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Abstract Purpose An augmented reality system to visualize a 3D pre-operative
anatomic model on intra-operative patient is proposed. The hardware requirement
is commercial tablet-PC equipped with a camera. Thus, no external tracking de-
vice nor artificial landmarks on the patient are required.

Methods We resort to Visual SLAM to provide markerless real-time tablet-PC
camera location with respect to the patient. The pre-operative model is registered
with respect to the patient through 4-6 anchor points. The anchors correspond
to anatomical references selected on the tablet-PC screen at the beginning of the
procedure.

Results Accurate and real-time pre-operative model alignment (approximately 5
mm mean FRE and TRE) was achieved, even when anchors were not visible in
the current field of view. The system has been experimentally validated on human
volunteers, in-vivo pigs and a phantom.

Conclusions The proposed system can be smoothly integrated into the surgical
workflow because it: 1) operates in real-time, 2) requires minimal additional hard-
ware only a tablet-PC with camera 3) is robust to occlusion, 4) requires minimal
interaction from the medical staff.

Keywords Augmented Reality - Visual SLAM - Registration - Operating room -
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1 Introduction

Patient pre-operative 3D model (P3DM) is readily available through various imag-
ing modalities such as computed tomography (CT) or magnetic resonance (MRI).
The P3DM is typically displayed on a desktop monitor, laptop or tablet-PC. How-
ever, the practitioner has to mentally project that information onto the patient.
An augmented reality (AR) superimposition of the P3DM onto the patient can
provide the practitioner with a kind of ”X-ray vision”, easing the information
transfer from the P3DM to the actual patient for a surgical procedure. Such AR
technology can overcome some of minimally invasive surgery (MIS) limitations
such as trocar/instrument placement in thoracic surgery[l]. Indeed, the trocar
placement can then be decided before the surgery on the P3DM (cf. Fig. 1[a]) and
this location is superimposed intra-operatively on a static view provided by a fixed
camera. This AR view allows fast, safe and optimal trocar set-up to provide the
best surgical approach to reach the target (cf. Fig. 1[b-c]). However, this technique
suffers from two important drawbacks. First, the P3DM registration is performed
manually and needs to be recomputed after every change of the relative position
of the camera with respect to the patient. Second, this kind of relative motion is
difficult to avoid even using bulky fixing methods for both the camera and the
patient.

(b) (c)

Fig. 1: Port positioning with AR guidance during trans-thoracic minimally invasive
hepatectomy [1]. (a) Pre-operative trocar placement planning. (b) and (c¢) Marking
of the chosen port site.

The accuracy of the image augmentation with the P3DM depends on two
factors: 3D camera tracking and P3DM registration. 3D camera tracking implies
the computation, in real-time, of the 3D camera position with respect to the patient
body. P3DM registration implies anchoring, also in real-time, of the P3DM to
the patient body. In this paper, we propose a Visual Simultaneous localization
And Mapping (VSLAM)-based approach for on-patient AR visualization, while
the tablet is moved by the practitioner around the patient. Our system satisfies
the following constraints: seamless integration in the operating room (OR), real-
time performance, minimal interaction from the medical staff and robustness to
occlusion and failure.

The reminder of the paper is organized as follows. Section 2 provides a review of
the related work on on-patient AR visualization and VSLAM for camera tracking
and mapping. Section 3 gives an overview of the proposed on-patient AR visual-
ization system, followed by a detailed system description in Section 4. In section
5, the experimental results and evaluations are discussed. Finally, a conclusion
summarizes our achievements and future work are presented in section 6.
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2 Related work

2.1 On-Patient AR visualization

Various approaches for on-patient AR have been proposed in recent years, based
on two different techniques to track 3D camera location: surface-based registration
and 2D/3D point correspondences. In surface-based registration techniques [2-6],
a tablet-PC is mounted with a range camera, RGB-D sensor or stereo-vision to
continuously capture the depth and color information, from which the skin surface
is automatically extracted. This surface is then registered with the P3DM acquired
from CT images, typically ICP (Iterative Closest Point) is used. This process is
repeated for every frame at 5-10Hz [4]. The major drawbacks of this type of tech-
niques are the computation cost of depth image segmentation and ICP. Secondly, a
good initialization for the ICP registration is required and has to be provided man-
ually. Depending on the interface, it is not clear whether practitioners/surgeons
can accept this task. Thirdly, this kind of methods are not robust to partial oc-
clusions of the skin. To achieve real-time performance, either parallel processing
[4] or client/server architecture [6] or both [2] are used: a powerful server PC is
necessary to process data and the tablet-PC is used as a display tool only.

In 2D /3D point correspondences techniques [7—10], markers need to be visible
in the CT image and can be either natural landmarks or artificial ones placed on
the patient before scanning. Their 2D positions in each frame are used to solve
a 2D/3D geometrical relationship. In this case, the obvious drawback is the use
of markers which should be visible in CT/MRI. Moreover, a minimum number
of markers must be visible in every frame to register the P3DM [7,10], which
impedes the surgeon movements. Indeed, markers are likely to be occluded by
surgeon hand or a surgical instruments. Moreover, current on-patient visualization
techniques typically evaluate their accuracy by measuring the registration errors
of skin fiducials [2,3,5,6], the discrepancy in pixels in the image [8,10], and/or
the processing time [4]. To address these drawbacks, a VSLAM-based method for
on-patient visualization is proposed. Our system is rigorously evaluated in terms
of: processing time and robustness on human data, registration accuracy on pigs
during both breath-hold and respiration phases using fiducials and registration
accuracy on a liver phantom using fiducials.

2.2 VSLAM-based camera tracking

VSLAM is a popular topic in robotics and computer vision, as it aims at building
a 3D map of an unknown environment while simultaneously tracking camera lo-
cation. Davison [11] proposed the first real-time VSLAM, based on an Extended
Kalman Filter (EKF). Further improvements over the EKF SLAM have been pro-
posed [12,13]. EKF approaches initialize robustly, but have a poor scaling given its
limitation of the map to a few hundreds points. EKF approaches have been suc-
cessfully applied to MIS notably for abdominal surgery to track endoscope motion,
to provide 3D scene structure [14] and to live AR annotations [15].

A significant leap with respect to EKF VSLAM was Klein and Murray’s PTAM
(Parallel Tracking and Mapping) [16]. PTAM algorithm performs in real-time all
the steps of the classic photogrammetric 3D reconstruction [17]: matching, view
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selection, initialization and non-linear optimization termed Bundle Adjustment
(BA). Recently, ORB-SLAM [18] builds on PTAM and extends its performance
to large scale mapping including loop closure, large scale relocation and position
graph optimization. In this system, ORB image features play a key role in data
association and relocation. ORB [19] is a newly developed image point descriptor
that is able to handle rotation and scale changes with a comparable performance
to SIFT [20] but with only a fraction of the computational cost. Our VSLAM com-
bines some of these systems in order to balance good performance and reasonable
hardware requirements in the medical environment. We use EKF for automatic
initialization, PTAM approach for operation in room size environments where loop
closure is not needed, and ORB features are used for relocation.

Our contributions are: 1) A VSLAM for on-patient AR visualization, which
only requires a tablet-PC. 2) A usage strategy that fits the clinical constraints
and is easy to setup and use inside the OR. 3) Interactions from the surgeon
are reduced to the identification of 4 to 6 anatomical references at the beginning
of the procedure. 4) The system is validated providing geometrical accuracy and
computing cycle time.

3 System overview

The workflow of our system is shown in Fig. 2. It firstly consists of an offline stage.
A CT volume of the patient is acquired and segmented to generate the P3DM.
The P3DM is composed of surface meshes corresponding to the skin surface and
to the selected body structure surfaces. The practitioner/surgeon selects at least
4 (typically between 4 and 6) anatomical landmarks (L;,¢ € {1..6}) on the skin
mesh (called anchor points). The anchors should be easily identifiable on the skin
of the patient during the procedure.

‘ Offline Steps (before AR visualization) ‘

Segmentation < Specifyin;
]| seem e-»‘j“ " Specifying iﬁ '

& \ Landmarks (L)
:,E ZZZ : s =
/ ‘ Online Steps (during AR visualization) ‘
Bk sscued or evry e ]
Hold tablet-PC and Append anchor points to
initialize the system e map
Solve orientation problem
between two 3D point clouds

Select anchor points

Find matches of anchor points
in other keyframes

Apply transformation matrix
to P3DM

Perform template matching Apply bundle adjustment to
and compute 3D refine 3D estimation of

<mﬁnats of anchor poin anchor points

Fig. 2: Overall system workflow

In the OR, the practitioner directs the tablet-PC camera at the patient and
performs a translational motion to bootstrap the VSLAM, then he/she identifies
the anchor points (L;) by clicking on the tablet-PC live video stream. Those anchor
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points provide the 3D/3D registration of the P3DM within the VSLAM map.
Afterwards, a synthetic image of the P3DM can be overlaid on live video stream.
This interactive procedure of anchor points identification is required only once at
the beginning of the procedure, then, the practitioner can move the tablet-PC
around the patient and experience the AR visualization (cf. Sec. 4.3), even if none
of the anchors remains visible in the tablet-PC camera field of view.

4 System description

4.1 VSLAM architecture

Our VSLAM aims at running on mobile devices and is intended for small scenes.
It is a PTAM-like algorithm that automatically and sequentially computes a 3D
photogrammetric reconstruction from the live video stream (cf. Fig. 3). To do so, a
set of interest points has to be matched along the sequence; we use sparse features
detected in the image by the Features from Accelerated Segment Test (FAST)
detector [21]. In order to reduce number of outliers, we keep only the most salient
features, whose Shi-Tomasi score [22] is over 100. The ORB descriptor [19] is then
used to describe the detected features (block A in Fig. 3). A set of frames -named
keyframes— has to be selected because the complexity scales cubically with the
number of frames. Then a non-linear BA optimization yields 3D location for the
map points and positions for the keyframes accurately. The BA is run in a thread
termed Mapping described below. In parallel, another thread —termed tracking—
estimates the position of the frames that are not keyframes.

Camera tracking This task operates sequentially on all frames of the live video
(block C in Fig. 3). The 3D locations of the map points are assumed to be avail-
able. Then the position of each frame is computed by non-linear optimization of
the reprojection error for the matched points. To avoid the influence of spurious
matches, a two-stage optimization is applied. In the first stage the Huber influence
function is used as it is less sensitive to outliers. While in the second stage the
optimization is switched to the Tukey kernel to achieve a robust optimization. An
initial guess is needed for the camera position and is computed from the camera
position and velocity estimated for the previous frame.

The difference among the various VSLAM methods is how the matches be-
tween the map points and the current frame are computed. We estimate a region
where the map points are expected to be found by reprojecting the 3D map points
onto the predicted camera position. The ORB descriptor of each map point is
compared with those of all the features detected inside the predicted region, using
the ratio between closest to second-closest neighbors as a score [23]. If no match-
ing is found, a correspondence is searched by patch correlation in the prediction
region. If the number of matches is below 20 (empirically defined), the camera is
assumed to be lost and the relocation process is started. Additionally, the track-
ing thread chooses a keyframe among the processed frames using the standard
VSLAM criteria of minimal parallax distance with respect to all map keyframes.
For each of the keyframes, we compute the median parallax with respect to the
current frame. If the smallest parallax angle is over 2 degrees, the current frame
becomes a new keyframe. This parallax angle threshold is chosen to be small to
increase the number of keyframes, map points and to avoid rapid tracking loss.
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The median parallax is estimated using the median of the XYZ coordinates of the
map points detected in the current frame.
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Fig. 3: VSLAM architecture.

Mapping The mapping thread runs in parallel with the tracking thread but at a
lower frequency, continuously improving the map points estimation (block D in
Fig. 3). The BA minimizes total reprojection error with respect to the keyframe
positions Xy ¢, and the 3D map point locations Xy ;:

argmin > p (|[ui; — CamProj(Xw;, Xwe,)||?) (1)

Xwj.Xwe; g
where u;; is the matched observation of the j-th map point by the i-th keyframe.
The CamProj codes the projection function including perspective and radial dis-
tortion. p denotes the robust Huber influence function. The BA non-linear opti-
mization has been implemented using Google Ceres [24]. After each BA iteration,
spurious map points are removed if: 1) the reprojection error of the point on the
keyframe used for its creation is over a threshold (the median of reprojection er-
rors of all measured map points). 2) the point is detected only in two keyframes,
although it is visible in more than two. 3) The ratio between number of times
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point is measured and number of times point is predicted is smaller than 0.3 (em-
pirically defined). The mapping thread is also responsible for the initialization of
new map points. Once a new keyframe is added to the map, matches between the
new keyframe ORB points and all other keyframes in the map are sought. We use
standard patch correlation guided by epipolar geometry.

Bootstrapping Previous mapping and tracking processes assume that there is a
map. Next we describe how the map is initialized from scratch (block B in Fig.
3). For bootstrapping, the system has to select two keyframes that render enough
parallax, this selection has proven an issue in VSLAM. We use a simple EKF
VSLAM with all features encoded in inverse depth [12]. This approach can handle
low parallax geometries, being able to exploit every single image in the sequence
to estimate the map and the camera position. We process images until most of
the map points are detected with enough parallax. Then we consider the first and
the last processed images as the two initial keyframes for BA. Given these two
keyframes and their relative locations, robust new point matches are computed
by epipolar search, as in the mapping thread. Afterwards, an initial guess for the
map points and two keyframe positions is fed to BA. The proposed EKF VLSAM
only initializes points in the first frame. If those points fail to be tracked, or go out
of the field of view before rendering enough parallax, the map is discarded and a
new initialization is launched automatically.

Camera relocation Tacking can be lost because of camera occlusion, feature dele-
tion due to fast camera motion or failure to track enough map points. Then the
camera has to be located with respect to the map from scratch. Our system detects
all the ORB points in the current image (block E in Fig. 3). They are matched with
respect to the ORB descriptors of all the map points using as score the ratio be-
tween closest to second-closest neighbors to compute the putative matches. Then
a perspective-three-point (P3P) [25] from random samples of size 4 is executed.
The number of Random Sample Consensus (RANSAC) iterations are limited by
the frame rate. To validate the relocation, the tracking algorithm has to produce
a coherent position for the next frame in the sequence, otherwise relocation is
re-attempted with the new frame.

4.2 Registration of pre-operative model with VSLAM map

Registration is initialized interactively by the practitioner once the VSLAM has
been bootstrapped. The practitioner selects the 2D anchor points over the live
video stream by tapping on the tactile screen of the tablet-PC. The 3D coordi-
nates of the 2D anchor points are computed and appended to the map following
the procedure described in Algorithm 1 (a variant of [26]). The P3DM is then
translated, rotated and scaled to align the landmarks in the model with the an-
chors in the map. Initialized anchor points store a correlation patch to match in
other keyframes. The correlation matching is guided by the epipolar geometry.
Once two keyframes with proper matches are found, the 3D coordinates of the
anchor point are triangulated, then the matches are propagated among previous
keyframes. The BA is iterated to refine the 3D geometry of the map anchors. These
anchor points are never removed from the map. On the arrival of a new keyframe,
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geometry-guided search for correlation matches is performed and Tpm (rotation,
translation and scaling) is recomputed using [27] by minimizing the alignment er-
ror err = i1 ||l — Tpm - Li|| (cf. Fig. 4 [b]). After each mapping iteration of the
mapping thread, Ty, is refined with the newly available [; estimations.

Input : List of keyframes with their estimated positions
Input : Query image in which anchor points are selected
Input : 3D coordinates of landmarks from P3DM (L;)
Output: Transformation Ty, from P3DM to map
foreach selected 2D anchor point do
Extract a square patch around the point
Perform epipolar-guided cross correlation with all the map keyframes
Estimate 3D coordinates (I;) using triangulation
Find more matches in previous keyframes
Append I; to the map
end
Apply BA to refine (I;) estimations
Compute Tppm, from L; and [; [27]

Algorithm 1: P3DM registration using anchor points from a real image

4.3 See-through AR

To provide AR overlay on the live video: 1) The VSLAM tracking thread provides
a position estimate for each frame of the live stream, then a virtual camera with
the same intrinsic parameters of the tablet-PC camera is located at the estimated
position in the virtual scene (cf. Fig. 4[b]). 2) The image acquired by the virtual
camera, taking into account the tablet-PC camera distortion, is rendered (cf. Fig.
4[c]). 3) The fusion is performed (cf. Fig. 4[d]) between the real camera image (cf.
Fig. 4[a]) and the rendered one (cf. Fig. 4[c]).

(c) (d)

Fig. 4: AR insertion. (a) Tablet-PC camera frame with projected (red) and
matched (green) map points. (b) Virtual 3D scene including the registered P3DM.
(c) Virtual camera image. (d) Fused AR image.
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5 Results

The proposed system has been implemented in C++ with OpenCV and VTK li-
braries and executed on a Sony VAIO Duo 13 tablet-PC with Intel(R) Core i7
(1.8 GHz), 8 GB RAM, with a camera of 640x480 at 30fps. Firstly, the system
performance was evaluated on in-vivo data in terms of computation time with
two volunteers, each of them laying on the table while the practitioner holds the
tablet-PC and moved around them. The CT scans of these volunteers were per-
formed several years ago. Secondly, the system accuracy was assessed by means
of several experiments with fiducials; the first experiments were on four in-vivo
pigs, the second on a phantom. All computations were performed exclusively on
the tablet-PC. Beforehand, the focal and distortion of the tablet-PC camera were
calibrated using [28]. Every P3DM in our experiments was segmented using our
own software but can be obtained, for clinical applications, using a commercial ser-
vice like Visible Patient[29]. More details can be appreciated in the accompanying
video.

5.1 Volunteers experiments: computation time evaluation.

In this experiment, the time required for each step of the system was evaluated. For
both volunteers, the five anatomical landmarks chosen as anchors for registering
the P3DM were: right nipple, left nipple, umbilicus, right iliac crest and left iliac
crest. The left and right iliac crests were marked with a pen on the skin of both
volunteers, to easily identify them in the 2D images (cf. Fig. 5[a] and Fig. 6[a]).
Fig. 5 and Fig. 6 show AR annotated frames for both volunteers from different
points of view.

(b)

Fig. 5: Experiment on first volunteer. (a) Real tablet-PC image. (b) Skin regis-
tration with anchor points (in blue) and automatic map points. (c-f) Skin AR
overlays over frames from different points of view.

VSLAM initialization: the VSLAM bootstrapping did not fail in any of the ex-
periments. It was initialized using on average less than 20 frames. If failed, the
initialization was automatically relaunched, and eventually succeeded.



10 Nader Mahmoud et al.

Camera tracking and VTK rendering: Average tracking time was approximately
32 ms per frame for a map size that ranged between 180-200 points and 30-40
keyframes for video sequences composed of 750-900 frames. The average VTK
rendering time was approximately 33 ms per frame, including the ideal projective
imaging, the distortion and the fusion with the real frame. After each mapping
step, the anchors 3D locations were updated, hence the AR insertion location in
the map had to be recomputed, which took less than 1.2 ms. The time of initial
insertion of the P3DM into the map can take up to 3 seconds depending on the
sequence, due to searching for the anchor matches in all the keyframes. Therefore,
total average time was 66.2 ms per frame.

Fig. 6: Registration of transparent skin, liver, left kidney and right kidney on the
body of the second volunteer from different points of view.

Loss of tracking and relocalization performance: In case of lateral (cf. Fig. 5[f] and
Fig. 6[c].) or close up (cf. Fig. 6[f]) tablet-PC movements, the P3DM can still be
registered even if most of the anchor points are not visible. Camera tracking is
robust to partial scene occlusion since few map points are needed for VSLAM to
estimate the tablet-PC position (cf. Fig. 9[b] and [c]). In case of full scene occlusion
or severe camera motion, the relocalization module in VSLAM always relocated
the tablet-PC position once a few map points were visible again, which required
approximately 15 ms. As a result of this module, re-initialization of the whole
system in the case of tracking loss is not necessary.

5.2 Accuracy evaluation

To assess the registration accuracy of the proposed system, experiments on four
pigs were performed and the surface fiducial registration error (FRE) as well as
the target registration error (TRE) were reported. Additionally, a plastic phantom
was used to evaluate the registration accuracy on internal body structures that
are far from the anchor points used for registration.
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5.2.1 Data acquisition

Each pig was placed on the CT table, and nine radio-opaque markers were stuck
on its skin before acquisition (cf. Fig. 7[a]). The CT scan was performed with
breath-hold via a mechanical ventilation system. For each pig, two videos were
recorded, one with breath-hold and another during respiration. The P3DM and
the 3D coordinates of the markers were extracted from the CT images.

(b) (c) (d)

Fig. 7: Experiments on pigs. (a) Nine radio-opaque markers were attached to the
surface of the pig. (b) P3DM composed of skin, bones, liver, left kidney and right
kidney overlaid on an image of the first pig. (c) Lateral view of skin registration
on the second pig. (d) Keyframe locations during camera motion around a pig.

5.2.2 Registration accuracy on pigs

The 3D coordinates of the markers extracted from CT were considered as ground
truth. All markers were clicked on 2D image and their 3D coordinates computed
and appended to the map. Only five markers were used as anchors to compute
the 3D/3D registration those are displayed in blue in Fig. 7[a]. Fig. 7[b] and [c]
shows the registration results on two pigs from different directions. The keyframe
locations during camera motion around one of the pigs are displayed in Fig. 7[c]
and represented by axes. The averaged F'RE over all the frames in the sequence
was calculated from the five markers used in the registration. The averaged TRE
over the sequence was computed from the remaining four markers. FRE and TRE
are defined in eq. (2):

F 9
1 & e 11
FRE=—> > |li—Tpm-Lil| TRE= - =~ ||li =~ Tpm-Lil| (2)
F £~ 5 ¢ Ffzat

where F' refers to the number of processed frames. As defined in eq. (2), the
distance between the two point clouds was computed for every frame. In the In-
ner summation of eq. (2), the average distances of the five markers used for the
registration and average distances of the remaining four markers were computed.
Then FRE and TRE over all frames in the sequence were defined from the outer
summation in eq. (2). The length of all video sequences ranged between 600 and
800 frames with 30 to 40 keyframes and map sizes between 176 and 279 points.

Each video was processed five times, each time the same frame was used to
select the anchors. For the five registration trials on each pig sequence, the mini-
mum, maximum and mean values of F'RE and T'RE are reported in Table 1 during
breath-hold. Table 2 shows the influence of the breathing.
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Table 1: FFRE and
breath-hold.

TRE (in mm) of the four pigs sequences recorded during

Pig 1 Pig 2 Pig 3 Pig 4

min  max mean min max mean min max mean min max mean

FRE 2.72 3.07 2.94 2.41 2.61 2.52 3.42 4.27 3.82 1.01 2.66 1.55

TRE 3.36 3.99 3.74 3.38  3.98 3.69 3.75 4.28 4.07 1.5 2.88 2.2
Table 2: FRE and TRE (in mm) of the four pigs sequences recorded during

breathing

Pig 1 Pig 2 Pig 3 Pig 4

min max mean | min max mean | min max mean | min max mean

FRE 253 3.64 3.11 2.76 3.7 3.1 4.62 6.09 5.32 2.62  4.22 3.1

TRE 349 4.56 3.92 3.65 4.08 3.88 4.95 6.24 5.6 2.62 4.62 3.44

After the initial insertion into the map, the P3DM is affected by a small jitter-
ing, due to the low number of keyframes and the poor geometrical conditioning.
On the arrival of keyframes with a wider baseline, thus rendering bigger parallax,
this jittering disappears within a few seconds, according to our experiments. Af-
terwards, the estimation of the anchor points 3D coordinates becomes accurate
and so does the 3D /3D registration (cf. Fig. 8).

5 6
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(a) (b)

Fig. 8: Evolution of the average distances between I; and L; (in mm) over all
frames of one video sequence in case of breath-hold. (a) The average distances
between the 5 markers used in the registration. (b) The average distances of the
remaining 4 markers.

5.2.3 Registration accuracy on phantom

A phantom with a plastic liver was used to evaluate the system accuracy for
points far from the body surface. 13 markers were attached on the external sur-
face, 2 markers on the plastic liver and 4 markers on the phantom base (cf. Fig.
9[a]). The phantom sequences and CT were obtained following the same steps as
those of the pig experiments in Sec. 5.2.1. Five markers on phantom surface were
used to compute the registration (cf. Fig. 9[a]). Table 3 shows FRE of the five
markers used for the registration, TRE of the two liver markers and TRE of the
four markers at the phantom base. All were computed after processing the full
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sequence and averaging the results of five registration trials.

(b)

Fig. 9: Experiments on phantom. (a) Markers in blue were used for the registration.
(b) and (c) Liver AR overlay with partial scene occlusion.

Table 3: FRE and TRE (in mm) after processing the whole phantom sequence.

FRE TRE (two liver markers) TRE (four markers at the base)
min max mean | min max mean min  max mean
2.28 7.74 5.1 5.16 9.7 6.61 9.9 13.7 11.8

As shown in Table 3, the closer the target to the skin, the better the registra-
tion accuracy. The four markers on the phantom base represent the worst target
position, i.e. close to the skin of the back. Therefore, 11.8mm can be considered
the worst system accuracy. For the sake of completeness, the registration accuracy
using all the 13 markers stuck on the surface has also been computed and provide
a reduction between 1.5-2.0 mm on both FFRE and TRE. It is worth noting that
the FFRFE is larger than in case of pigs due to utilization of different markers. The
markers used with pigs were covered and a pen was used to mark their center
of mass to be easily identifiable in the images (cf. Fig. 7[a]). In the phantom the
markers were not covered and hence there were some inaccuracies in clicking the
center of the cross shape of each markers.

6 Conclusion and Future work

A VSLAM-based on-patient AR visualization system is presented, which can be
seamlessly integrated into the OR as the only external device is a commercial
tablet-PC computer. The proposed system provides real-time performance, ro-
bustness to occlusion and detection failure. It requires minimal interaction with
medical staff, i.e. the definition of the anchors by clicking on the live video. This is
interaction is considered non-disruptive by most surgeons. In contrast to marker-
based AR, our system is able to provide AR overlays even if none of the anchors
used for the registration remains visible. Experimental results show the applica-
bility of the proposed system, both in terms of computation time and accuracy.
Although the system can already provide a great assistance, it can be further im-
proved. Extension from rigid to non-rigid registration would allow taking breathing
motion into account.
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