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Uniqueness result for a weighted pendulum equation modeling domain walls in notched ferromagnetic nanowires

Introduction

We consider a weight a : R → R that is a bounded positive measurable function (not necessarily continuous) satisfying A 0 ≥ a(x) ≥ a 0 > 0 for a.e. x ∈ R.

Motivated by a reduced model for notched ferromagnetic thin nanowires (see [START_REF] Carbou | Stabilization of walls in notched ferromagnetic nanowires[END_REF]) where a represents the area of transversal sections in the nanowire (the area a may have jumps in that model), we associate to the magnetization m = (m 1 , m 2 , m 3 ) : R → S 2 the following energy functional

F (m) = R a(x)|∂ x m| 2 + a(x)(m 2 2 + m 2 3 ) dx.
We are interested in the analysis of domain walls that are transition layers connecting the opposite directions ±e 1 , where e 1 = (1, 0, 0). Up to a rotation and a translation (eventually yielding a translated weight), we fix the center of the domain wall at the origin by imposing m(0) = e 2 = (0, 1, 0). Our first theorem is the following uniqueness result for optimal domain walls:

Theorem 1 There exists a unique minimizer m : R → S 2 of F under the constraints m(0) = e 2 and m(±∞) = ±e 1 .

This minimizer has the form m = (sin ϕ, cos ϕ, 0) where ϕ : R → R is an increasing Lipschitz function with ϕ(0) = 0 and ϕ(±∞

) = ± π 2 (2) 
F m + tv |m + tv| = R a(x)|∂ x v| 2 + a(x)(v 2 2 + v 2 3 ) -λ(x)|v| 2 dx ≥ 0,
where λ(x) = a(x)|∂ x m| 2 + a(x)m 2 2 is the Lagrange multiplier for the constraint |m| = 1.

Theorem 1 is based on the following uniqueness result for solutions of the weighted pendulum equation (3).

Theorem 2 There exists a unique solution ϕ ∈ Ḣ1 (R) to (3) in R \ {0} under the constraints (2) that satisfies -π 2 ≤ ϕ(-x) ≤ 0 ≤ ϕ(x) ≤ π 2 for every x > 0. This solution ϕ is Lipschitz and increasing in R, a(x)∂ x ϕ ∈ W 1,∞ (R \ {0}) is positive and ϕ is the unique minimizer of min G(ϕ) = F (sin ϕ, cos ϕ, 0) : ϕ(0) = 0 and ϕ(±∞

) = ± π 2 . ( 4 
)
Furthermore, if a is even in R and non-decreasing in R + , then ϕ is an odd stable solution to (3) in the entire R, i.e., for every η ∈ H 1 (R), 2 -a(x) cos 2ϕ(x) η 2 dx ≥ 0.

Q(η) = 1 2 d 2 dt 2 t=0 G(ϕ + tη) = R a(x)(∂ x η)

Remark 3

In Theorems 1 and 2, the even symmetry of the weight a is imposed to have the odd symmetry of the solution ϕ yielding the equation (3) to hold in the entire R. Moreover, the monotonicity of a is imposed to have the stability of the solutions ϕ and m.

Without the assumption that a is non-decreasing in R + , the solution ϕ in Theorem 2 can be unstable, i.e., Q(η) < 0 in some direction η ∈ H 1 (R) (yielding also the instability of the constraint minimizer m in Theorem 1). We give the following example for a non-increasing weight a in R + : Proposition 4 Let a : R → R be the even function given by a = 2 in (-1, 1) and a = 1 in

R \ [-1, 1]. Then the solution ϕ in Theorem 2 is unstable, i.e., Q(η) < 0 in some direction η ∈ H 1 (R). Consequently, the constraint minimizer m in Theorem 1 is unstable, i.e., T (v) < 0 for some direction v ∈ H 1 (R, R 3 ) with v • m = 0 in R. Moreover, there is no minimizer m : R → S 2 of F under the constraints m(±∞) = ±e 1 .
In the case of an even weight a that is C 1 smooth in R and non-decreasing in R + , existence and stability results for domain walls are proved by Carbou and Sanchez in [START_REF] Carbou | Stabilization of walls in notched ferromagnetic nanowires[END_REF]. They address the uniqueness of domain walls as an open question. Theorems 1 and 2 give positive results for the question of uniqueness. The proof is based on a variational method for non-smooth and nonmonotonous weight a (instead of the shooting method used in [START_REF] Carbou | Stabilization of walls in notched ferromagnetic nanowires[END_REF] where the regularity of a is essential). The difficulty here consists in the heterogeneity of the non-smooth weight a for which the equipartition of the two terms in the energy is lost in general for optimal domain walls (in contrast to the case of homogeneous weight yielding an autonomous ODE in (3)).

The weighted pendulum equation

Note that the solutions ϕ : R → R to the weighted pendulum equation (3) in R are critical points of the energy functional

G(ϕ) = F (sin ϕ, cos ϕ, 0) = R a(x)(∂ x ϕ) 2 + a(x) cos 2 ϕ dx.
We start with the following existence result:

Lemma 5 There exists a minimizer ϕ : R → R in (4). Any such minimizer ϕ satisfies -π 2 ≤ ϕ(-x) ≤ 0 ≤ ϕ(x) ≤ π 2 for every x > 0 and (3) holds in R \ {0}.

Proof of Lemma 5. We divide the proof in several steps:

Step 1. Existence of a minimizer. Let (ϕ n : R → R) n be a minimizing sequence in [START_REF] Côte | Asymptotic stability of precessing domain walls for the Landau-Lifshitz-Gilbert equation in a nanowire with Dzyaloshinskii-Moriya interaction[END_REF]. By cutting at ± π 2 , the energy density cannot increase, so we can assume

ϕ n ∈ [-π 2 , π 2 ] in R. Moreover, replacing ϕ n by |ϕ n | in R + and (-|ϕ n |) in R -,
the energy density does not change, so we can assume

ϕ n ∈ [0, π 2 ] in R + and ϕ n ∈ [-π 2 , 0] in R -. As (G(ϕ n )) n is bounded, by (1) 
we get that (ϕ n ) n is bounded in Ḣ1 (R). Thus, for a subsequence, ϕ n ϕ weakly in Ḣ1 (R) and uniformly in every compact of R. In particular, ϕ(0) = 0 and

ϕ n → ϕ pointwise in R, so ϕ ∈ [0, π 2 ] in R + and ϕ ∈ [-π 2 , 0] in R -. By l.s.c. of the map ψ → R a(x)ψ 2 dx in weak L 2 (R) and Fatou's lemma, we deduce that G is l.s.c. in weak Ḣ1 (R), so that lim inf n→∞ G(ϕ n ) ≥ G(ϕ). In particular, cos ϕ ∈ H 1 (R ± ) yielding cos ϕ(±∞) = 0. As ϕ(+∞) ∈ [0, π 2 ] and ϕ(-∞) ∈ [-π 2 , 0], we conclude that ϕ(±∞) = ± π 2 , i.e.
, ϕ is a minimizer in (4).

Step 2. Properties of any minimizer in (4). Let ϕ be an arbitrary minimizer in [START_REF] Côte | Asymptotic stability of precessing domain walls for the Landau-Lifshitz-Gilbert equation in a nanowire with Dzyaloshinskii-Moriya interaction[END_REF]. Then ϕ ∈ Ḣ1 (R) is continuous in R. By minimality, ϕ verifies (3) in D (R \ {0}). Thus, by [START_REF] Carbou | Stability of static walls for a three-dimensional model of ferromagnetic material[END_REF],

∂ x (a(x)∂ x ϕ) ∈ L ∞ (R \ {0}) yielding a(x)∂ x ϕ is Lipschitz in every set (-R, R) \ {0}; in particular, ∂ x ϕ is a bounded function in (-R, R), so ϕ is Lipschitz in (-R, R) for every R > 0. Claim 1: We prove -π 2 ≤ ϕ ≤ π 2 in R.
For that, assume by contradiction that there is a point in R where ϕ is larger than π 2 . By continuity of ϕ and (2), it means that there is a non-empty interval J = (x 0 , y 0 ) such that ϕ > π 2 in J and ϕ(x 0 ) = ϕ(y 0 ) = π 2 . If we cut-off at π 2 and set φ := ϕ in R \ J and φ = π 2 in J, then φ satisfies the constraints (2) and G(ϕ) > G( φ) (as the energy of ϕ in J is positive while the energy of φ in J vanishes) which contradicts the minimality of ϕ. Thus, ϕ ≤ π 2 in R. A similar argument shows that ϕ ≥ -π 2 in R. Claim 2: We prove that 0 is the only vanishing point of ϕ in R. For that, assume by contradiction that there is a point x 0 = 0 such that ϕ(x 0 ) = 0. W.l.o.g., we may assume that x 0 > 0. Set J = (0, x 0 ) and φ = ϕ in R \ J and φ = -ϕ in J. Then φ is also a minimizer in (4) because G(ϕ) = G( φ). By the regularity above, it means that a(x)∂ x ϕ and a(x)∂ x φ are continuous around

x 0 = 0. As a(x)∂ x ϕ(x) = a(x)∂ x φ(x) if x > x 0 and a(x)∂ x ϕ(x) = -a(x)∂ x φ(x) in J, we conclude that a(x 0 )∂ x ϕ(x 0 ) = 0.
Then we apply the unique continuation principle for the solution

ϕ * = 0 to (3) in R + : writing ξ = a(x)∂ x ϕ, the ODE (3) for ϕ in R + is equivalent to the linear ODE system ∂ x (ϕ, ξ) = ( ξ a(x) , -a(x)b(x)ϕ) in R + with bounded coefficients, where b is given by b(x) =    sin ϕ(x) cos ϕ(x) ϕ(x) if ϕ(x) = 0, 1 if ϕ(x) = 0. As (ϕ(x 0 ), ξ(x 0 )) = (0, 0), we have |(ϕ(x), ξ(x))| ≤ C x x0 |(ϕ(t), ξ(t))| dt for every x > 0 and
Gronwall's lemma implies (ϕ, ξ) = (0, 0) in R + , in particular, ϕ = 0 in R + which contradicts ϕ(+∞) = + π 2 . Therefore, ϕ vanishes only at 0 in R which proves the claim. By continuity of ϕ and (2), we conclude that ϕ ∈

[-π 2 , 0] in R -and ϕ ∈ [0, π 2 ] in R + .
We prove now the uniqueness result for the weighted pendulum equation:

Proof of Theorem 2. Let ϕ : R → R be a Ḣ1 (R) solution of (3) in R\{0}, ϕ(0) = 0, ϕ(±∞) = ± π 2 and ϕ ∈ [-π 2 , 0] in R -and ϕ ∈ [0, π 2 ] in R + . Then ϕ is continuous in R, ∂ x (a(x)∂ x ϕ) ∈ L ∞ (R\{0}) yielding a(x)∂ x ϕ is Lipschitz in (-R, R) \ {0} and ϕ is Lipschitz in (-R, R) for every R > 0.
Step 1. We show that ∂ x ϕ is a non-negative bounded function in R. We prove it in R + (a similar argument yields also the conclusion in R -). As (

∂ x ϕ) 2 ∈ L 1 (R + ), we choose x n → +∞ Lebesgue points of ∂ x ϕ such that ∂ x ϕ(x n ) → 0 as n → ∞. As 0 ≤ ϕ ≤ π 2 in R + , we have by (3) that the continuous function a(x)∂ x ϕ in R + satisfies ∂ x (a(x)∂ x ϕ) ≤ 0 in R + . (5) 
Then for every x > y > 0, we have for every large n (so that

x n > x) that a(y)∂ x ϕ(y) ≥ a(x)∂ x ϕ(x) ≥ a(x n )∂ x ϕ(x n ) → 0 as n → 0. As ∂ x ϕ is bounded around 0, (1) yields +∞ > A0 a0 lim sup y 0 ∂ x ϕ(y) ≥ ∂ x ϕ(x) ≥ 0 for a.e. x ∈ R + , i.e., ∂ x ϕ ∈ L ∞ (R +
) and non-negative.

Step 2. We show ∂ x ϕ > 0 a.e. in R. We prove it first in R + . Assume by contradiction that there exists a Lebesgue point x 0 > 0 of ∂ x ϕ such that ∂ x ϕ(x 0 ) = 0. By (5) and Step 1, as a(•)∂ x ϕ is continuous in R + , we get 0 = a(x 0 )∂ x ϕ(x 0 ) ≥ a(x)∂ x ϕ(x) ≥ 0 for every x > x 0 , so ∂ x ϕ = 0 a.e. in (x 0 , +∞), that is, ϕ = π 2 in (x 0 , +∞) by [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF]. Then the unique continuation principle 1 for the solution ϕ * = π 2 in (3) implies ϕ = ϕ * in R + which contradicts ϕ(0) = 0. Therefore, ∂ x ϕ > 0 a.e. in R + . Also, by Step 1 (through ( 5)), we have lim inf x 0 ∂ x ϕ > 0. A similar argument yields also the conclusion in R -which finishes Step 2.

By

Step 2, ϕ is Lipschitz and increasing in R, in particular, 0 is the only vanishing point of ϕ and -π 2 < ϕ < π 2 in R. As a satisfies (1), by (3) and ϕ ∈ Ḣ1 , we deduce that a(x)

∂ x ϕ ∈ W 1,∞ ∩ L 2 (R \ {0}) with a(x)∂ x ϕ > 0 in R \ {0}.
Step 3. We prove that G(ϕ) < ∞. As ϕ ∈ Ḣ1 is continuous in R and a satisfies (1), it is enough to prove cos

2 ϕ ∈ L 1 (R \ [-1, 1]).
For that, multiplying (3) by ϕ, integration by parts implies for every y > 1:

C ≥ -a(x)∂ x ϕ(x)ϕ(x) y 1 + y 1 a(x)(∂ x ϕ) 2 dx = - y 1 ∂ x (a(x)∂ x ϕ)ϕ dx = y 1 a(x) sin ϕ cos ϕϕ dx ≥ a 0 ϕ(1) sin ϕ(1) y 1 cos ϕ dx ≥ C y 1 cos 2 ϕ dx 1 Writing ψ = π 2 -ϕ and ξ = a(x)∂xϕ, the ODE (3) in ϕ in R + is equivalent to the linear ODE system ∂x(ψ, ξ) = (-ξ a(x) , -a(x) b(x)ψ) in R + with bounded coefficients, where b is given by b(x) =    sin ϕ(x) cos ϕ(x) π 2 -ϕ(x) if ϕ(x) = π 2 , 1 if ϕ(x) = π 2 .
As (ψ, ξ) = (0, 0) in (x 0 , +∞), Gronwall's lemma implies (ψ, ξ) = (0, 0) in R + , i.e., ϕ = π 2 in R + .

where C, C > 0 do not depend on y because ϕ and a(x)∂ x ϕ are Lipschitz in (1, ∞). Passing to the limit y → ∞, we get cos ϕ ∈ L2 ((1, ∞)). The same argument yields cos ϕ ∈ L 2 ((-∞, 1)).

Step 4. We show that ϕ is a minimizer in (4). For that, identifying

R 2 ∼ R 2 × {0}, we set m = (sin ϕ, cos ϕ, 0) : R → S 1 × {0} ∼ S 1 . Then m ∈ W 1,∞ ∩ Ḣ1 (R, S 1 × {0}) and by (3), m satisfies -∂ x (a(x)∂ x m) + a(x)m 2 e 2 = λ(x)m in R \ {0} (6) 
with the Lagrange multiplier

λ(x) = a(x)|∂ x m| 2 + a(x)m 2 2 = a(x)(∂ x ϕ) 2 + a(x) cos 2 ϕ ∈ L ∞ (R).
As ϕ vanishes only at 0 and

-π 2 < ϕ < π 2 in R, we have |m 1 | = | sin ϕ| > 0 in R \ {0}
and m 2 = cos ϕ > 0 in R. Let now φ be an arbitrary Ḣ1 (R) function satisfying the constraints φ(0) = 0 and φ(+∞) = ± π 2 . We want to show that G( φ) ≥ G(ϕ). If G( φ) = +∞, we are done. Otherwise, we may assume that G( φ) < ∞. We set m = (sin φ, cos φ, 0) : R → S 1 × {0} and write

m = m + v, m • v = - |v| 2 2 , v = (v 1 , v 2 , 0) ∈ H 1 (R, R 2 × {0}), v(0) = (0, 0, 0). This is because v 2 = m2 -m 2 ∈ L 2 (R); to show that v 1 = m1 -m 1 ∈ L 2 (R + ), one uses that ϕ(x), φ(x) ∈ [π/4, 3π/4
] for all large x and then | sin α -sin β| ≤ C| cos α -cos β| for every α, β ∈ [π/4, 3π/4], similarly v 1 ∈ L 2 (R -). By ( 6), we compute using the second variation T of F at m:

G( φ) -G(ϕ) = F ( m) -F (m) = R a(x)|∂ x v| 2 + a(x)v 2 2 + 2a(x) ∂ x m • ∂ x v + m 2 v 2 ) dx = R a(x)|∂ x v| 2 + a(x)v 2 2 + 2λ(x)m • v dx = T (v) = (L 1 v 1 , v 1 ) + (L 2 v 2 , v 2 )
where (•, •) is the duality (H -1 , H 1 ) in R and L 1 and L 2 are the linear operators

L 1 = -∂ x (a(x)∂ x ) -λ(x), L 2 = -∂ x (a(x)∂ x ) + a(x) -λ(x). (7) 
The minimality of ϕ comes by the following:

Claim: We prove that (L 1 v 1 , v 1 ) ≥ 0 and (L 2 v 2 , v 2 ) ≥ 0 with equality if and only if v 1 = v 2 = 0.
For that, we use the following method (called Hardy's decomposition, see e.g., [START_REF] Ignat | Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals[END_REF][START_REF] Ignat | On the uniqueness of minimisers of Ginzburg-Landau functionals[END_REF][START_REF] Ignat | Local minimality of R N -valued and S N -valued Ginzburg-Landau vortex solutions in the unit ball B N[END_REF])

: if ṽ1 ∈ C ∞ c (R \ {0}) and ṽ2 ∈ C ∞ c (R)
, then one decomposes ṽj = m j vj (yielding vj is Lipschitz with compact support in R since m j does not vanish on the support of ṽj ) and uses that L j m j = 0 in R \ {0} for j = 1, 2, so that (e.g., see [START_REF] Ignat | Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals[END_REF]Lemma A.1] or Lemma 7 in Appendix):

(L 1 ṽ1 , ṽ1 ) = R a(x)m 2 1 ∂ x ( ṽ1 m 1 ) 2 dx, (L 2 ṽ2 , ṽ2 ) = R a(x)m 2 2 ∂ x ( ṽ2 m 2 ) 2 dx.
To conclude, note that ψ → (L j ψ, ψ) is continuous in strong H 1 topology (as a, λ ∈ L ∞ ) and v j can be approximated in strong H 1 (R) by the above ṽj , j = 1, 2. Therefore, Fatou's lemma yields 2

(L 1 v 1 , v 1 ) ≥ R\{0} a(x)m 2 1 ∂ x ( v 1 m 1 ) 2 dx, (L 2 v 2 , v 2 ) ≥ R a(x)m 2 2 ∂ x ( v 2 m 2 ) 2 dx. ( 8 
) If (L 1 v 1 , v 1 ) = (L 2 v 2 , v 2 ) = 0, we deduce that v 1 = c ± 1 m 1 in R ± and v 2 = c 2 m 2 in R for some constants c ±
1 and c 2 . As v 1 → 0 and m 1 → ±1 as x → ±∞, we have c ± 1 = 0 yielding v 1 = 0 in R. As m 2 (0) = 1 and v 2 (0) = 0, we also have c 2 = 0 yielding v 2 = 0 in R; thus, m = m in R.

Step 5. Uniqueness of ϕ. Assume that φ ∈ Ḣ1 is another solution to (3) in R \ {0} with the stated assumptions. Then by Step 4, φ is a minimizer in (4), so for m = (sin φ, cos φ, 0), we get

G( φ) = F ( m) = F (m) = G(ϕ) yielding m = m in R and then ϕ = φ in R by the uniqueness 3 of the lifting ϕ, φ ∈ [-π 2 , π 2 ] in R.
In particular, ϕ is the unique minimizer in (4).

Step 5bis. Another proof for the uniqueness of ϕ. This second method is based on a convexity argument inspired by [6, Proposition 1]. For that, denoting m 2 = cos ϕ, we have

G(ϕ) = E(m 2 ) = R a(x) (∂ x m 2 ) 2 1 -m 2 2 + a(x)m 2 2 dx.
Note that the function (v, w) ∈ R × (-1, 1) → v 2 1-w 2 is convex and w ∈ R → w 2 is strictly convex. Therefore, restricting ourselves to functions m 2 : R \ {0} → (-1, 1), the functional m 2 → E(m 2 ) is strictly convex yielding the uniqueness of a critical point m 2 : R \ {0} → (-1, 1) of E satisfying m 2 (0) = 1 and m 2 (±∞) = 0. This yields the uniqueness of critical points ϕ of G satisfying (2), ϕ ∈ (-π, 0) in R -and ϕ ∈ (0, π) in R + .

Step 6. If a is even in R and non-decreasing in R + , then Q(η) ≥ 0 for every η ∈ H 1 (R). This is true whenever η(0) = 0 by the minimality of ϕ in (4): G(ϕ + tη) ≥ G(ϕ) for every t ∈ R (as (ϕ + tη)(0) = 0 and (ϕ + tη)(±∞) = ± π 2 ) yielding Q(η) ≥ 0. Let us treat the general case (i.e., η(0) = 0). Note first that the symmetry of a implies that the unique solution ϕ is odd (as φ(x) = -ϕ(-x) if x < 0 and φ = ϕ in R + is also a solution of (3) in R \ {0} satisfying our assumptions). Thus, the limits lim

x 0 a(x)∂ x ϕ(x) = lim
x 0 a(x)∂ x ϕ(x) exist and are equal (because a and ∂ x ϕ are even and a(x)∂ x ϕ is non-increasing in R + by ( 5)), so (3) holds in D (R) and

ξ = a(x)∂ x ϕ ∈ W 1,∞ ∩ H 1 (R) and ξ > 0 in R. ( 9 
)
As a(x)∂ x ϕ is non-increasing and a is non-decreasing in R + , we deduce that ∂ x ϕ is non-decreasing in R + (so ϕ is concave in R + ), in particular, there exists the limit lim

x 0 ∂ x ϕ(x) > 0. Next we compute Q(η) = (L 0 η, η), L 0 = -∂ x (a(x)∂ x ) -a(x) cos 2ϕ(x),
where (•, •) is the duality (H -1 , H 1 ). By (3), we have

L 0 ξ = sin ϕ cos ϕ∂ x (a 2 ) in D (R).
As ϕ ∈ (0, π 2 ) and a 2 is non-decreasing in R + , by the symmetry of ϕ and a, we deduce that L 0 ξ ≥ 0 in H -1 (R). We use Hardy's decomposition: by ( 9), if η ∈ C ∞ c (R), then one decomposes η = ξ η and computes (e.g., see [START_REF] Ignat | Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals[END_REF]Lemma A.1] or Lemma 7 in Appendix):

Q(η) = (L 0 η, η) = (L 0 ξ, ξ η2 ) + R a(x)ξ 2 (∂ x η) 2 dx ≥ R a(x)ξ 2 (∂ x η) 2 dx ≥ 0. ( 10 
)
As a is bounded, Q is continuous over H 1 (R); therefore, by density of

C ∞ c (R) in H 1 (R), Fatou's lemma yields Q(η) ≥ R a(x)ξ 2 ∂ x ( η ξ ) 2 dx ≥ 0 for every η ∈ H 1 (R). Note that Q(η) = 0 implies 3 Recall that (sin, cos) : [-π 2 , π 2 ] → {(z 1 , z 2 ) ∈ S 1 : z 2 ≥ 0} is a diffeomorphism.
that η = cξ for some c ∈ R. In general, the kernel of the quadratic form Q (i.e., ker L 0 ) may not be {0}: for example, if a = 1 in R, then ker L 0 = R∂ x ϕ (which is due to the translation invariance of G in x for the homogeneous weight a).

Uniqueness of domain walls

We use Theorem 2 to prove the uniqueness of domain walls in Theorem 1.

Proof of Theorem 1. Let ϕ be the unique minimizer in (4) given in Theorem 2 and set m = (sin ϕ, cos ϕ, 0) :

R → S 1 × {0} ∼ S 1 . Recall that |m 1 | = | sin ϕ| > 0 in R \ {0} and m 2 = cos ϕ > 0 in R.
Step 1. We prove that m is the unique minimizer of F under the constraints

m(0) = e 2 and m(±∞) = ±e 1 . (11) 
For that, let m : R → S 2 be an arbitrary map satisfying the constraints (11). We want to prove F ( m) ≥ F (m). W.l.o.g., we may assume that Step 2. If a is even in R and non-decreasing in R + = (0, +∞), then m is a stable critical point of F . By Theorem 2, we know that ϕ is odd in R, (3) holds in the entire R implying that (6) holds in the entire R (so m is a critical point of F in R) and

F ( m) < ∞. As |∂ x ( m2 , m3 )| ≥ |∂ x m2 2 + m2 3 | a.e. in R, we deduce that F ( m) ≥ F ( m), with m = ( m1 , m2 2 + m2 3 , 0),
Q(η) ≥ 0 for every η ∈ H 1 (R). Let v = (v 1 , v 2 , v 3 ) ∈ H 1 (R, R 3 ) with v • m = 0 in R and denote v = (v 1 , v 2 , 0). As m(0) = e 2 , we have v 2 (0) = 0.
The second variation T of F at m is given by

T (v) = R a(x)|∂ x v| 2 + a(x)(v 2 2 + v 2 3 ) -λ(x)|v| 2 dx = T (v ) + (L 2 v 3 , v 3 ),
where (•, •) is the duality (H -1 , H 1 ) in R and L 2 is given in [START_REF] Ignat | Local minimality of R N -valued and S N -valued Ginzburg-Landau vortex solutions in the unit ball B N[END_REF]. By Step 4 in the proof of Theorem 2, we know that (L 2 v 3 , v 3 ) ≥ 0 for every

v 3 ∈ H 1 (R). It remains to show that T (v ) ≥ 0 for every v ∈ H 1 (R, R 2 × {0}) with v 1 m 1 + v 2 m 2 = 0 in R (in particular, v 2 (0) = 0). Case 1: v 1 is Lipschitz with compact support in R and v 2 is Lipschitz with compact support in R \ {0}.
In this case, the tangential constraint v 1 sin ϕ + v 2 cos ϕ = 0 yields a Lipschitz function

η with compact support in R \ {0} (in particular, η ∈ H 1 (R)) such that η = v 1 cos ϕ = - v 2 sin ϕ in R. Then one checks η 2 = |v | 2 , |∂ x v | 2 = (∂ x η) 2 + η 2 (∂ x ϕ) 2 and T (v ) = Q(η) ≥ 0 as ϕ is a stable critical point of G.
Case 2. The general case. We can approximate v in strong H 1 (R, R 2 × {0}) by vector fields

v n = (v 1,n , v 2,n , 0) such that v 1,n ∈ C ∞ c (R) and v 2,n ∈ C ∞ c (R \ {0}).
As v n is not necessarily orthogonal to m in every point, we consider the projection ṽ n = v n -(m • v n )m that also converges to v in H 1 (R) (as m, ∂ x ϕ ∈ L ∞ (R)) and satisfies the tangential constraint ṽ n • m = 0 in R. As m is Lipschitz, Case 1 applies to ṽ n and T (ṽ n ) ≥ 0. By the continuity of T in H 1 (R) (as a and λ are bounded in R), we conclude that T (v ) ≥ 0.

Example of an unstable solution

We choose the even weight a = 2 in (-1, 1) and a = 1 in R \ [-1, 1] that clearly is non-increasing in R + . The aim is to prove that the solution ϕ in Theorem 2 (which is odd and satisfies (3) in the entire R) is unstable. An important feature for this weight is the nonexistence of minimizers in (4) if the constraint ϕ(0) = 0 is dropped; this yields the nonexistence of domain walls connecting ±e 1 if the center of the domain wall is not fixed.

Proof of Proposition 4. We divide the proof in several steps.

Step 1. Computation of the solution ϕ in Theorem 2. For that, as ϕ is odd, it is enough to determine ϕ in R + . The main observation is that (∂ x ϕ) 2 -cos 2 ϕ is locally constant in R + \ {1} (which follows by multiplying (3) by ∂ x ϕ). These two constants are given by:

(∂ x ϕ) 2 -cos 2 ϕ = d 2 -1 in (0, 1), (∂ x ϕ) 2 -cos 2 ϕ = 0 in (1, ∞), with d = lim x 0 ∂ x ϕ(x) > 0.
This is because of (2) and the existence of Lebesque points x n → ∞ of ∂ x ϕ such that ∂ x ϕ(x n ) → 0. As ϕ ∈ Ḣ1 (R) is increasing with values in [0, π 2 ] in R + , we deduce

∂ x ϕ = cos 2 ϕ + d 2 -1 in (0, 1), ∂ x ϕ = cos ϕ in (1, ∞).
The aim is to determine d (which is unique as ϕ is unique by Theorem 2). For that, the continuity of ξ = a(x)∂ x ϕ in (9) yields lim

x 1 ∂ x ϕ(x) = 2 lim x 1 ∂ x ϕ(x), that is, cos ϕ(1) = 2 cos 2 ϕ(1) + d 2 -1. Thus, d ∈ ( 1 2 , 1
) is given by d = 1 -3 4 cos 2 ϕ(1). In other words, d is the unique solution in ( 12 , 1) of the equation

1 = arccos √ 4(1-d 2 )/3 0 dt √ cos 2 t + d 2 -1 .
Step 2. We prove the instability of ϕ. This is based on [START_REF] Slastikov | Reduced models for ferromagnetic nanowires[END_REF]. Indeed, let ψ : R + → R + be a smooth function such that ψ = 1 in (0, 1) and ψ = 0 for x > 2. For every

ε > 0, set ηε ∈ C ∞ c (R), ηε (x) = 1 if |x| < 1 and ηε (x) = ψ ε(|x| -1) for |x| > 1. As ∂ x (a 2 ) = -3δ 1 in D (R + ) and ξ is Lipschitz in R,
by the symmetry of our functions, we get in [START_REF] Slastikov | Reduced models for ferromagnetic nanowires[END_REF] for the Lipschitz function η ε = ξ ηε with compact support in R:

1 2 Q(η ε ) = -3 sin ϕ(1) cos 2 ϕ(1) + ∞ 1 ξ 2 (∂ x ηε ) 2 dx ≤ -3 sin ϕ(1) cos 2 ϕ(1) + ε 2 ∂ x ψ 2 L ∞ ∞ 1 (∂ x ϕ) 2 dx ε→0 → -3 sin ϕ(1) cos 2 ϕ(1) < 0.
Therefore, for ε small enough, η ε ∈ H 1 (R) satisfies Q(η ε ) < 0. This entails the instability of m = (sin ϕ, cos ϕ, 0

): indeed, setting v = (η ε cos ϕ, -η ε sin ϕ, 0) ∈ H 1 (R, R 3 ), then v • m = 0 in R and T (v) = Q(η ε ) < 0.
Step 3. Non-existence of minimizers in (4) in the absence of the constraint ϕ(0) = 0. The aim is to show that

inf G( φ) : φ(±∞) = ± π 2 = 4
and this infimum is not achieved. For that, as a ≥ 1 in R, the Cauchy-Schwartz inequality implies

G( φ) ≥ R (∂ x φ) 2 + cos 2 φ dx ≥ 2 R cos φ ∂ x φ dx = 4 (12) 
because sin φ(±∞) = ±1. The last inequality in (12) becomes equality if and only if ∂ x φ = cos φ in R yielding the existence of a center x 0 ∈ R such that φ(x) = π 2 -2 arctan(e -x+x0 ) for every x ∈ R and φ(x 0 ) = 0 (see e.g. [START_REF] Carbou | Stability for static walls in ferromagnetic nanowires[END_REF][START_REF] Côte | Asymptotic stability of precessing domain walls for the Landau-Lifshitz-Gilbert equation in a nanowire with Dzyaloshinskii-Moriya interaction[END_REF]). For this family of domain walls with center at x 0 ∈ R, one computes:

G( φ) = 4 + 1 -1 (∂ x φ) 2 + cos 2 φ dx = 4 + 2 1 -1 cos φ ∂ x φ dx = 4 + 2[sin φ] 1 -1 → 4
as x 0 → ∞. This proves that the above infimum is indeed equal to 4. If this infimum is achieved for some ϕ, then both inequalities in (12) become equalities, so ϕ is one of the above domain walls φ with center at 

Some open questions

In Theorem 2, we proved existence and uniqueness of the minimizer ϕ in (4), in particular, under the constraint of a fixed center at the origin. A natural question is whether ϕ is a minimizer of G under the only two constraints ϕ(±∞) = ± π

2 . The answer is negative for some weights a as shown in Proposition 4 where ϕ is unstable and moreover, no minimizers of G exist under the constraints ϕ(±∞) = ± π 2 . However, the answer is positive for the homogeneous weight a where ϕ is the unique minimizer and also, the unique critical point (up to a translation of the center) of G under the constraints ϕ(±∞) = ± π 2 (see e.g. [START_REF] Côte | Asymptotic stability of precessing domain walls for the Landau-Lifshitz-Gilbert equation in a nanowire with Dzyaloshinskii-Moriya interaction[END_REF]). Open question 1: Under which additional condition on the weight a satisfying (1), is it true that the solution ϕ in Theorem 2 is a minimizer of G under the constraints ϕ(±∞) = ± π 2 ? In that case, under which further conditions on a, ϕ is the unique minimizer (or more, the unique critical point) of G under the only two constraints ϕ(±∞) = ± π 2 ? This addresses in particular the question of existence of a minimizer ϕ of G under the two constraints ϕ(±∞) = ± π 2 . Such problem is solved in general by using the concentration-compactness lemma à la Lions. For the homogeneous weight a, we recall the following compactness result that handles the type of constraints ϕ(±∞) = ± π 2 , i.e., transitions between two different states:

3 =

 3 where m ∈ Ḣ1 (R, S 1 ) is continuous satisfying the constraints (11). By the argument in Step 4 in the proof of Theorem 2, we know that F ( m) ≥ F (m) with equality if and only if m = m. This proves the minimality of m for F under the constraints (11). If m : R → S 2 is another such minimizer, then (within the above notations) F ( m) = F ( m) = F (m). We deduce then that m = m (in particular, m1 = m 1 and m22 + m2 3 = m 2 > 0 in R) and |∂ x ( m2 , m3 )| = |∂ x m2 2 + m2 3 | a.e. in R. This yields ∂ x ( m2, m3) (0, 0) a.e. in R. Together with the constraint m(0) = e 2 , we conclude that m3 = 0 and m2 = m 2 in R, i.e., m = m in R.

  x 0 and G( φ) = 4 contradicting the fact that 2[sin φ] 1 -1 > 0. This implies the non-existence of a minimizer m = (m 1 , m 2 , m 3 ) : R → S 2 of F under the constraints m(±∞) = ±e 1 . Indeed, for every m = (m 1 , m 2 , m 3 ) : R → S 2 with m(±∞) = ±e 1 , F (m) ≥ F ( m) with m = (m 1 , m 2 2 + m 2 3 , 0) : R → S 2 and m(±∞) = ±e 1 . By Footnote 3, there exists a unique lifting φ : R → [-π 2 , π 2 ] such that m = (sin φ, cos φ, 0) and φ(±∞) = ± π 2 . Thus, F ( m) = G( φ) > 4 and this infimum 4 is never achieved by the above argument.

Note that v 1 m 1 may jump at 0, therefore (L 1 v 1 , v 1 ) is estimated by the integral taken only in R \ {0}.
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Lemma 6 (Doering-Ignat-Otto [START_REF] Doering | A reduced model for domain walls in soft ferromagnetic films at the cross-over from symmetric to asymmetric wall types[END_REF]) Let ϕ n : R → R be such that lim inf x +∞ ϕ n (x) > 0 and lim sup x -∞ ϕ n (x) < 0 for every n ∈ N. If lim sup n→∞ ∂ x ϕ n L 2 (R) < ∞, then for a subsequence, there exists a zero z n of ϕ n and a limit ϕ ∈ Ḣ1 (R) such that ϕ(0) = 0 and ϕ n (• + z n ) → ϕ locally uniformly in R and weakly in Ḣ1 (R) and lim inf x +∞ ϕ(x) ≥ 0 and lim sup x -∞ ϕ(x) ≤ 0.

We address the following question concerning the compactness of uniformly bounded energy configurations in the case of heterogeneous weights a:

Open question 2: Under which additional condition on the weight a satisfying (1), is the following true: if

then for a subsequence, there exists a zero z n of ϕ n and a limit

In Theorem 2, in order to have uniqueness of the solution ϕ, we imposed the condition ϕ ∈

This condition is satisfied by any minimizer ϕ in (4) by Lemma 5. We address the following question:

Appendix

Inspired by [8, Lemma A.1], we prove the following identity for non-smooth weights a:

, writing η := η ψ , we have the following Hardy decomposition:

Proof. Note first that η is Lipschitz with compact support in R. Integrating by parts, we have:

which is the desired identity.