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Cable-driven parallel robots are well suited for applica-
tions that require a very large workspace. Thanks to their
lightweight moving parts, they can achieve high dynamics
while remaining pretty safe for nearby human workers. Fur-
thermore, their size only depends on the length of the cables,
thus their scale is almost totally decoupled from their cost.
However, due to the cables, the stiffness is very low with
respect to rigid link robots, inducing slowly damped oscilla-
tions of the end effector. Previous works have shown those
vibrations can be effectively damped by the winch actuators
thanks to active vibration damping techniques. In this pa-
per, a gain-scheduling approach is proposed based on a lin-
earized model of the robot dynamics. This model is projected
in modal space yielding 6 decoupled transfer functions for
6 degrees of freedom of a cable-driven parallel robot using
thin cables. The stability of the proposed control law is an-
alyzed for a static and a moving end effector. The proposed
control algorithm is validated experimentally on an 8-cables
suspended robot prototype.

1 Introduction
Cable-Driven Parallel Robots (CDPR) are parallel

robots using flexible cables instead of rigid sets of articu-
lated links. This specificity allows for lightweight robots
with large payloads and very large workspace. A robot with
a very large workspace opens a lot of new opportunities, e.g.
moving a camera over a stadium [1], moving a stretcher for
rescue operations [2] or moving dexterously a heavy payload
in a large warehouse [3], but several problems arise when
long cables are used.

With thin cables, the CDPR stiffness is extremely low
compared to a rigid link robot. With thick cables, sagging
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occurs. The sagging is a deflection of the cable under its
own weight, thus altering the geometrical model and reduc-
ing stiffness [4]. Low stiffness is responsible for low fre-
quency natural vibrations of the CDPR end effector. Low
frequency vibrations are especially annoying because of the
long settling time of the end effector. Several approaches
have been studied to tackle CDPR vibrations issues. One of
them consists simply in increasing the stiffness by increas-
ing cable tensions in order to reduce the settling time. This
approach is proposed in [5] but it is limited by the admis-
sible tension in the cables. Furthermore, a lot of power is
lost for maintaining this tension. It is also unsuitable for un-
derconstrained or suspended CDPR where some antagonist
cables are lacking. The other approach is active damping
of these vibrations with either embedded actuators (reaction-
based mass inertia [6, 7] or thrusters [8]) or with cable actu-
ation and exteroceptive feedback [9–16].

Inspired by earlier studies on robot manipulator with
flexible joints [17], Cavarly [10] and Khosravi [11] use a
torque control signal of the winch actuators to ensure a sta-
ble trajectory of the CDPR. In [10], a passivity-based control
is proposed based on a dynamic model that includes the end
effector, the inertia of the winches and a lumped-mass model
of the cables. A proportional feedback on the stretching ve-
locity of the massless cables combined respectively with a
computed torque control or a robust PID control is studied
respectively in [11] and [12]. Simulations show the effective-
ness of the method to track a known trajectory, while damp-
ing vibrations. Assuming high cable stiffness, i.e. that cable
vibrations are fast, a proof of stability is derived using the
singular perturbation theory [18]. More recently, a control
law combining a PID feedback and a feed-forward term was
proposed in [16]. The feed-forward aims at rejecting the end
effector vibrations by inverting the elasto-dynamic model.
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Instead of using torque control of the winches actuators,
Meunier [14] and Beguey [13] propose a cascade controller
based on an inner loop controlling the winch angular posi-
tions. By controlling the unstretched cable length through
the winding of the cable around the pulley, the elongation
and thereby tension of the elastic cable can be effectively reg-
ulated. In [13], it is established how the inner position loop
can efficiently cope with nonlinearites such as dry friction,
usually associated with actuators with high reduction ratio
gearboxes. To track a desired trajectory and reject the dis-
turbances, an outer loop regulates the end effector Cartesian
coordinates with a computed torque control using the inver-
sion of the CDPR dynamic model and a PD controller. Pose
and velocity feedback of the end effector are respectively
measured with a high-speed camera and an Inertial Measure-
ment Unit (IMU). Stability of the cascade control scheme is
proved using the singular perturbation theory where the as-
sumption of a high cable stiffness in [11] is replaced by the
assumption of a high gain of the inner position loop con-
troller. In [14], the outer loop is composed of a PID con-
troller that rejects the joint-space position errors in order
to achieve the desired end effector pose. Using an inverse-
dynamics controller, the output of the PID controller is then
converted into tension references for the inner position loop
of the winches.

Lastly, Jamshidifar [15] et al. focuses on vibration re-
jection of a planar robot. A decoupled model of the vibra-
tion dynamics is derived from the first order linearization of
the CDPR dynamics. The decoupled model is time varying,
since its stiffness matrix depends on the current CDPR pose
and cable tension. Thus, a linear parameter variant (LPV)
controller is designed to cope with vibrations over the whole
workspace. The output of the LPV controller is a tension
variation that is added to the nominal tension computed us-
ing the full inverse dynamics model of the CDPR in order
to track a desired trajectory. The control law is tested on a
planar robot with active vibration damping along one Degree
of Freedom (DoF).

In this paper, active vibration damping is considered,
based on a linearized model of a CDPR along its end ef-
fector trajectory. The dynamics of the CDPR are projected
in the end effector vibrations modal space. A decoupled
modal controller is designed in modal space, whereas it is
designed in Cartesian space in other works. The projection in
the modal space converts complex coupled end effector dy-
namics into fully decoupled dynamics, called modes. Apply-
ing this technique to CDPRs is the main contribution of this
work. It allows mainly for an easier tuning strategy: since all
modes are decoupled, simple SISO controllers can be used
for each mode.

The design of an active damping control algorithm usu-
ally requires a good knowledge of the CDPR vibrations char-
acteristics. Natural frequencies and vibration modes of a
CDPR are calculated from its stiffness model. Several meth-
ods have been proposed to estimate the stiffness of a CDPR
as in [19–21]. A simple model proposed in [20] only re-
lies on the knowledge of cable stiffness and CDPR geometry.

But, in some specific configurations, this model may be inac-
curate and antagonistic stiffness should be considered [19].

Generic developments on modal control are presented
in [22]. Modal control has been widely used for vibration
damping of flexible mechanical structures. Some control
algorithms like Direct Velocity, Positive Position, Integral
Force Feedback and more advanced optimal control algo-
rithms are reviewed in chapters 7 and 11 of [23]. Position and
velocity feedback gains can be chosen to optimize the modal
control energy [24]. Linear Quadratic Regulator (LQR) con-
trol algorithm applied to modal control is named Independent
Modal Space Control (IMSC). However, so far, modal con-
trol seems to have raised relatively few interests in robotics.
In [25], IMSC has been applied to a parallel robot with one
flexible segment. In [26], the dynamic model of a flexible
parallel robot is linearized along a path and modal analysis
is used for input shaping.

Preliminary results in [27] show experimentally that a
modal controller yields an effective CDPR vibration damp-
ing around a linearization point. To reject the effects of actu-
ators nonlinearities, the winch motors are position-controlled
as in [13, 14] and the higher level modal vibration damping
loop sends set points to these inner position loops. How-
ever, the efficiency of the active damping decreases when the
robot moves away from the state where the controller has
been tuned. Thus, a gain-scheduling approach is considered
here to generalize the active vibration damping method pro-
posed in [27] for the whole CDPR workspace. Furthermore,
a thorough analysis underlines that the stability of the pro-
posed gain-scheduling control law is guaranteed for a mov-
ing end effector if the trajectory velocity is slow enough. Fi-
nally, the approach is validated experimentally on a new 6
DoF, 8-cables suspended robot, that shares the same cable
geometry as the CoGiRo robot described in [3].

This paper is divided into 4 main sections. Section 2
describes the system, explains the assumptions that are made
and defines the notations. Section 3 derives the equations of
the dynamics and the modal control law. Section 4 presents
a stability analysis of the proposed gain scheduling control
law. Section 5 presents the experimental setup and discusses
the experimental results.

2 Context
The approach proposed in this paper is suited for CD-

PRs whose cable sagging can be neglected. Sagging is the
bending of a cable due to its own weight. It increases with
cable linear mass and length and decreases with cable ten-
sion. There are several models for this phenomenon. A
complex model (elastic catenary) is needed when the sag-
ging is large, and a simplified (parabolic) is sufficient when
it is smaller [4]. It has been shown experimentally in [21]
that sagging has a significant impact on the CDPR natural
frequencies and, in some configurations, a simplified model
may yield very inaccurate results. Nevertheless, when sag-
ging is negligible, the cable can be effectively modeled by a
linear spring.

This model may be inaccurate for some types of cables
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used to build CDPRs. Studies on cable characteristics show
that cables usually have a non-linear relationship between
their tension and elongation [28]. In what follows, it is as-
sumed that this relationship can be linearized to provide a
quite accurate linear spring model within nominal tension
boundaries [4]. Thus, a cable is modeled as a linear spring
with a specific stiffness ks = es (N) related to its Young mod-
ulus e (Nm−2) and its cross-section s (m2). Then, the axial
stiffness k of the cable is given by Eq. (1).

k =
ks

l2
=

es
l2

(1)

In Eq. (1), l2 represents the free length of the cable, i.e. its
length when its tension equal to zero. Winding cable around
its pulley reduces l2, and therefore increases the cable axial
stiffness. Vibrations occurring on CDPRs are mainly due to
the axial stiffness of the cables.

3 Modeling and Control
With modal analysis theory, the dynamics of a multiple

DoF system can be split in decoupled modes, whose char-
acteristics (frequency, direction) depend on the equilibrium
point. The dynamic model of a CDPR linearized in the vicin-
ity of its equilibrium point and projected in modal space is
derived in this section. It is then used to tune a vibration
rejection modal controller.

3.1 CDPR Modeling
Let x = [pT φφφ

T ]T be the pose vector of the CDPR end
effector with respect to the base frame Rg (Fig. 1). Vector
φφφ contains angular coordinates (e.g. Euler angles) of the ro-
tation Rgr(φφφ) from the inertial frame Rg to the end effector
frame Rr.

Assuming massless cables, the dynamics of a CDPR end
effector relatively to the inertial frame Rg can be described by
Newton-Euler equations. This model has been used and de-
rived in many works [13, 29] and yields the following equa-
tion:

M(x)ẍ+C(ẋ,x)ẋ+g(x) =−J̃T (x)τττ+ψψψ (2)

where M(x) is the mass and inertia matrix, C(ẋ,x) is the
Coriolis and centrifugal matrix and g(x) is the vector of the
gravitational forces. The vector τττ denotes the cable tensions,
while the vector ψψψ is an external wrench disturbance (wind,
impact, . . . ) applied to the end effector.

The Jacobian matrice J̃ maps the time derivative of the
pose ẋ to joint velocities l̇1 = [ · · · l̇1i · · · ]T , i.e. the time
derivative of distance AiBi between cables ends points:

J̃ =

[
∂l1
∂x

]
= JS′ = J

[
I3×3 0

0 S(φφφ)

]
(3)

where S(φφφ) links the time derivative of φφφ to the rotational
velocity vector ωωω, ωωω = S(φφφ) φ̇φφ, and J is the inverse Jacobian
of the robot linking the velocity screw of the end effector to
the joint velocities l̇1. The inverse Jacobian transpose of a
CDPR is given by:

JT (x) =
[
· · · gui · · ·
· · · gbi×g ui · · ·

]
(4)

with ui the unit vector giving the direction of the i th cable
from its end point on the base frame to its end point on the
end effector and bi = PBi the vector from the end effector
center of gravity P to the end point Bi of cable i on the end
effector, expressed in the base frame (see Fig. 1).

With the assumption of elastic massless cables, forces
applied by the cables to the end effector can be computed
using the distances l1 between cable endpoints and the cable
free lengths l2 (the length of the cable with no tension). The
free length can be calculated using the winch angular posi-
tions θθθ: l2 = rθθθ where r is a scalar representing the pulley
radius. Note that l1 depends only on x since it is obtained by
the inverse kinematics of the robot. The diagonal matrix of
cables axial stiffness K = diag(ki) links cable tensions τττ to
cable lengths:

τττ = K(l2)[l1(x)− l2] (5)

with ki the stiffness of the i th cable depending on its free
length l2i (Eq. (1)). It is assumed that cable tension remains
positive thanks to a dedicated tension management algorithm
[30, 31].

Finally, from Eq. (2), the model of a CDPR dynamics
with massless elastic cables becomes:

M(x)ẍ+C(ẋ,x)ẋ+g(x) = J̃T K(l2)[l2− l1(x)]+ψψψ (6)

3.2 Modal Analysis
Modal analysis is a method for decomposing the oscil-

latory response of a mechanical structure around an equilib-
rium point into elementary decoupled sinusoid components
called “modes”.

A linearized model of the CDPR dynamics (Eq. (6))
in the vicinity of a feasible or equilibrium trajectory
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(ẍ(t), ẋ(t),x(t), l2(t),ψψψ(t)) is obtained by a first-order Tay-
lor expansion (see appendix A for a detailed derivation) :

M(x)∆ẍ +

[
C(ẋ,x)+

∂C(ẋ,x)
∂ẋ

∣∣
ẋ,xẋ
]

∆ẋ

−
[

J̃T (x)diag−1(l2)diag(τττ)+ J̃T (x)K(l2)
]

∆l2

+

[
∂M(x)

∂x
∣∣
xẍ+

∂C(ẋ,x)
∂x

∣∣
ẋ,xẋ+

∂J̃T (x)
∂x

∣∣
xτττ

+ J̃T (x)K(l2)J̃(x)
]

∆x−∆ψψψ = 0

(7)

with ∆x = x−x, the difference between the current pose and
the equilibrium one, and τττ = K(l2)[l1(x)− l2] (Eq. (5)).

Considering a static equilibrium (ẍ = 0, ẋ = 0) of the
CDPR end effector, the linearized model of the CDPR dy-
namics is reduced to :

M(x)∆ẍ+Kx(x, l2)∆x

= T(x, l2)∆l2 +∆ψψψ
(8)

with

Kx(x, l2) =
∂J̃T (x)

∂x
∣∣
xτττ+ J̃T (x)K(l2)J̃(x) (9)

T(x, l2) = J̃T (x)K(l2)diag(l1(x))diag−1(l2) (10)

The matrix Kx is the Cartesian stiffness of the robot, i.e. the
relationship between elementary Cartesian displacements of
the end effector and corresponding variations of the wrench
applied to the end effector by the cables. It is symmetric if no
external moment (ψψψ = 0) is applied to the end effector [32].
Furthermore, Kx is positive definite except in a few singular
situations detailed in [19].

Based on the linear model (Eq. (8)), a classic modal analy-
sis is applied to convert the coupled system into six single
DOF linear systems. Let ηηη be the six dimensional vector of
modal coordinates. Those coordinates are related to the pose
variation ∆x by the 6×6 modal transformation matrix E:

∆x = Eηηη (11)

The modal matrix E has to verify the following conditions:

{
ET ME = I6×6
ET KxE = ΛΛΛ

(12)

where I6×6 is the 6× 6 identity matrix and ΛΛΛ is the 6× 6
diagonal matrix of the system eigenvalues.

The matrix E is obtained by decomposition in gener-
alized eigenvalues ΛΛΛ of the system verifying the following
equation:

KxE = MEΛΛΛ (13)

As Kx and M are symmetric, ET KxE and ET ME are both
diagonal matrices [23]. Each column eigenvector ei of E =
[e1,e2, . . . ,e6] can be normalized such that ei

T Mei = 1 in or-
der to verify the first condition of Eq. (12). This normaliza-
tion is possible since if one ei is solution of the generalized
eigenvalues problem, i.e. Kxei =Meiλi , then the vector αi ei
is also a solution with αi an arbitrary constant.

Rewriting Eq. (8) with modal coordinates (Eq. (11))
yields:

MEη̈ηη+KxEηηη = T∆l2 +∆ψψψ (14)

Left product by ET gives:

I6×6η̈ηη+ΛΛΛ(x, l2)ηηη = E(x, l2)T [T(x, l2)∆l2 +∆ψψψ] (15)

Left side of equation (15) is fully decoupled and so can be de-
composed into 6 independent equations, one for each mode.
Matrix E contains 6 vectors of vibration modes and diagonal
matrix ΛΛΛ contains 6 squared natural frequencies correspond-
ing to these modes. Therefore in this particular space, the
response of the CDPR to a joint position variation ∆l2 or an
external wrench disturbance ∆ψψψ is a vector of six indepen-
dent sinusoids.

3.3 Control Architecture and Decoupled SISO Model of
the System

Let us consider an equilibrium state of the CDPR de-
fined by (x, l2): the CDPR pose x and the associated free
cable lengths l2 that unequivocally define the cable tensions
(Eq. (5)). The goal of the vibration damping algorithm is
to regulate towards zero the end effector velocity ẋ as fast
as possible. To achieve this rejection, the controller acts on
the cable tensions through a variation of the unconstrained
cable length ∆l2 around l2. The general architecture of the
disturbance rejection control loop is presented in Fig. 2.

Using pulley actuators to wind or unwind unconstrained
cable length, the control signal is equivalent to a pulley an-
gular position variation ∆θθθ. An inner winch position loop
can efficiently cope with nonlinearites such as dry friction,
usually associated with actuators with high reduction ratio
gearboxes. In [13], a stability analysis using singular pertur-
bation theory shows that, if the gain of the inner position loop
is high enough, the stability of the outer CDPR pose loop is
not compromised by the inner loop dynamics. Assuming a
high-gain inner position loop, its high-bandwidth dynamics
are negligible with respect to the low frequency CDPR oscil-
latory modes and thus are omitted thereafter.

Cuvillon, L., et al. 4
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Fig. 3. Vibration damping control loop scheme in modal space

Regulating ∆ẋ toward zero, or equally ẋ (since at equi-
librium ẋ = 0), is equivalent to regulate η̇ηη towards zero in
modal space, since ∆ẋ = Eη̇ηη. As the vibration problem can
be decoupled in the modal space (Eq. (15)), simple Single-
Input Single-Output (SISO) control strategies can be used for
active vibration damping. Setting ∆ψψψ = 0, accordingly to the
superposition theorem, and applying the Laplace transform
to Eq. (15) yields:

s2I6×6
L
ηηη+ΛΛΛ

L
ηηη = ET T L

∆l2 (16)

L
η̇ηη = s

[
s2I6×6 +ΛΛΛ

]−1 ET T L
∆l2︸ ︷︷ ︸

Lum

(17)

where L{.} stands for the Laplace transform and s is the
Laplace variable. Finally, let Ym = Lη̇ηη and Um = Lum
be the modal control signal for the regulation defined by
Um = ET T L∆l2. The decoupled dynamics of the CDPR
in modal space (Eq. (17)) are modeled by a diagonal transfer
function matrix Gm:

Ym(s) = s
[
s2I6×6 +ΛΛΛ

]−1 Um(s) (18)

, GmUm(s)

The transfer function Gm(s) = s
[
s2I6×6 +ΛΛΛ

]−1 is a
6× 6 diagonal matrix of transfer functions with undamped
second order dynamics, consistent with the fact that frictions
are neglected. The regulation loop based on this model is de-
scribed in Fig. 3. The controller Cm (also a diagonal matrix
of transfer functions) can be designed and tuned to efficiently

regulate towards zero the modal velocity Ym. So, the 6× 6
Multiple-Input Multiple-Output (MIMO) coupled model in
Cartesian space can be easily controlled using 6 independent
SISO controllers in modal space.

The implementation details of the modal control loop
are given in Fig. 4. Based on the definition of the modal
control signal um, the output of the modal controller is back
projected into the joint space using T+, the right pseudoin-
verse of T, yielding the control signal ∆l2 = T+(ET )−1um.
The modal velocity, evaluated by projecting the end effec-
tor velocity ẋ in the modal space with the matrix E−1, is fed
back to the controller: η̇ηη = E−1∆ ˆ̇x = E−1 ˆ̇x. The estimate of
ẋ, denoted ˆ̇x, is measured thanks to an IMU (Inertial Mea-
surement Unit, a 3-axis accelerometer combined with a 3-
axis gyrometer). Since TT+ = I6×6 by definition, the block
diagram in Fig. 4 is equivalent to the modal loop in Fig. 3.

Modal analysis assumes that x stays constant. So the
proposed modal stabilization control law should be restricted
to the rejection of external disturbances (transient external
forces applied to the end effector by the environment, like
wind blowing or contact) around a static pose. In the upcom-
ing sections, it will be shown that the proposed control law
remains stable even with a slowly varying x. Thus, this ap-
proach allows for rejection of oscillations even during a slow
trajectory.

In order to track a varying pose x, a corresponding cable
tension τττ can be computed using the CDPR inverse dynamics
(Eq. (2)) and the desired trajectory parameters (x, ẋ, ẍ):

τττ = (J̃T (x))+
[
M(x)ẍ+C(ẋ,x)ẋ+G

]
+τττNull (19)

= τττ+τττNull

where (J̃T )+ stands for the Moore-Penrose pseudoinverse of
the wrench matrix, τττ is the tension solution of Eq. (2) with
minimal norm, and τττNull ∈ Null(J̃T ) such that J̃TτττNull = 0.
In case of a redundant CDPR (more cables than degrees of
freedom), the vector τττNull can be selected in the null space
of the wrench matrix to ensure positive tension of the cables
(τττ > 0). Various algorithms [30, 31] are proposed in the lit-
erature to select an adequate τττNull vector.

Since the wrench applied on the CDPR end effector re-
sults from modifications of the cable elongation, the cable
tensions are converted into unconstrained cable length l2.
Based on the linear elastic cable model (Eq. (5)), l2 is given
by:

l2 =


I+ 1

ks
diag(τττ+τττNull︸ ︷︷ ︸

τττ

)



−1

l1(x) (20)

Note that the positive tension condition (τττ > 0) implies
l2 < l1, i.e. the cable is stretched. The complete trajectory
generation for a varying x is described in Fig. 5.

Cuvillon, L., et al. 5
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3.4 Gain Scheduling Control Law
In modal space, the open-loop transfer function Gm de-

pends only on the current ΛΛΛ(x, l2) (Eq. (18)). This transfer
function is simple enough in modal space to find an alge-
braic pole placement law for the controller that guarantees
constant disturbance rejection performances over the whole
workspace using gain scheduling. So, a basic pole place-
ment approach can be used to tune 6 SISO controllers Cmi in
Cm = diag(Cm1 , ...,Cm6) according to the 6 SISO open-loop
transfer functions Gmi in Gm = diag(Gm1 , ...,Gm6).

Model Gmi has an invariant structure but has varying pa-
rameters since it has two pure imaginary conjugate poles that
depends on the frequency of the corresponding mode in ΛΛΛ.
So, for given tuning specifications, the structure of the con-
troller should also be constant.

A classical strategy when doing pole placement is to
cancel stable system poles/zeros with controller zeros/poles.
However, applied to the modal conjugate poles, this ap-
proach would yield a controller with a 0 dB gain at the sys-
tem modal frequency (notch filter). It means that such a con-
troller would be unable to reject modal oscillations due to
external disturbances. Obviously, this is not the kind of be-
havior that is expected. Instead, for each mode, a controller
is tuned for fast disturbance rejection and measurement noise
resilience.

Two complex conjugate poles and one zero are added to
the controller to place the four closed loop poles like in the
root locus of Fig. 6. The controller gain kci is tuned in order
to obtain a closed loop with two identical pairs of complex
conjugate poles. The complex conjugate poles and the zero
of the controller have the same negative real part −a and

Fig. 6. Root locus design of a modal controller

the imaginary part of the controller complex poles is taken
equal to the imaginary part of the process complex poles, i.e.√

Λi where Λi is the i th eigenvalue in ΛΛΛ. With this design,
measurement noise is well filtered and the controller is robust
to small modeling errors. At the end, the modal controller for
the i th modal velocity has the form:

Cmi =
kci (s+a)

s2 +2as+(a2 +Λi)
(21)
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with kci = 2(
√

Λi(a2 +Λi)−Λi).
The negative real part −a of the controller poles and

zero is the only design parameter. Increasing a yields a faster
closed loop, but at the cost of a higher control signal energy.
Thus, a trade-off must be found to avoid actuator saturation.
With a ∈]0,2Λi

√
2+
√

5[, the two pairs of closed loop com-
plex conjugate poles are:

−a
2
± j

√√
Λi(a2 +Λi)−

a2

4
(22)

Since the real part −a/2 of the closed loop poles is neg-
ative, the system is stable. So, with a reference equal to zero,
the modal velocity η̇ converges towards zero. An implemen-
tation of this approach on the CoMiRo robot is presented in
section 5.

4 Stability Analysis
4.1 Near the Equilibrium Point

A static equilibrium pose of the CDPR is fully de-
fined by (x, l2). While x is the pose of the end effector,
l2 is one solution of the inverse kinetostatic (IKS) problem
which fully defines the cable tensions and verifies G(x)−
J̃T K(l2)

[
l2− l1(x)

]
= 0 in Eq. (6). Around this equilibrium

point, the CDPR dynamic model is parameterized by ΛΛΛ(x, l2)
in the modal space with:

η̈ηη+ΛΛΛηηη = um (23)

and a generic state space representation of the previous de-
coupled modal controller Cm is:

{
ẋc = Fc(Λ)xc +Gc(Λ)η̇ηη

um = Hc(Λ)xc
(24)

with xc, the controller state vector, um the modal control sig-
nal, η̇ηη, the measured modal velocities, Fc, Gc, Hc, respec-
tively the state, input and output matrices. Since the modes
are decoupled, these matrices are all block diagonal.

The closed loop system composed of Eq. (23)-(24) is
stable, since the design of the controller ensures that the
poles or state matrix eigenvalues of the closed loop system
have all strictly negative real parts.

The stability properties and eigenvalues of the state ma-
trix are conserved for a linear time-invariant (LTI) system
through a similarity or coordinate transformation. Thus, the
stability of the closed loop in the modal space yields the sta-
bility of the closed loop in the Cartesian space due to the co-
ordinate transformation ηηη = E−1∆x. Using M = (ET )−1E−1

and Kx = (ET )−1ΛΛΛE−1 (Eq. (12)) and the definition of um
(Eq. (17)), the coordinate transformation of the closed loop
(Eq. (23)-(24)) from the modal space to the Cartesian space
yields the stable system:

M(x)∆ẍ+Kx(x, l2)∆x = T(x, l2)∆l2 (25)
{

∆l2 = T+(ET )−1Hc(x, l2) xc
ẋc = Fc(x, l2)xc +GcE−1(x, l2)∆ẋ (26)

which is the interconnection of the linearized dynamics
model of the CDPR (Eq. (8)) around the constant equilib-
rium (x, l2) and a LTI controller.

Finally, as the linearized system is stable, the Lyapunov
indirect method theorem [18] points out that the interconnec-
tion of the CDPR nonlinear dynamics (Eq. (6)) and the linear
controller (Eq. (26)) is asymptotically stable in a neighbor-
hood of the constant equilibrium (x, l2).

4.2 Along a Trajectory
A continuously differentiable trajectory of the CDPR

end effector pose, defined and scheduled by the exogenous
input signal x(t), is considered. For each point on this tra-
jectory, it is assumed that a corresponding continuous cable
length l2(t) = l2(x(t)), solution of the IKS model, is known
or assessed with the trajectory generation scheme in Fig. 5
when the value of ẍ and ẋ reaches zero.

In this case, the plant control input that ensures tracking
of the desired trajectory and vibration damping (Fig. 5) is
l2(t) = l2(x(t)) + ∆l2 with ∆l2, the output of the vibration
damping controller (Eq. (26)). Thus, the closed loop system
composed of the CDPR dynamics and the gain scheduled
controller is defined by the state equations:

M(x)ẍ+C(ẋ,x)ẋ+G(x) = J̃T (x)K(l2) [l2− l1(x)] (27)
{

l2 = l2 + T+(ET )−1Hc(x, l2) xc
ẋc = Fc(x, l2)xc +GcE−1(x, l2) ẋ (28)

The system has now time varying parameters, due to the
dependence of the controller on the scheduling signal x(t)
that defines the trajectory. Some stability properties for such
a gain scheduled closed loop can be assessed using theorems
dealing with the stability of nonlinear system with a “slowly”
varying input [33, 34]. Let x(t) be the varying input. The
system of Eq. (27)-(28) can be rewritten using the standard
state-space representation:

ẋcl(t) = f (xcl(t),x(t)) (29)

with xcl = [ẋT xT xc
T ]T , the closed loop state vector, concate-

nation of the CDPR and controller states, and f , an appropri-
ate nonlinear function.

This closed-loop system has a manifold of exponen-
tially stable equilibrium parametrized by the input signal
x(t), since it verifies the following properties:

(P1) the nonlinear function f is twice continuously differen-
tiable along a trajectory included in the wrench feasible
workspace of the robot;
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(P2) there is a continuously differentiable equilibrium state
x̄cl(x(t)) = [0T x(t)T 0T ]T such that for each con-
stant input value of x, f (x̄cl ,x) = 0. This property
can be verified by substituting x̄cl for xcl in system of
Eq. (27)-(28) and keep in mind that l2 verifies G(x)−
J̃T K(l2)

[
l2− l1(x)

]
= 0 as a solution of the IKS model.

(P3) for each constant input value x, the linearized closed
loop of the system (Eq. (27)-(28)) around the equilib-
rium (x̄cl(x),x) has eigenvalues with a negative real part.
Actually, the linearization yields the system:





M(x)∆ẍ+Kx(x, l2)∆x = T(x, l2)∆l2
∆l2 = ∂l2

∂x

∣∣
(x̄cl ,x)

∆x+T+(ET )−1Hc(x, l2) xc

ẋc = Fc(x, l2)xc +GcE−1(x, l2)∆ẋ
(30)

which has the same state matrix and thus eigenvalues
than the linearized system of Eq. (25)-(26) around a con-
stant equilibrium. Compared to Eq. (25)-(26), the sys-
tem exhibits an additional input term in ∆x. This term
acts like an exogenous input disturbance (called “hidden
coupling terms” in [33]). It is due to the dependence of
the plant (CDPR) input signal on the time-varying signal
l2(x(t)) in order to track the trajectory.

The theorem [33], detailed in [34], thus states: for a
given ρ > 0, there are constants δ1 > 0 and δ2 > 0 such that
if the input signal satisfies for t > 0, ||ẋ(t)||< δ2 and if

‖xcl(0)− x̄cl(0)‖=

∥∥∥∥∥∥




ẋ(0)
x(0)
xc(0)


−




0
x(0)

0



∥∥∥∥∥∥
< δ1 (31)

then the solution of the system (Eq. (29)) verifies for t > t0

‖xcl(t)− x̄cl(t)‖=

∥∥∥∥∥∥




ẋ(t)
x(t)
xc(t)


−




0
x(t)

0



∥∥∥∥∥∥
< ρ (32)

This result points out that, if the nonlinear closed loop
system – composed of the CDPR (Eq. (27)) and gain sched-
uled controller (Eq. (28)) – is close enough to the equilibrium
at time t = 0 and if the input signal x(t) does not vary too fast,
then the system will remain in the neighborhood of the equi-
librium trajectory defined by x̄cl(x(t)). This neighborhood is
defined by the open ball of radius ρ and center x̄cl(x(t)) as
shown in Fig. 7. Extensive simulations can be carried out to
estimate the numerical values of the bounds on the transient
disturbance and trajectory velocity ẋ in Fig. 5 that guarantee
the stability property.

5 Experiments
5.1 Experimental setup: CoMiRo

A suspended 8-cables and 6-Degrees of Freedom (DoF)
CDPR called CoMiRo has been built (Fig. 8). The geometry

space of
state variables

ρ

t0 t

xcl(t)
δ1

x̄cl(t)

Fig. 7. Stability of the gain-scheduling modal damping along a tra-
jectory: if x(t) varies slowly, the closed loop system state xcl(t)
remains in the neighborhood of the equilibrium trajectory x̄cl(x(t))

Fig. 8. CoMiRo robot

of the CoMiRo is similar to the geometry of the CoGiRo,
a heavy payload CDPR developed in Montpellier (France) at
the LIRMM by [3]. The CoMiRo cables anchor points on the
room walls form a cuboid of 6.94 per 3.78 per 3.00 meters,
along−→x ,−→y and−→z directions (see Fig. 9). The pulley output
points at the end effector form another cuboid of 0.155 per
0.185 per 0.07 meters, along −→x , −→y and −→z directions. The
end effector weights 2 kg.

It is built with Lego Mindstorms parts except for the
cables, pulleys and some electronic components. Lego
Mindstorms are an interesting solution to experiment with
lightweight CDPRs for the following reasons:

• a rapid prototyping due to fast assembly and easily re-
configurable structure,

• a low cost, easily duplicable solution, with lightweight
and compact components made of high-quality plastics
embedding functions like motor drivers, sensors condi-
tioners, power and logic,

• a worst case benchmark for control algorithms: due to
the gearboxes and bearing sleeves made of plastic, high
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Fig. 9. CoMiRo notations, dimensions and frame definitions

nonlinear effects act on the Lego motors, such as quan-
tization errors, backlash, and dry friction.

All the motors, sensors, computing power and batteries
are embedded in the robot end effector including:

• an embedded computer providing a WiFi hotspot (Rasp-
berry Pi model B),

• a 6-DoF Inertial Measurement Unit (Drotek IMU 9DOF
- MPU9150 Invensense PCB),

• 2 Lego EV3 bricks,
• 8 Lego Mindstorms NXT actuators, each connected to a

pair of 3D-printed pulleys.

Two cables (Shimano Blue WingTM, 3.2 kg, 0.2 mm,
ks = 140.18 N) per actuator, instead of one, make the con-
straints on the pulley shaft more even, minimizing the fric-
tions on the plastic sleeve bearing of the actuators. Each pair
of cables is modeled as a single cable of specific stiffness
ks = 280.36 N.

The robot controller, like the structure, is designed with
a rapid prototyping approach for highly modular robotics ap-
plications. RPIt1 is a Simulink toolbox, developed in our
laboratory, that uses the code generation feature of Simulink
CoderTM on a Raspberry Pi target. This toolbox provides all
Simulink blocks needed for the experiment: multiple EV3
blocks, various IMU blocks, ... A custom firmware has been
developed for the EV3 brick called EV3.142. It improves
encoder resolution from 1 to 0.5◦ and reduces USB commu-
nication delays between the brick and the Raspberry Pi from
5 ms to 1 ms. Simulink external mode is used during the ex-
periments to send motion commands, modify block parame-
ters on the fly and monitor signals with scopes. A sampling
interval of 7 ms is used in all experiments.

Each motor of the CoMiRo Lego is controlled by an in-
dependent position loop using encoder measurement feed-
back. Since this robot has 8 cables, the cable tension
management algorithm should deal with a two-dimensional
null space. Tensions can be obtained with the optimization
method proposed in [31].

1http://icube-avr.unistra.fr/en/index.php/RPIt
2http://icube-avr.unistra.fr/en/index.php/EV3.14

Furthermore, a NDI Polaris localizer was used to learn
the current Cartesian pose x(t) associated with the current
cable free length l2(t). Indeed, the pose of the CDPR end
effector cannot be estimated uniquely using only the sen-
sors embedded into the end effector (motor encoders, IMU).
However, after this learning phase, the proposed damping
control law needs only the IMU feedback and does not re-
quire the localizer feedback anymore.

The proposed control law in Fig. 4 is implemented on
the CoMiRo. Note that the translational velocity is obtained
by integrating linear accelerations from IMU over time with
a high-pass filter in order to avoid drifts. This velocity screw
yields finally an estimate of ẋ using the definition of Eq. (3):
ẋ = S′−1[ṗT ωT ]T .

5.2 Modal Control Law Validation
In this section, all experiments are done around a unique

static equilibrium point x1. It is located on the vertical sym-
metry axis of the robot workspace at a height z = 0.95m.
Angles are set to zero, the base frame and robot frame are
aligned. Euler angles xyz are used to represent the rotational
part of x. At this pose, the matrix Kx has the following value:

Kx =




316.3 0 0 −0.24 11.18 0
0 101.2 0 −4.10 0.24 0
0 0 110.0 0 0 0

−0.24 −4.10 0 1.81 −0.32 0
11.18 0.24 0 −0.32 2.09 0

0 0 0 0 0 5.57




(33)

To compute Kx, the tension at equilibrium τ̄ is needed
(Eq. (9)). This tension is directly related to the cable elon-
gation obtained from the pose x1 and the cable free length l2
measured by the winch encoders (Eq. (5)).

With the inertia tensor Ir expressed in the robot frame,
the mass matrix M of the end effector takes the following
value:

M =

(
2.0I3×3 0

0 Ir

)
with Ir =




0.0138 0 0
0 0.121 0
0 0 0.0049




(34)
Knowing Kx and M, modal matrices E and ΛΛΛ are computed
using the method described by Eq. (13).

E =




0 0.45 −0.25 −0.48 0 0.03
0 0.02 0.18 −0.11 0 −0.68
0 0 0 0 −0.71 0
0 −1.57 −7.66 2.36 0 −2.43
0 6.77 0.66 6.02 0 −0.58

14.35 0 0 0 0 0




(35)

The modal frequencies Fm of the robot are the square root of
the eigenvalues Λi in ΛΛΛ. Furthermore, the mode correspond-
ing to the ith frequency in Fm (in rads−1) has the direction of
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Fig. 10. Frequency-domain response of the CDPR to a pulse dis-
turbance at pose x1

the ith column in E.

Fm =




33.87
15.55
11.82
9.41
7.40
6.58




(36)

Experimental results of the modal vibration damping
control loop in the frequency domain are shown in Fig. 10.
An impulse disturbance is added to the signal um (see Fig. 4)
to mainly excite vibration mode 2. With the proposed modal
control, the residual vibration magnitude on all modes is sig-
nificantly reduced compared to the free response.

5.3 Gain Scheduling
5.3.1 Motivations

To validate the need for a gain scheduling approach like
the one proposed in Eq. (28), the controller parameters cal-
culated at the pose x1 defined in the previous section are
frozen and performance of the disturbance damping control
law is assessed after moving the robot at a significantly dif-
ferent pose without updating the controller. This assessment
is referred as “Active” or “Active damping” in what follows.
Then, the controller is updated according to this new position
and a new performance assessment is made. This is referred
as “GS” or “Gain Scheduling” in what follows.

Thanks to its simple form presented in section 3.4, the
control algorithm can be easily and quickly updated online
accordingly to this model within the sampling time of 7 ms:

• the matrix T+(ET )−1(x(t), l2(t)) is updated in the con-
trol loop of Fig. 4 to convert modal control signals into
actuators signals;

• and each SISO controller is updated as detailed in sec-
tion 3.4 according to the current value of the modal fre-
quencies matrix ΛΛΛ.

Table 1. RMS errors on modal velocities (without unit) at pose x2
for a velocity impulse disturbances on mode 1 and 3

Modes 1 2 3 4 5 6 ∑ modes

Free 9.31 1.47 6.10 0.98 0.40 2.99 21.25

Active 4.66 2.40 3.79 3.25 0.59 2.86 17.55

GS 4.25 0.83 2.57 1.04 0.24 1.70 10.63

On the CoMiRo robot, modal frequencies vary from
4.8 rads−1 to 41.9 rads−1 inside a Static Feasible Workspace
defined by a 4.5×1.5×2 m3 cuboid centered in x1 where
end-effector Euler angles vary from -15◦ to +15◦. The
modal frequencies are evaluated on discrete poses within the
workspace with translational quantization steps of 0.1 m and
angular steps of 5◦. To select an admissible equilibrium ten-
sion at each point, the tension distribution algorithm pro-
posed in [31] with minimization of the L2 tension norm is
used. The lower admissible cable tension is 0.1 N and the
upper one is 17.5 N.

5.3.2 Results
Table 1 and Fig. 11 show the added value of the gain-

scheduling approach for vibration damping at a static equi-
librium pose x2, far from the pose x1 where the active damp-
ing has been computed. The pose x2 chosen for this exper-
iment is translated by x2−x1 = [−2, 0, 1]T meters from the
workspace center pose x1 defined in the previous section.
Measured velocity data are projected into modal space with
the modal matrix E computed at the current pose 2. The
figures 11d and 11e show that performance degrades when
the controller is not tuned (“active damping”) to the mode
frequency of the current pose: instead of being damped, vi-
brations on modes 4 and 5 are amplified. This degradation
is also visible in the frequency domain as shown in Fig. 12.
Thus, gain-scheduling control is required to guarantee opti-
mal damping over the whole workspace.

The figures 14 and 15 compare the performance of the
proposed control strategy without and with gain-scheduling
when the suspended robot is moving at a constant velocity
along x axis (Fig. 13). The maximum translational veloc-
ity is 10 cms−1 due to limitations of the Lego actuators. To
highlight the vibration rejection, a modal velocity impulse
disturbance is applied simultaneously on the 6 modes. The
result is a clear reduction of the vibrations (Fig. 15 compared
to Fig. 14) for all modes when a gain scheduling control
law is activated during the whole trajectory. This vibration
damping is also visible in the frequency domain as shown in
Fig. 16. The variations ∆θ of the winch angular positions
yielding cable tension variations that damp the CDPR vi-
brations with the GS controller are given at the bottom of
Fig. 15. This control signal issued by the modal controller
is used as reference for the inner loop that controls the un-
stretched cable length ∆l2 = r∆θθθ with r the winch radius.

The video of this experiment can also be viewed on-
line at https://youtu.be/tbOvdrJk3Nk. At time
00:02:50, two superimposed videos are displayed: the same
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Fig. 11. Modal damping assessment with a velocity impulse disturbances on mode 1 and 3 at pose x2
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Fig. 12. Frequency-domain response of the CDRP to a pulse dis-
turbance on mode 1 and 3 at pose x2

motion with and without active damping.

6 Conclusions
Using modal analysis, a linear decoupled model of a

CDPR with elastic cables is described. Projecting the robot
linearized dynamics into the modal space yields 6 decoupled
linear second order transfer functions which can be easily
controlled with standard SISO techniques. This is the main
benefit of the proposed approach. A control strategy, that
cancels the vibrations of the end effector caused by distur-
bances is proposed. Furthermore, thanks to the decoupled
nature of the model, the modal controller can be easily up-
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0.55

0.6

0.030.020.01

Fig. 13. Cartesian trajectory of CDPR end effector during a trans-
lation motion without modal damping (free) and with gain scheduling
modal damping. A impulse modal disturbance is applied on all the
vibration mode at one point of the trajectory to highlight the vibration
rejection.

dated with a trivial, computational efficient algorithm. Since
natural modes and frequencies are related to the end effec-
tor pose, a gain-scheduling approach is introduced to im-
prove the efficiency of the vibration damping algorithm over
the whole workspace of the CDPR. Finally, stability analy-
sis shows that the control law remains stable along a slowly
varying trajectory. The proposed approach is validated ex-
perimentally on a small suspended CDPR built with Lego
Mindstorms, which shares the same architecture as its big
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Fig. 14. Vibration in the modal space during motion in the absence
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Fig. 15. Vibration in the modal space during motion with gain-
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brother, the CoGiRo robot (LIRMM, Montpellier, France).
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A Appendix: CDPR Linearization Derivation

M(x)∆ẍ +

[
C(ẋ,x)+

∂C(ẋ,x)
∂ẋ

∣∣
ẋ,xẋ
]

∆ẋ

−
[

J̃T (x)
∂K(l2)

∂l2
|l2 [l2− l1(x)]+

J̃T (x)K(l2)
∂[l2− l1(x)]

∂l2
|x,l2
]

∆l2

+

[
∂M(x)

∂x
∣∣
xẍ+

∂C(ẋ,x)
∂x

∣∣
ẋ,xẋ−

∂J̃T (x)
∂x

|x K(l2)[l2− l1(x)]︸ ︷︷ ︸
−τττ

−

J̃T (x)K(l2)
∂(−l1(x))

∂x
∣∣
x︸ ︷︷ ︸

−J̃(x)

]
∆x−∆ψψψ = 0

(37)

And using:

∂K(l2)
∂l2

∣∣
l2
[l2− l1(x))] =

∂diag−1(l2)
∂l2

∣∣
l2

diag(es)[l2− l1(x)]

=−diag−1(l2)
∂diag(l2)

∂l2

∣∣
l2

diag−1(l2)diag(es)[l2− l1(x)]

=−diag−1(l2)
∂diag(l2)

∂l2

∣∣
l2

K(l2)[l2− l1(x)]︸ ︷︷ ︸
−τττ

∂K(l2)
∂l2

∣∣
l2
[l2− l1(x)] = diag−1(l2)diag(τττ)

(38)
(since for u scalar, ∂A−1

∂u = −A−1 ∂A
∂u A−1) finally yields

Eq. (7).
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