPMN which uses the qualified services if a match is confirmed.
In the following sub-sections, we describe the actions to realize in each phase,
enriched with a concrete example from the use case scenario to strengthen the
understanding. Templates in JSON format are also proposed to formalize the
architecture artifacts and requirement specifications in each phase.

5.1 Phase A: Architecture vision

The objective of this phase is to develop a high-level vision of the business
value to be delivered as a result of the project. This phase is mainly focused
on gathering the business goals and related objectives of the targeted project.
Other architecture artifacts are used to structure the project drivers, such as
the identification of stakeholders, definition of the organizational model of the
company, and KPIs enabling to evaluate the targeted business application.
Based on the architectural artifacts of phase A (see Figure 5 for the exhaus-
tive list - column ADM artifacts), we fetch requirement patterns (see Figure 5
for the exhaustive list from Volere specification - column Requirements) pro-
duced during previous projects to guide and support the developer for the

RE and EA-based Software Discovery and Reuse 11

Fig. 5 Phase A: alignment of architecture and requirements artifacts

Fig. 6 Example of architecture artifacts managed during phase A and related model

upcoming requirement definition. If a template is found, it is presented to the
developer. In addition to the architecture artifacts, the developer formalizes
his requirements by defining the project drivers such as the business actors,
the client, and the customer if applicable. These inputs help to consolidate
the elicitation phase and redesign his requirements before going further in the
process. All the artifacts once validated are saved in the EAKR to be reused
as requirements templates in the future exploitation process.

12 Abdelhadi Belfadel et al.

Fig. 7 Phase B: alignment of architecture and requirements artifacts

Figure 6 illustrates an example from the use case with some proposed
architecture artifacts and requirements for phase A. The main inputs are the
definition of business goals and objectives of the targeted system, along with
stakeholders that define people who have an interest in the targeted system
and whose inputs are needed to build the product.

5.2 Phase B: Business Architecture

The objective of this phase is to develop the target business architecture that
describes how the enterprise needs to operate to achieve the business goals
previously defined and responds to stakeholder concerns. This phase focuses
on the business side and supports the developer or architect to prepare all
required inputs which are presented in Figure 7.

The most important architectural artifact in this phase is the high-level
business scenario. This is designed using BPMN which is a standard language
for business process modeling. This first high-level modeling is designed using
ArchiMate 1 which is recognized as a standard for EA modeling by the Open
Group [62] and that supports business process modeling. This high-level mod-
eling helps to define the business-entity relationship to know which entities are
needed for every business action or behavior.

This business model is enriched with other architectural artifacts (see Fig-
ure 7 for the exhaustive list - column ADM artifacts) such as the actor catalog
updated with their related roles, and the definition of the architecture re-
quirements specification which form a major component of an implementation
contract and provides quantitative statements as required in ADM Phase B
outputs. It requires the definition of the implementation specifications to guide
the development work, implementation standards in case the implementation

1 https://www.archimatetool.com/

RE and EA-based Software Discovery and Reuse 13

Fig. 8 Example of architecture artifacts managed during phase B and related model

should follow some specific standard. Figure 8 depicts the model of some ar-
chitecture artifacts managed during this phase and shows an example of the
proposed template for some of these architecture artifacts.

Once these elements are defined, a request is sent to the EAKR to fetch
requirement templates of phase B produced during the last projects to be
reused. The aim is to guide the developer to define the project constraints and
the functional requirements as depicted in Figure 7 and inspired from Volere
specification (column Requirement). The resulted templates from the request
(if any) present the scope of previous projects sharing the same context, the
existing business events connected to the actual business scenario, the use
cases of the project or solution, and a set of functional requirements related to
the selected use cases and their type, i.e service type component related to an
SBB or user task activity if it is a user action. Figure 9 depicts the model of
the different artifacts that may result from the EAKR and shows an example
of the proposed template for some of these artifacts.

These resulting templates are presented to the developer to guide him
during this phase B for the consolidation and refinement of his requirements. It
helps to offer support for defining and consolidating the use-cases and related

14 Abdelhadi Belfadel et al.

Fig. 9 Example of requirement artifacts managed during phase B and related model

functional specifications. The proposed template is inspired by the Atomic
Requirement Template which is proposed by [1] and depicted in Figure 10.
This phase B ends with well formalized, testable, and categorized as user or
service task functional requirements.

5.3 Phase C: Information Systems Architecture - Data Architecture

The objective of Phase C is to develop the targeted information system archi-
tecture. It involves a combination of data and application architecture. There-

RE and EA-based Software Discovery and Reuse 15

Fig. 10 Phase B: requirements template selection

fore, this phase is composed of two sub-phases, the Data and Application
Architecture.

The Data architecture phase enhances the definition of the relationship
between data entities and targeted business functions previously defined in
phase B. We have already depicted in Figure 9 the models that enable to link
data entities associated with each business function. Then, the needed action
in this phase is to define the properties of each business entity involved in the
business functions using relevant data models such as the Class Diagram in
the Unified Modeling Language (UML). To this end, we propose templates
based on the proposed models for the definition and formalization of the data
entities involved in a business function. An example related to the use case
is depicted in Figure 12. The left side of the figure depicts the definition of a
class model, and the right-side links an entity with its attributes to a specific
business function where the entity is used.

Additional architecture requirements specifications are as well formalized
such as Data Interoperability or Technology Architecture Constraints (see Fig-
ure 11 for the exhaustive list - column ADM artifacts). These constraints have
the same description template as for requirements. The data interoperability
requirement is needed to formalize specific needs for security policies as for
example input validation or for data format and serialization. Regarding the

16 Abdelhadi Belfadel et al.

Fig. 11 Phase C - Data Architecture: alignment of architecture and requirement artifacts

technology architecture constraint, helps to identify constraints on the infras-
tructure about to be designed.

During this phase, architecture artifacts and requirements are defined at
the same time because we are reaching the low-level description regarding the
business application to develop. Based on these inputs, we fetch and map in
the EAKR the ABBs and business functions using the defined data entities,
and which are compliant with the constraints if defined (see Figure 13-left
column for an ABB template example). The related SBBs and their corre-
sponding technical components are gathered to highlight potential problems
of integration and are presented in the proposed template depicted in Figure
13-right column. The related models of ABB, SBB and application package
have already been described in section 3 and in [5].

Fig. 12 Data Architecture artifacts example for Phase C

RE and EA-based Software Discovery and Reuse 17

Fig. 13 Requirement: Partner or Collaborative Applications (to highlight potential prob-
lems of integration)

5.4 Phase C: Information Systems Architecture - Application Architecture

This phase deals with the application architecture artifacts and the corre-
sponding requirements. (see Figure 14 for the exhaustive list of the artifacts).
The developer or architect is guided to define the technical requirements in
the same template as for the atomic requirement (see Figure 15- left side for
an example). Technology or infrastructure constraints and application inter-
operability requirements are either defined in this phase. Those constraints
are added to previous ones to fetch for SBBs and related applications in the
EAKR. The resulting SBBs and related application (middle and right side of
Figure 15) offer the first overview of existing applications and related technical
services (in the case of service-oriented solutions) to reuse. These solutions fit
the requirements and constraints from a functional, technical, and technology
constraint side. Up to this requirement level, a first version of the targeted
business application based on BPMN 2.0 is generated. The user and service
tasks are generated and a link between service tasks and a set of existing
services is performed based on the elements defined during previous phases
(related to selected SBBs). This first solution reflects the prototype to realize,
aiming to resolve and meet the business need expressed during this elicitation
process.

5.5 Phase D: Technology Architecture

The last phase D is about the technology architecture artifacts (see Figure
16 for the exhaustive list of the artifacts). The objective of this last phase
is to define the basis of the implementation work. As part of phase D, the
developer or architect needs to consider what relevant resources are available
in the EAKR repository to ensure that the target system will meet some

18 Abdelhadi Belfadel et al.

Fig. 14 Phase C - Application Architecture: alignment of architecture and requirement
artifacts

Fig. 15 Application architecture artifacts for Phase C

or all the requirements and constraints. It is important to recognize that in
practice it will be rarely possible to find and reuse components that reach
100% coverage of all defined requirements and constraints. During the previous
phase C, technical and technological constraints are formalized. These latter
are considered during this phase D when matching the final SBBs, enriched
with non-functional properties defining the Quality of Service needed from the
existing services.

The model of non-functional requirement is based on the atomic require-
ment model. An example of the definition of this non-functional requirement
is depicted in Figure 17. The resulted SBBs, if a match is confirmed, reflects
strongly the defined requirements and constraints. This helps to implement the
business process already produced during the last phase with the final SBBs,
and related services with their service endpoints to support the business ap-
plication. The resulted SBBs are ranked as already defined by [63] for QoS
ranking, reflecting the non-functional specifications before selecting the final
SBB and generating an implemented business process. The result of this rank-

RE and EA-based Software Discovery and Reuse 19

Fig. 16 Phase D: Alignment of Architecture and Requirements artifacts

Fig. 17 Phase D: Technology architecture artifacts template example

ing process is used during the generation of the implemented BPMN, where for
each business function (only service tasks), we assign the first ranked SBB to
the related task (see Figure 18 for an example). In the next section, we present
the implementation of a prototype of this exploitation process developed as a
Web Application.

20 Abdelhadi Belfadel et al.

Fig. 18 Example of an implemented BPMN resulted from Phase D

6 Framework Implementation

We implemented the exploitation process as a Web Application as depicted in
Figure 19. The source code is available at Github repository 2. The video of
this technical presentation is available here 3 and the of the entire use case is
available here 4. We selected AngularJS [64] as a Web Framework that enables
the development of single-page applications following the MVC (Model-View-
Controller) pattern for the front-end environment, and NodeJS Framework
[65] which is a popular platform for building server-side Web Applications
written in Javascript. Regarding the EAKR repository, we deployed the EACP
Ontology along with example of qualified open-source solutions from vf-OS 5

and FITMAN project 6 in Apache Jena Fuseki [66] (see Figure 20).

In the following subsections, we describe how a developer or architect can
interact with this application in each phase, what inputs are required (based
on the use case presented earlier in this paper), how information is presented,
and how validation occurs.

Note that in the case where no artifact was found in the repository with
a perfect match, we used string similarity based on Dice’s coefficient. Several
open-source JavaScript packages exist. We selected the string-similarity pack-

2 https://github.com/AbdBelf/EacpFramework
3 https://bul.univ-lyon2.fr/index.php/s/xsAMwEoYIbRYbLh
4 https://bul.univ-lyon2.fr/index.php/s/EfoSLyZwkHYbT9t
5 www.vf-OS.eu
6 http://www.fiware4industry.com

RE and EA-based Software Discovery and Reuse 21

Fig. 19 EACP Web Application - Phase A : Architecture Artifacts

Fig. 20 EAKR based on the EACP Ontology and Apache Jena SPARQL Endpoint

age that is publicly offered in GitHub repository 7. We fixed the threshold to
90%, which could be modified to get flexible results.

7 https://www.npmjs.com/package/string-similarity

22 Abdelhadi Belfadel et al.

6.1 Phase A: Architecture Vision

In this phase, one of the artifacts to provide is about the business goals and
associated objectives of the targeted project. The offered design possibility is
to upload the inputs designed in ArchiMate using the motivation extension.
Figure 19 depicts an example from the proposed use case of the motivation
diagram. An export in XML format is needed to import it to the EACP Web
Application to parse it and retrieve the needed inputs for phase A. Figure 19
depicts phase A of the Web application. The first column is the architecture
and requirements elicitation process that guides the developer to consolidate
and validate their requirements during this phase. The second column displays
the actual phase state and the progression rate of the process. The developer
can as well add other stakeholders not mentioned in the motivation diagram
to be considered for the next actions.

Once the motivation diagram is uploaded to the framework, a parsing of
the XML source file is realized to retrieve the defined business goals and ob-
jectives. Based on these inputs, a request is sent to the EAKR (see an example
of a SPARQL request in Figure 20) to fetch existing requirement templates
guiding the developer during this requirement elicitation phase. Since it is
the first instance of this process, we are not supposed to get any template.
However, and for illustrative reasons, we defined one template that shares the
same business goal to have an example of a template to reuse for defining and
consolidating the required requirements for this phase. As we may notice in
Figure 19, the requirements needed are the definition of the business context,
the client and the customer of the system which is not applicable in this con-
text, and the users that will interact with the targeted system. The retrieved
templates are presented on the ”EAKR Templates Requirement” side. The
process progression column is updated, and the application now is waiting for
the validation of the requirements to redirect the developer to phase B of the
exploitation process.

6.2 Phase B: Business Architecture

Based on the ArchiMate Business-Entity Relationship diagram, the developer
uploads the designed diagram to the architecture artifacts user interface. This
latter is parsed to retrieve the actors, the business processes, and related data
entities involved in each business process or use case. These inputs are con-
sidered during the requirement pattern search in the EAKR repository and
retrieved using the process depicted in section 5.

The requirements specification of phase B deals with the functional re-
quirements and constraints of the project. Based on the use case list and their
related data entities, we fetch the previous project that has been saved to the
EAKR based on a string similarity. These existing requirements help to offer
support for defining and consolidating the use-cases and functional specifica-
tions close to the actual context, the business events connected to the actual

RE and EA-based Software Discovery and Reuse 23

Fig. 21 EACP Web Application - Phase B : Requirement Specification

business scenario and a set of functional requirements related to the selected
use cases and their type (i.e service type component related to an SBB or
user task activity if it is a user action). In the case of our business scenario, no
template has been found but for illustrative reasons, we initialized requirement
templates that correspond to the actual business scenario to be reused.

In this phase, there is a possibility to enrich the functional specifications
by adding required constraints or architecture requirements specifications such
as the specification of implementation or the usage of a specific standard for
the future development of the functional requirements. In the context of this
proposed scenario, we link an implementation standard to the functional re-
quirement “Visualize CAD file“ as depicted in Figure 21.

6.3 Phase C: Data and Application Architecture

The Data architecture phase enhances the definition of the relationship be-
tween data entities and targeted business functions previously defined in phase
B. Then, the next needed action is to define the properties of each business
data involved in the business functions using relevant data models such as
the Class Diagram in Unified Modeling Language (UML) that is serialized to
retrieve the entities with their related attributes.

Based on these inputs, the application fetches and maps in the EAKR
the business functions with the architecture building blocks using the defined
data entities, and which respects the interoperability and infrastructure con-
straints as defined in section 5.3. This latter matches the defined functional
requirements with business functions defined in the ABB model. ABBs that

24 Abdelhadi Belfadel et al.

Fig. 22 EACP Web Application - Phase C : Requirement Specification

correspond to the conditions are selected with their related SBB and cor-
responding applications. The objective is to highlight potential problems of
integration in case any selected ABB presents data interoperability constraint
which is different from the defined constraint in this phase C. Regarding the
Application Architecture phase, the developer is guided to define the techni-
cal requirement using the same template as for the functional requirements.
Technology or infrastructure constraint is either defined. Those constraints
are added to previous ones to select the SBBs as described in section 5. For
instance, in this use case scenario, we define a technical requirement related
to the targeted business function “Visualize CAD File”. Indeed, we target an
SBB which manages the CAD Objects with a specific file extension “STL ex-
tension”, and that is based on the JavaScript library Three.js. Then the action
“Fetch ABBs” triggers the selection of the targeted ABBs and related SBBs
in the EAKR that respect the defined technical requirement for each business
function along with the technology constraints if defined. The result of this
action is depicted in Figure 22.

To this level, these inputs enable to download a first version of the targeted
business application based on BPMN 2.0 specification. Based on the functional
requirements defined in phase B which are composed by user and service tasks,
we generate an XML template (see Figure 18).

6.4 Phase D: Technology Architecture

During the previous phase, technical and technological constraints are for-
malized. These latter are considered when matching the final SBBs, enriched
in this phase with non-functional properties defining the Quality of Service

RE and EA-based Software Discovery and Reuse 25

Fig. 23 EACP Web Application - Phase D : Requirement Specification

needed from the existing services. This to consider what relevant resources are
available in the EAKR repository to ensure that the target system will meet
the requirements and constraints. In the proposed use case scenario, we define
an example for the QoS which is depicted in Figure 23 (NFR List). We set the
average instance time metric as a non-functional requirement applicable for
all the targeted technical services. After validation, SBBs are ranked based on
the defined QoS threshold values.

For each business function, we select the first SBB resulted from the ranking
process as a building block to reuse for the implementation of the targeted
business application. As a final result, we get a last version of an implemented
BPMN with the related service endpoints of the solution building blocks.

7 Discussion

In this work, we propose an Enterprise Architecture Capability Profile specifi-
cally designed for service-oriented software enabling the qualification, the dis-
covery, reuse, and sustainability for new business applications development.
We demonstrate how the proposed approach can assist developers or archi-
tects in the qualification process using the semantic Enterprise Architecture
Knowledge Repository, based on a proposed meta-model inspired mainly from
TOGAF and ISO 16100 Standard and formalized using semantic web tech-
niques. This helps to offer a wider view qualification process that deals with
the two perspectives of services which are the business perspective which brings
value-in-use of the qualified feature for an organization that is interested in
reuse, and the technical side along with a quality of service of the feature
encapsulated by the software service. An exploitation methodology is defined
to overcome the use of ad-hoc methods to identify the most suitable compo-

26 Abdelhadi Belfadel et al.

nents or artifacts to reuse. The proposed solution is designed based on the
alignment of architecting actions with a requirement engineering process, and
evolve together helping to investigate the highest functional compatibility of
the desired functionalities and their related constraints.

As discussed in [67], on some projects, architectural requirements can be
significantly more important than their domain-specific equivalents (as for in-
stance, if we are designing a business application with a specific high availabil-
ity as implementation constraint, the ”up-time” metric would be with a high
importance). Regarding the proposed exploitation methodology, it carries the
validation of the requirements and drives the design of the foundations (i.e.,
architecture) and the requirement definition of the business application we are
building. This means at least, we offer the necessary structure for defining and
validating architectural artifacts and requirement specifications, and at best,
propose templates and artifacts of previous projects or qualified solutions for
recycling and reuse to meet the business need.

Regarding the exploitation process, as you may notice at run-time, the
process finds few results because no previous project with its related require-
ments has been already introduced and capitalized. Also, it depends on the
number of qualified solutions and related services considered as architecture
and solution building blocks in the EAKR Repository. Continuous qualifica-
tion is needed to maximize the exploitation and must be realized frequently
to take full advantage of this proposed methodology.

8 Conclusion

In this work, we defined the Enterprise Architecture Capability Profile that
describes the business, operational and technical aspects for service-oriented
software. It is designed based on an Enterprise Architecture Framework (TO-
GAF) and the best practices related to the implementation of ISO 16100
standard concepts. An exploitation methodology of the designed capability
profile is proposed and based on the alignment of a requirements engineer-
ing process with the Architecture Development Method from TOGAF. These
latter evolve together to investigate the highest functional and technical com-
patibility of the desired functionalities and related constraints, respond to
end-user requirements, and efficiently reuse the qualified solutions. Finally, we
provided an implementation with an industrial use case to demonstrate the
effectiveness of this approach. Concepts presented in this research work have
been implemented as open-source prototypes based on Node JS and Java plat-
forms. These prototypes cover the entire exploitation process that leads to the
targeted ready-to-use business application.

Acknowledgment

This paper presents work developed in the scope of the project vf-OS. This
project has received funding from the European Union’s Horizon 2020 research

RE and EA-based Software Discovery and Reuse 27

and innovation programme under grant agreement no. 723710. The content of
this paper does not reflect the official opinion of the European Union. Respon-
sibility for the information and views expressed in this paper lies entirely with
the authors.

References

1. Suzanne Robertson and James Robertson. Mastering the requirements process: Getting
requirements right (3rd Edition). Addison-wesley, 2012.

2. Ian Sommerville. Software engineering 9th edition. ISBN-10137035152, 2011.
3. Abdelhadi Belfadel, Emna Amdouni, Jannik Laval, Chantal Bonner Cherifi, and Ne-

jib Moalla. Towards software reuse through an enterprise architecture-based software
capability profile. Enterprise Information Systems, pages 1–42, 2020.

4. R Gosselt. A maturity model based roadmap for implementing togaf. In 17th Twente
Student Conference on IT, 2012.

5. Abdelhadi Belfadel, Jannik Laval, Chantal Bonner Cherifi, and Néjib Moalla. Seman-
tic software capability profile based on enterprise architecture for software reuse. In
International Conference on Software and Software Reuse, pages 3–18. Springer, 2020.

6. The Open Group. The Open Group Architecture Framework TOGAF™ Version 9.
Basharat Hussain, 2009.

7. Roel J Wieringa. Requirements engineering: Problem analysis and solution specification.
In International Conference on Web Engineering, pages 13–16. Springer, 2004.

8. S ANSI. Ieee. ieee guide to software requirements specifications, 1984.
9. MA Davis. Software requirements. OBJECTS FUNCTIONS & STATUS, 1993.

10. Syed Waqas Ali, Qazi Arbab Ahmed, and Imran Shafi. Process to enhance the quality
of software requirement specification document. In 2018 International Conference on
Engineering and Emerging Technologies (ICEET), pages 1–7. IEEE, 2018.

11. Zahoor Ahmad, Musarrat Hussain, Abdur Rehman, Usman Qamar, and Muhammad
Afzal. Impact minimization of requirements change in software project through require-
ments classification. In Proceedings of the 9th International Conference on Ubiquitous
Information Management and Communication, page 15. ACM, 2015.

12. Abeer Abdulaziz Alsanad, Azeddine Chikh, and Abdulrahman Mirza. A domain on-
tology for software requirements change management in global software development
environment. IEEE Access, 7:49352–49361, 2019.

13. Xiaofei Xu, Ruilin Liu, Zhongjie Wang, Zhiying Tu, and Hanchuan Xu. Re2sep: A two-
phases pattern-based paradigm for software service engineering. In 2017 IEEE World
Congress on Services (SERVICES), pages 67–70. IEEE, 2017.

14. Huafeng Chen and Keqing He. A method for service-oriented personalized requirements
analysis. Journal of Software Engineering and Applications, 4(01):59, 2011.

15. Konstantinos Zachos, Neil Maiden, Xiaohong Zhu, and Sara Jones. Discovering web
services to specify more complete system requirements. In International Conference on
Advanced Information Systems Engineering, pages 142–157. Springer, 2007.

16. Bertrand Verlaine, Ivan Jureta, and Stephane Faulkner. Towards conceptual founda-
tions of requirements engineering for services. In IEEE Computer, editor, Proceedings of
the Fifth IEEE International Conference on Research Challenges in Information Sci-
ence (RCIS 2011), Gosier, Guadeloupe, pages 147–157. IEEE Computer society, 2011.
Publication editors : IEEE Computer Society.

17. Ivan J Jureta, John Mylopoulos, and Stéphane Faulkner. A core ontology for require-
ments. Applied Ontology, 4(3-4):169–244, 2009.

18. Dumitru Roman, Uwe Keller, Holger Lausen, Jos De Bruijn, Rubén Lara, Michael Stoll-
berg, Axel Polleres, Cristina Feier, Cristoph Bussler, and Dieter Fensel. Web service
modeling ontology. Applied ontology, 1(1):77–106, 2005.

19. Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal Mukhi, and
Sanjiva Weerawarana. Unraveling the web services web: an introduction to soap, wsdl,
and uddi. IEEE Internet computing, 6(2):86–93, 2002.

28 Abdelhadi Belfadel et al.

20. K Breininger, F Najmi, and N Stojanovic. The ebxml registry repository version 3.0.
1. OASIS, Febuary, 2007.

21. Massimo Paolucci, Takahiro Kawamura, Terry R Payne, and Katia Sycara. Semantic
matching of web services capabilities. In International Semantic Web Conference, pages
333–347. Springer, 2002.

22. Jian Wu and Zhaohui Wu. Similarity-based web service matchmaking. In 2005 IEEE
International Conference on Services Computing (SCC’05) Vol-1, volume 1, pages 287–
294. IEEE, 2005.

23. Marta Sabou and Jeff Pan. Towards semantically enhanced web service repositories.
Web Semantics: Science, Services and Agents on the World Wide Web, 5(2):142–150,
2007.

24. Jian Yu, Quan Z Sheng, Jun Han, Yanbo Wu, and Chengfei Liu. A semantically en-
hanced service repository for user-centric service discovery and management. Data &
Knowledge Engineering, 72:202–218, 2012.

25. Konstanty Haniewicz. Local controlled vocabulary for modern web service description.
In International Conference on Artificial Intelligence and Soft Computing, pages 639–
646. Springer, 2012.

26. C. E. Hog, R. B. Djemaa, and I. Amous. Adaptable web service registry for publishing
profile annotation description. In 2013 IEEE 10th International Conference on Ubiq-
uitous Intelligence and Computing and 2013 IEEE 10th International Conference on
Autonomic and Trusted Computing, pages 533–538, Dec 2013.

27. H. Yoo, Y. Park, and T. Lee. Ontology based keyword dictionary server for semantic ser-
vice discovery. In 2013 IEEE Third International Conference on Consumer Electronics
¿ Berlin (ICCE-Berlin), pages 295–298, Sep. 2013.

28. [28] Jonas, Philipp Brune, and Heiko Gewald. A description and retrieval model for
web services including extended semantic and commercial attributes. In 2014 IEEE
8th International Symposium on Service Oriented System Engineering, pages 258–265.
IEEE, 2014.

29. Tom Narock, Victoria Yoon, and Sal March. A provenance-based approach to semantic
web service description and discovery. Decision Support Systems, 64:90–99, 2014.

30. K. Moradyan, O. Bushehrian, and R. Akbari. A query ontology to facilitate web service
discovery. In 2015 2nd International Conference on Knowledge-Based Engineering and
Innovation (KBEI), pages 202–206, Nov 2015.

31. Sihem Ben Sassi. Towards a semantic search engine for open source software. In Inter-
national Conference on Software Reuse, pages 300–314. Springer, 2016.

32. Kavitha Esther Rajakumari. Towards a novel conceptual framework for analyzing code
clones to assist in software development and software reuse. In 2020 4th International
Conference on Intelligent Computing and Control Systems (ICICCS), pages 105–111.
IEEE, 2020.

33. Elena Goncharuk. A case study on pragmatic software reuse, 2021.
34. Matthias Loskyll, Jochen Schlick, Stefan Hodek, Lisa Ollinger, Tobias Gerber, and Bog-

dan P̂ırvu. Semantic service discovery and orchestration for manufacturing processes.
In Emerging Technologies & Factory Automation (ETFA), 2011 IEEE 16th Conference
on, pages 1–8. IEEE, 2011.

35. Hamida Seba, Sofiane Lagraa, and Hamamache Kheddouci. Web service matchmaking
by subgraph matching. In Joaquim Filipe and José Cordeiro, editors, Web Informa-
tion Systems and Technologies, pages 43–56, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

36. Aabhas V Paliwal, Basit Shafiq, Jaideep Vaidya, Hui Xiong, and Nabil Adam.
Semantics-based automated service discovery. IEEE Transactions on Services Com-
puting, 5(2):260–275, 2011.

37. Yang Xue, Chunhong Zhang, and Yang Ji. Restful web service matching based on
wadl. In 2015 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery, pages 364–371. IEEE, 2015.

38. Maya Rathore and Ugrasen Suman. An arsm approach using pcb-qos classification for
web services: a multi-perspective view. In 2013 International Conference on Advances in
Computing, Communications and Informatics (ICACCI), pages 165–171. IEEE, 2013.

39. Hanane Becha and Sana Sellami. Prioritizing consumer-centric nfps in service selection.
In International Conference on Conceptual Modeling, pages 283–292. Springer, 2014.

RE and EA-based Software Discovery and Reuse 29

40. Amandeep Kaur Sandhu and Ranbir Singh Batth. Software reuse analytics using in-
tegrated random forest and gradient boosting machine learning algorithm. Software:
Practice and Experience, 51(4):735–747, 2021.

41. Miguel Ángel Rodŕıguez-Garćıa, Rafael Valencia-Garćıa, Francisco Garćıa-Sánchez, and
J Javier Samper-Zapater. Ontology-based annotation and retrieval of services in the
cloud. Knowledge-Based Systems, 56:15–25, 2014.

42. Georgia M Kapitsaki. Annotating web service sections with combined classification. In
2014 IEEE International Conference on Web Services, pages 622–629. IEEE, 2014.

43. Niranjan N Chiplunkar et al. Dynamic search and selection of web services. In 2014
IEEE International Conference on Advanced Communications, Control and Computing
Technologies, pages 1532–1536. IEEE, 2014.

44. Rong Li, Keqing He, and Sai Wang. An ontology-based process description and reason-
ing approach for service discovery. In Proceedings of 2013 3rd International Conference
on Computer Science and Network Technology, pages 320–325. IEEE, 2013.

45. Michiko Matsuda, Kiminobu Kodama, Satoshi Noguchi, Sakuyuki Onishi, Toshikatsu
Asano, Takuya Horikita, and Kousuke Komatsubara. Configuration of a production
control system through cooperation of software units using their capability profiles in
the cloud environment. Procedia CIRP, 17:416–421, 2014.

46. Rosa Alarcon, Rodrigo Saffie, Nikolas Bravo, and Javiera Cabello. Rest web service
description for graph-based service discovery. In International Conference on Web
Engineering, pages 461–478. Springer, 2015.

47. Yehia Elshater, Khalid Elgazzar, and Patrick Martin. godiscovery: Web service discovery
made efficient. In 2015 IEEE International Conference on Web Services, pages 711–716.
IEEE, 2015.

48. Nicolas Boissel-Dallier, Fréderick Benaben, Jean-Pierre Lorré, and Hervé Pingaud. Me-
diation information system engineering based on hybrid service composition mechanism.
Journal of Systems and Software, 108:39 – 59, 2015.

49. Emna Khanfir, Raoudha Ben Djmeaa, and Ikram Amous. Quality and context awareness
intention web service ontology. In 2015 IEEE World Congress on Services, pages 121–
125. IEEE, 2015.

50. Sophea Chhun, Néjib Moalla, and Yacine Ouzrout. Qos ontology for service selection
and reuse. Journal of Intelligent Manufacturing, 27(1):187–199, 2016.

51. Lalit Purohit and Sandeep Kumar. Web service selection using semantic matching. In
Proceedings of the International Conference on Advances in Information Communica-
tion Technology & Computing, page 16. ACM, 2016.

52. Khalid Elgazzar, Hossam S Hassanein, and Patrick Martin. Daas: Cloud-based mobile
web service discovery. Pervasive and Mobile Computing, 13:67–84, 2014.

53. Furkh Zeshan, Radziah Mohamad, Mohammad Nazir Ahmad, Syed Asad Hussain, Ad-
nan Ahmad, Imran Raza, Abid Mehmood, Ikram Ulhaq, Arafat Abdulgader, and Imran
Babar. Ontology-based service discovery framework for dynamic environments. IET
Software, 11(2):64–74, 2017.

54. Wenxin Mu, Frederick Benaben, and Herve Pingaud. An ontology-based collaborative
business service selection: contributing to automatic building of collaborative business
process. Service Oriented Computing and Applications, 12(1):59–72, 2018.

55. Iso 16100-1:2009 industrial automation systems and integration – manufacturing soft-
ware capability profiling for interoperability – part 1: Framework, 2009.

56. Microsoft Patterns and Practices Team. Microsoft® Application Architecture Guide,
2nd Edition (Patterns and Practices). Microsoft Press, 2009.

57. Iso/iec 25010:2011 systems and software engineering – systems and software quality
requirements and evaluation (square) – system and software quality models, 2011.

58. David Martin, Massimo Paolucci, Sheila McIlraith, Mark Burstein, Drew McDermott,
Deborah McGuinness, Bijan Parsia, Terry Payne, Marta Sabou, Monika Solanki, et al.
Bringing semantics to web services: The owl-s approach. In International Workshop on
Semantic Web Services and Web Process Composition, pages 26–42. Springer, 2004.

59. Aurona Gerber, Paula Kotzé, and Alta Van der Merwe. Towards the formalisation of
the togaf content metamodel using ontologies. 2010.

60. Marco Rospocher, Chiara Ghidini, and Luciano Serafini. An ontology for the business
process modelling notation. In FOIS, pages 133–146, 2014.

30 Abdelhadi Belfadel et al.

61. Werner Ceusters. An information artifact ontology perspective on data collections and
associated representational artifacts. In MIE, pages 68–72, 2012.

62. Andrew Josey, Marc Lankhorst, Iver Band, Henk Jonkers, and Dick Quartel. An in-
troduction to the archimate® 3.0 specification. White Paper from The Open Group,
2016.

63. Hind Benfenatki, Catarina Ferreira Da Silva, Aı̈cha-Nabila Benharkat, Parisa Ghodous,
and Zakaria Maamar. Linked usdl extension for describing business services and users’
requirements in a cloud context. International Journal of Systems and Service-Oriented
Engineering (IJSSOE), 7(3):15–31, 2017.

64. Brad Green and Shyam Seshadri. AngularJS. ” O’Reilly Media, Inc.”, 2013.
65. M Cantelon, M Harter, TJ Holowaychuk, and N Rajlich. Node. js in action, greenwich,

ct, 2013.
66. Apache Jena. Fuseki: serving rdf data over http, 2014.
67. Peter Eeles. Capturing architectural requirements, 2005. Accessed: 2020-05-10.

