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This paper presents methodologies for the identification and control of 6-Degrees of Freedom (DoF) Cable-
Driven Parallel Robots (CDPRs). First a two-step identification methodology is proposed to accurately
estimate the kinematic parameters independently and prior to the dynamic parameters of a physics-based
model of CDPRs. Second, an original control scheme is developed, including a vision-based position
controller tuned with the H∞ methodology and a cable tension distribution algorithm. The position is
controlled in the operational space, making use of the end-effector pose measured by a motion-tracking
system. A four-block H∞ design scheme with adjusted weighting filters ensures good trajectory tracking
and disturbance rejection properties for the CDPR system, which is a non-linear coupled MIMO system
with constrained states. The tension management algorithm generates control signals that maintain
the cables under feasible tensions. The paper makes an extensive review of the available methods and
presents an extension of one of them. The presented methodologies are evaluated by simulations and
experimentally on a redundant 6-DoF INCA 6D CDPR with 8 cables, equipped with a motion-tracking
system.

Keywords: Cable-driven parallel robots; model identification; vision-based control ; H∞ control;
tension distribution

1. Introduction

Cable-Driven Parallel Robots (CDPRs) are special parallel robot manipulators where the end-
effector or platform is connected to the base via cables only, its movement resulting from the winding
and unwinding of the cables around pulleys actuated by motors. This kind of robot manipulator
appeared in the late 80s by replacing the segments of the Gouth-Stewart platform manipulators
by cables in order to solve the major problem of the reduced workspace of rigid parallel robots
(Dagalakis et al., 1989).
Compared to serial and parallel manipulator robots actuated by rigid links, cable-actuated robots

benefit from interesting features like: very large workspace, high speed motion due to the low moving
mass, modular geometry, portability and adaptability to multi-scales. However, their control is a
more complex issue as the cables must remain under tension at any time (Oh et Agrawal, 2005).
The approaches available in the literature to solve this issue can be classified in two main categories.
In the off-line solutions, a path planning step is used prior to motion in order to design a reference
trajectory which guarantees that the cables remain under tension during the predefined motion
(Gosselin, 2012; Trevisani, 2012). In the on-line solutions, an algorithm of tension distribution
(also known as force calculation or redundancy resolution) is used to ensure that the control signals
maintain the cable tensions inside a predefined feasible workspace during motion (Lafourcade, 2004;

Corresponding author. Email: laroche@unistra.fr



July 20, 2016 International Journal of Control IJC2015_v7_withNames

Ming and Higuchi, 1994). This is a common solution for redundant manipulators, where the number
of cables exceeds the number of Degrees of Freedom (DoF) of the end-effector, and it is the solution
considered in this work.
Dealing with position control of CDPR manipulators, most of the proposed methods rely on joint

position measurements. According to the coordinate space chosen to solve this control problem, there
are two alternatives. In the first one, the controllers are designed in the joint space coordinates.
Using the Inverse Position Kinematic Model (IPKM), the reference end-effector pose is converted
into reference joint positions which are then controlled by a feedback loop. Some related works are
the joint space PD controller proposed by Kawamura et al. (2000) applied to the SEGESTA robot
and later to the KNTU robot by Gholami et al. (2008), and the joint space PID controller for the
redundant suspended ReelAx8 prototype presented by Lamaury et al. (2012a). In the second one, the
controllers are designed in the task space coordinates. Assuming that a Direct Position Kinematic
Model (DPKM) is available, the end-effector pose is calculated from the joint position measurements
and a feedback control allows to track a reference pose. Gholami et al. (2008) evaluated such a task
space PD controller and compared it to the previous approach. However, for parallel manipulators,
the DPKM is difficult to obtain (see for instance Carricato et Merlet (2011) for an intensive study on
the matter). In the previously mentioned control schemes, the modelling errors and the deformations
of the cables result directly in errors on the end-effector pose. One solution for improving the
accuracy is then to use some exteroceptive sensors in order to obtain a direct measurement of the
end-effector pose. Some preliminary works using cameras have been proposed by Dallej et al. for
controlling the redundant suspended ReelAx8 robot (2011) or the large-dimension CoGiRo robot
(2012) .
CDPRs are non-linear coupled MIMO systems with constrained states. For such systems, stability

issues arise with linear LTI or model inversion based controller as soon as the model is not well
known or when the parameters evolve during operation. Multi-variable control methodologies that
have been developed since the 90s now allow to manage the trade-off between performances and
robustness and are then good candidates for CDPRs. Some preliminary results were proposed by
Laroche et al. (2012) for the design of a LTI robust controller that manages both position and
tension, including simulation results of a 3-DoF cable-robot with 4 cables.
The purpose of this paper is twofold. First, a two-step methodology is proposed to accurately

estimate the kinematic parameters prior and independently from the dynamic parameters of a
physics-based CDPRs model. It requires both the measurement of the motors angular positions
(measured by optical encoders) and the end-effector pose (provided by a system of cameras). After a
presentation of the available identification methods, experimental results are provided, showing that
the identified model fits the system behaviour with good accuracy, and can then be used for control.
Second, an original control scheme is developed in two parts: a vision-based position control scheme,
for which an H∞ methodology is proposed, in addition to a cable tension distribution management
algorithm. The position control is achieved in the operational space, making use of an end-effector
pose directly measured by a vision-tracking system. A four-blocks H∞ design scheme with adjusted
weighting filters ensures good trajectory tracking and disturbance rejection for CDPR systems
which are Non-Linear Time Invariant (NLTI) coupled MIMO systems with constrained states. In
conjunction with this position control loop, a tension management algorithm aims at ensuring that
the control signals maintain the cables under feasible tensions. The paper makes an extensive review
of the available methods and presents an algorithm inspired from one of them, to account for the
motor dynamics. Results from simulations and experiments are then reported using the redundant
6-DoF CDPR INCA 6D prototype with 8 cables manufactured and sold by Haption, equipped with
a motion-tracking system Bonita developed by Vicon.
The paper is organised as follows: Section 2 describes the setup composed of the INCA robot

and the Bonita motion-capture system. In Section 3, a physics-based model of the 6-DoF CDPRs
is developed. In Section 4, the identification methodology is described and implemented. Section 5
is dedicated to the control strategies and includes both simulation and experimental results.
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2. System description

2.1 INCA robot

The INCA robot developed by Haption is a haptic device with force feedback that is used in this
work as a manipulator to address the control issues raised by CDPRs.
On its 6D version, the INCA 6D has a cubic configuration of 3 m by side, and uses eight driving

cables to move the end-effector and 8 balancing cables to ensure pretension in the driving cables
when the motors are non-powered (Fig. 1(b)). Each actuator located at one of the eight vertices
of the workspace (Fig. 1(a)) is composed of a DC motor with a current driver, coupled to both
the driving and balancing winches (Fig. 1(b)) to store the cables, and is associated with a pulley
to guide the cables, thus avoiding shearing. The contact points between the driving cables and the
end-effector are called attachment points, and the contact points between the driving cables and
the pulleys are called output points.
A measurement of the motor positions and currents are respectively achieved by incremental

optical encoders and current sensors.

IR Cameras

End-Effector

Actuator

(a) The INCA robot and the 6 Bonita IR cameras
for tracking of the robot end-effector

(b) Actuation scheme

Figure 1. The INCA robot

2.2 Bonita motion-capture system

The Bonita motion-capture system used to measure the pose of the INCA end-effector is composed
of six infrared (IR) cameras (Fig. 1(a)) and a tracker software running on a Windows PC, both
from Vicon company. Each camera has its own emitting source and delivers a grayscale image with
VGA resolution up to a 250 Hz frame-rate. Assuming that this stereo system has been previously
calibrated, the pose of the INCA end-effector fitted with five retro-reflective fixed markers can be
tracked by the software.
The temporal and spatial performances of the pose reconstruction are critical for the robot control

and have been evaluated as follows:

• the delay between the start of the image acquisition and the availability of the pose measurement
has been evaluated at 10.7 ± 0.7 ms with a 200 Hz camera frame rate. This latency of roughly
twice the acquisition period is the sum of one period of image acquisition and one period for the
pose reconstruction.
• the accuracy of the pose is of 1.7 ± 0.4 mm. It has been estimated by the RMS error in the IR

camera images between the current position of the visible markers and their expected positions
given by the reconstructed pose of the end-effector.
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2.3 Real-time control architecture

To allow the controller to operate at a higher frequency than the frequency of the Bonita motion-
capture system, the control architecture summed up in Fig. 2 is designed as the following two
asynchronous real-time tasks:

• the main periodic task is run by a PC under RT Linux at 1 kHz. It consists in reading the
motor currents and the motor positions, checking the consistency of the robot state and finally
computing the reference for the motor currents.

• a secondary task is run by a PC under Windows asynchronously at 200 Hz. It waits for the
availability of the end-effector pose provided by the vision-tracking system.

Robot

INCA

Windows PC

End−effector pose

RT Linux Xenomai PC

(via Ethernet)

VRPN
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Tracker

software
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Figure 2. Real-time control architecture

3. Modelling of the 6-DoF CDPRs

The physics-based model considered in this work is derived from the general model for the m-DoF
CDPR manipulators with n cables, which is augmented with the pretension system (balancing
cables, winches and springs) of the INCA prototype. It is assumed that the cables are of negligible
mass (straight, no sagging) and of infinite stiffness (inextensible).

3.1 Kinematics modelling

3.1.1 Position kinematics

Denoting Ro the base reference frame and Re the end-effector frame centred at its center of mass,
the pose of the end-effector can be represented by the vector Xe = [P Te ΦT

e ]
T , with Pe the position

of the origin and Φe a representation of the orientation of Re with respect to the base reference
frame Ro (Fig. 3(a)). Considering Φe = [φr φp φy]

T , the rotation matrix oRe from Ro to Re has
been chosen as a composition of three successive rotations Roll-Pitch-Yaw (Khalil, 1999) of angles
(φr, φp, φy) respectively around the principal axes (Xo, Yo, Zo) of Ro:

oRe(Φe) =

cycp cyspsr − sycr cyspcr + sysr
sycp syspsr + cycr syspcr − cysr
−sp cpsr cpcr

 (1)

with sk = sinφk and ck = cosφk, k standing for r, p or y.

4
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The attachment point Ei with coordinates eri fixed in Re is located at the position PEi
=

Pe + oRe(Φe)
eri in Ro. With POi

denoting the position of an output point Oi fixed in Ro, the
length of cable #i writes Li(Xe) = ‖ li(Xe) ‖2 where li(Xe) = Pe + oRe(Φe)

eri − POi
. We then

stack the lengths of the cables in L = [L1 . . . Ln]T .
By convention, the angular position is considered as increasing during winding. With a null

reference of the motor positions θo = O8×1 for the initial pose of the end-effector Xeo = [Pe
T
o Φe

T
o ]
T ,

the Inverse Position Kinematic Model (IPKM) is then given by:

θ(Xe, αK) = −R−1pm (L(Xe, αK)− L(Xeo, αK)) (2)

where αK is the vector of the parameters involved in the kinematic model and Rpm =
diag(rpm11

, ..., rpm1n
) contains the radii of the driving winches.

3.1.2 Velocity kinematics

Differentiating Eqn. (2) with respect to time yields the Inverse Velocity Kinematic Model (IVKM):

θ̇ = −R−1pm J(Xe) Ve (3)

where the ith row of the inverse kinematics Jacobian matrix J is the same as for a rigid paral-
lel manipulator (Merlet, 1997) and is given by Ji(Xe) = [ui

T (Xe) (ri(Φe)× ui(Xe))
T ], in which

ui(Xe) = li(Xe) /Li(Xe) is the unit direction vector of the ith driving cable (Fig. 3(a)). The end-
effector velocity Ve = [vTe w

T
e ]
T (including the linear ve and angular we velocities) can then be

converted into the time derivative of end-effector pose Ẋe by:

Ve = Av(Φe) Ẋe (4)

with Av(Φe) = diag(I3×3, Jrpy(Φe)), in which the matrix Jrpy maps the angular velocity we to
the time derivative of the chosen orientation representation Φ̇e such as we = Jrpy(Φe) Φ̇e. For a
Roll-Pitch-Yaw representation of the rotation, Jrpy has the following form:

Jrpy(Φe) =

cy cp −sy 0
sy cp cy 0
−sp 0 1

 (5)

Denoting J̃(Xe) = R−1pm J(Xe) Av(Φe) and recalling the dependance with respect to the kinematic
parameter vector αK , the IVKM is finally rewritten as:

θ̇ = −J̃(Xe, αK) Ẋe (6)

3.2 Dynamics modelling

3.2.1 End-effector dynamics

The Newton-Euler equations (Khalil, 1999) applied to the end-effector rigid body of mass Me and
moment of inertia tensor Ie, written at its center of mass Oe gives:

Fe = Ae(Φe) V̇e +Be(Φe, Φ̇e) (7)

5
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with Ae(Φe) =

[
Me I3×3 O3×3
O3×3

oIe(Φe)

]
and Be(Φ̇e,Φe) =

[
O3×1

we(Φe, Φ̇e)× (oIe(Φe)we(Φe, Φ̇e))

]
, in

which the moment of inertia tensor oIe expressed in Ro is calculated from its constant tensor
eIe expressed in Re such as: oIe(Φe) = oRe(Φe)

eIe
oRTe (Φe).

The resulting wrench Fe = [fTe mT
e ]
T (including the forces fe and moments me) applied on the

end-effector center of mass Oe includes contributions of the cables tensions T = [T1 . . . Tn]T applied
on the end-effector side (Fig. 3(a)) and of the weight G:

Fe = W (Xe) T +G (8)

where W (Xe) = −JT (Xe) is the wrench matrix and G = [0 0 −Me g 0 0 0]T with g the modulus
of the gravity acceleration vector.

3.2.2 Actuators dynamics

With the diagonal matrix of the inertia moments Jeq = jeqIn, viscous Fveq = fvIn and Coulomb
Fceq = fcIn friction coefficients, rotational stiffness Keq of the balancing spring, and neglecting the
tension loss due to the output roll (Ta = Te = T in Fig.3(b)), the equation of the actuator dynamics
writes:

Jeq θ̈ + Fveq θ̇ + Fceq sign(θ̇) +Keq θ = Kem Im −Rpm (Ta − Tao) (9)

with:

• Keq = KspRpe
2, Rpe = rpeIn being the diagonal matrix of the balancing winches radius and Ksp,

the diagonal matrix of the balancing spring stiffness,
• Kem = kemIn, a diagonal matrix with the torque constants,
• Im = [Im1, . . . , Imn]T the motor current vector related to the motor torque vector τm =

[τm1 . . . τmn]T by the linear equation τm = Kem Im,
• and Tao = Keq R

−2
pm L(Xeo) the pretension of the driving cables for an initial pose Xeo of the

end-effector, due to a change of length of the balancing springs by RpeR−1pmL(Xeo).

(a) End-effector (b) Actuator

Figure 3. Diagram of the 6-DoF CDPR with the dynamic parameters

6
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3.2.3 System dynamics

Combining (7), (8), (9) with the use of Eqn. (2), (4), Eqn. (6) and their time derivative, the Direct
Dynamic Model (DDM) of the system written in the operational space is given by:

Mx(Xe) Ẍe + Cx(Xe, Ẋe) +Kx(Xe) +Gx = ATv (Φe) Fev (10)

under the n constraints expressing that the cables are kept inside a feasible tensions workspace
[Tmin Tmax]:

Tmin ≤ T (Im, θ, θ̇, θ̈) ≤ Tmax (11)

The matrices involved in the model write:

Mx(Xe) = ATv (Φe) Ae(Xe) Av(Φe) + J̃T (Xe) Jeq J̃(Xe)

Kx(Xe) = J̃T (Xe) Keq R
−1
pm L(Xe)

Gx = −ATv (Φe) G = −G

Cx(Xe, Ẋe) =
[
ATv (Φe) Ae(Xe) Ȧv(Φe, Φ̇e) + J̃T (Xe) Fveq J̃(Xe) + J̃T (Xe) Jeq

˙̃J(Xe, Ẋe)
]
Ẋe

+ATv (Φe) Be(Φe, Φ̇e) + J̃T (Xe) fceq sign(J̃(Xe)Ẋe)
(12)

and the wrench Fev resulting from the motor-current vector Im is:

Fev = WI(Xe) Im (13)

where WI(Xe) = W (Xe) R
−1
pm Kem. This model relies on the kinematic parameters stacked in αK

and also on the dynamic parameters (inertias, torque constant, friction ratios...) stacked in αD.

3.2.4 Nominal linear model

As can be seen in the system dynamics given by the ODEs system (10), CDPRs are NLTI coupled
MIMO systems. So the linearisation of (10) is required for the use of the H∞ methodology presented
in Section 5. It leads to the linear coupled ODEs system:

Mo δẌe + Co δẊe +Ko δXe = ATv (Φeo) δFev (14)

where the linearised dynamic matrices could be evaluated analytically by differentiating Fev
from (10) at the operating point op = (Xeo , Ẋeo , Ẍeo):

Mo =
∂(ATv Fev)

∂Ẍe

∣∣∣∣
op

Co =
∂(ATv Fev)

∂Ẋe

∣∣∣∣
op

Ko =
∂(ATv Fev)

∂Xe

∣∣∣∣
op

(15)

and are expressed at the operating or equilibrium point op = (Xeo , 0, 0) by:

Mo = ATv (Φe0)Ae(Xe0)Av(Φe0) + J̃T (Xeo) Jeq J̃(Xeo)

Co = J̃T (Xeo) Fveq J̃(Xeo)

Ko = J̃T (Xeo) Keq J̃(Xeo) +

 ∂J̃T
∂px

∣∣∣∣∣
Xeo

Keq R
−1
pm L(Xeo) . . .

∂J̃T

∂φy

∣∣∣∣∣
Xeo

Keq R
−1
pm L(Xeo)


(16)
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Coulomb frictions are naturally removed in the linear model. They can be considered as disturbances
acting on the wrench that will be rejected by the controller.
Hence, the state-space representation of the linearised system based on state x = [δXT

e δẊT
e ]
T ∈

R12, control u = δFev ∈ R6 and measurement y = δXe ∈ R6 vectors writes:{
ẋ = Ao x+Bo u
y = Co x+Do u

(17)

with the state-space matrices expressed as Ao =

[
O6×6 I6×6

−M−1o Ko −M−1o Co

]
, Bo =

[
O6×6

M−1o ATv (Φeo)

]
,

Co =
[
I6×6 O6×6

]
and Do = O6×6.

4. Model identification

A number of approaches are available in the literature for identification of robot models. Yu et al.
(2011) have considered the estimation of the kinematic parameters of a rigid parallel manipulator.
For estimation of dynamic parameters, the reader can refer to Gautier and Poignet (2002); Gautier
et al. (2013) for the electromechanics systems in general and for the serial robots particularly and
to Poignet et al. (2003) for the case of parallel robots.

4.1 Identification methodology

Following Renaud et al. (2006), we propose to estimate the parameters sequentially in two steps,
thus reducing the number of parameters to be considered at one time:

• Step 1: The kinematic parameters are first estimated using the IPKM (see Vischer and Clavel
(1998) for an example of determination of the kinematic parameters of a parallel robot).

• Step 2: The dynamic parameters are then estimated from the DDM, using the identified kine-
matic parameters.

4.1.1 Step 1: Kinematic parameters identification

Considering a set ofNs measurements, the estimate α̂K of the vector αK of the kinematic parameters
can be determined by minimising the following criterion E(αK) on the motor positions (see Fig. 4.a):

E(αK) =

n∑
i=1

Ns∑
k=1

(θik − θ̂ik(αK))
2

(18)

with :

θik = θi(t = k Ts) motor position measurements.
θ̂ik(αK) = θ̂i(t = k Ts, αK) motor position estimations using the IPKM.

Minimising E(αK) is a non-linear least squares optimisation problem that can be solved iteratively
using numerical algorithms such as: Gradient-Descendant, Gauss-Newton or Levenberg-Marquardt.
Denoting σ2θ the variance of the measurement error on the joint positions and A the sensitivity

8
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matrix of the model of dimension nNs × nαK

A =


dθ̂11
dαK

...
dθ̂nNs

dαK

 (19)

the covariance matrix of the error on the estimates writes Σ2
αK

= σ2θ(A
TA)−T (Walter and Pronzato,

1997).

(a) Kinematic parameter estimation scheme (b) Dynamic parameter estimation scheme

Figure 4. Parameter estimation schemes

4.1.2 Step 2: Dynamic parameters identification

The identification of the dynamic parameters of a robot is a general complex problem, due to the
non-linear nature of both the input-output behaviour and the parameter dependence of these MIMO
systems. Identification methodologies for robots can be classified according to the minimization
criterion (Gautier et al., 2013):

• Inverse Dynamic Identification Model (IDIM): the Inverse Dynamic Model (IDM) is writ-
ten in a linear form according to the parameters to be estimated, thus allowing to compute their
estimate in one shot by minimizing the quadratic error between the measured input and its es-
timation computed on the same output trajectory (Gautier and Poignet, 2002). This method
requires the estimation of the speed and the acceleration, through bandpass filtering of the joint
position at high sampling rate.

• Output Error (OE): the quadratic error between measured outputs and their estimate is
minimised, where the output estimate is computed with the DDM, the system being fed with the
same input signal. This technique can be implemented in an open-loop (OLOE) or closed-loop
(CLOE) situations (Janot et al., 2014). This very popular method often yields to a non-convex
problem with possible local minima and is then sensitive to initialisation.

Despite of its drawbacks, the OE method has been chosen as it is more realistic (the errors are
mainly on the measurement signals) and thus leads to a more accurate model for control synthesis.
Beneficing from the stabilization effect of the balancing springs, the experiments were done in open
loop. For a robot without balancing springs, a closed-loop framework would better suit to ensure
that the platform remains within a limited workspace. An excitation is first designed, leading to a set
of input and output data collected from Ns samples at a sampling rate fe. Then, the estimate α̂D of
the vector αD of the dynamic parameters can be determined by minimising the following dynamic

9
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identification error criterion E(α̂K , αD), defined in the operational space in term of end-effector
posture (see Fig. 4.b with c = 0):

E(α̂K , αD) =

6∑
i=1

Ns∑
k=1

(Xeik − X̂eik(α̂K , αD))
2

(20)

or also in the joint space in term of motors positioning (see Fig. 4.b with c = 1):

E(α̂K , αD) =

n∑
i=1

Ns∑
k=1

(θik − θ̂ik(α̂K , αD))
2

(21)

with :

Xeik = Xei(t = k Ts) end-effector pose measurement,
X̂eik(α̂K , αD) = X̂ei(t = k Ts, α̂K , αD) end-effector pose estimation using the DDM,
θik = θi(t = k Ts) motor position measurements,
θ̂ik(α̂K , αD) = θ̂i(t = k Ts, α̂K , αD) motor position estimations using the DDM and IPKM.

As for the kinematic parameters, minimising E(α̂K , αD) is a non-linear least-square optimisation
problem that can be solved iteratively using the same algorithms mentioned for the kinematic
parameters estimation. However, the evaluation of the objective function requires the simulation of
the DDM, which is very demanding in computation time.

4.2 Implementation and results

The proposed identification methodology has been implemented on the INCA 6D CDPR. For the
ith output of a MIMO system of input vector u (dim(u) = Nu) and output vector y (dim(y) = Ny)
among a set of Ns samples, the fit is defined by:

FITi(%) =

(
1−

∑Ny

i=1

∑Ns

k=1 (yik − ŷik)2∑Ny

i=1

∑Ns

k=1 (yik − yi)
2

)
× 100 (22)

where ŷ is the estimation of the output vector y and yi the average of the ith output yi.

4.2.1 Initial values of the parameters

The reference frame Ro is located at the center of the workspace (Fig. 5(a)), and the initial position
for the frame Re attached to the end-effector is chosen equal to Ro (Fig. 5(b)).
Each motor is controlled in current and the current loop, i.e. the transfer between the current

reference I∗mi and the effective motor current Imi, is modelled by a continuous-time first-order
transfer function Gi(s) = 1 / (1 + τi s) with a time constant τi.
The initial values of the kinematic (Fig. 5) and dynamic parameters of the INCA 6D robot, known

by design or calculated, are given in the Table 1. The different actuators are assumed to have the
same parameters.
Coulomb friction parameter fceq has been evaluated by powering each motor separately with

a ramp signal for the reference current slowly varying from Imin = 0 A to Imax = 3 A with a
slope of 1 A/s, whereas the other motors are controlled to 0 A. The Coulomb friction coefficient is
then calculated when detecting the minimum value of the current that produces a motion of the
end-effector. The worse case over the 8 winders has been considered for fceq given in Tab. 1.

10
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(a) Workspace (b) End-effector

Figure 5. Kinematic parameters of the INCA 6D robot

4.2.2 Estimation of the kinematic parameters

The test consists in moving the effector in eight different directions by applying successively a
current reference of 1 A on one motor and 0 A on the other ones. The positions of the motors and
the pose of the end-effector are acquired at steady-state.
The identification scheme presented in subsection 4.1.1 and summarised in Fig. 4(a) has been

implemented using the Levenberg-Marquardt optimiser. The estimates of the kinematic parameters
are given in Table 1. Notice that parameters a and rpe are not involved in the kinematics modelling
and then were not involved in the estimation procedure. The comparison between the positions of
the motors estimations issued from the IPKM and the experimental identification data is shown
in Fig. 6. The error on the motor position is centered (less than 0.4◦, i.e. about 1 mm on the
cable length) and the standard deviation is 45◦, corresponding to 13.7 mm on the cable length.
The standard deviation of the errors on the estimates provided in Table 1 are computed from the
diagonal terms of Σ2

αK
.

The corresponding numerical values of the fit (22) on the motors positions are provided in the
first column of the Table 2. One can notice that the model reproduces accurately the measured
positions.

4.2.3 Estimation of the dynamic parameters

4.2.3.1 Experiment. The choice of the excitation trajectories is an important point for the identifi-
cation procedure. Indeed, the model needs not only to be structurally identifiable, but the excitation
trajectory must also be rich enough. The excitation trajectories must contain both slow (for friction
and stiffness) and fast (for inertia) dynamics.
For the current case of a CDPR, the trajectories should be also large enough to excite the nonlinear

behavior, the cable tension must be sufficiently high to avoid slackness, and sufficiently slow not to
excite the vibrations of the cables.
Motor current signals have been chosen as decoupled Pseudo-Random Binary Sequence (PRBS)

that are usually used in system identification as they can both excite the different inputs of a
multivariable system in a decoupled fashion and are able to excite over a large bandwidth. For the

11



July 20, 2016 International Journal of Control IJC2015_v7_withNames

1 2 3 4 5 6 7 8
−20

0

20

Messurement and est imation

θ
1
(r
a
d
)

1 2 3 4 5 6 7 8
−20

0

20

θ
2
(r
a
d
)

1 2 3 4 5 6 7 8
−20

0

20

θ
3
(r
a
d
)

1 2 3 4 5 6 7 8
−20

0

20

Test number

θ
4
(r
a
d
)

1 2 3 4 5 6 7 8
−2

0

2

Error (rad)

θ
1
−

θ̂
1

1 2 3 4 5 6 7 8
−2

0

2

θ
2
−

θ̂
2

1 2 3 4 5 6 7 8
−2

0

2

θ
3
−

θ̂
3

1 2 3 4 5 6 7 8
−2

0

2

Test number

θ
4
−

θ̂
4

Figure 6. Estimation of the kinematic parameters. Left-hand side: experimental (plain line) and estimated (dashed line)
angular position for the four first motors. Right-hand side: corresponding estimation errors

identification trajectory, the low level Imin = 0 A and high level Imax = 1 A of the signals are
adjusted to respect the constraints on the cable tensions. The upper bound of the frequency band
[0 fmax] was set to fmax = 1 Hz, during a time interval [0 5] s.
Cross validations have been performed with different PRBS trajectories, with additional data

that were not used for training the model. Results are reported in Table 2. First, Val(a) is the
continuation of the identification trajectory over [5 s - 10 s], thus obtained with the same tuning
parameters. Then, Val(b) is obtained by varying the frequency fmax; Val(c) by varying the current
levels Imin and Imax and Val(d) by varying both of them. Notice that the average fit obtained with
the initial values of the parameters was of 3.5 %. It reached 45 % when dividing the initial value of
fveq by 10. These figures show that the parameter estimation step is paramount for improving the
accuracy of the model.
The validation trajectories Val(e) and Val(f) with much higher frequency fmax allow to evaluate

the effects of the cable vibrations that were observed during these experiments and that are not
accounted for in the model.

4.2.3.2 Estimated dynamic parameters. Applying the dynamic identification scheme presented
previously in Fig. 4(b) (considering the joint positions as outputs, i.e. with c = 1), the dynamic
parameters are estimated iteratively using the Levenberg-Marquardt optimiser for solving the non-
linear least-square optimisation problem of Eqn. (21).
The estimates of the dynamic parameters are given in Table 1. Parameters kem and τi have been

maintained at their initial values, that have been confirmed by previous experiments. The non-
diagonal components of the moment of inertia are set to: eIexy = eIeyz = eIexz = 0 kg·m2, and the
diagonal components eIeyy and eIezz are set as equal (eIezz = eIeyy), because of the symmetry of
the end-effector.
An evaluation of the standard deviation of the estimates are given in the last column of table 1.

This evaluation has been done by considering the sum of the parameter variances when considering
all the errors on the kinematic parameters. More precisely, the dynamic parameter identification

12
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has been run seven more times, considering an error of 1 % on each kinematic parameter, thus
resulting in a sensitivity matrix expressing the effect of an error on each kinematic parameter on
the dynamic parameter estimate. The variances of all the kinematic parameters, weighted by their
sensitivities, are then summed up to produce the variances of the dynamic parameter estimates and
finally their relative standard deviations given in table 1. One can notice that the highest deviations
are for the inertias and are of 13 %.

Kinematic Initial Est. STD
parameters values values %
Lx (m) 2.53 2.50 6.8
Ly (m) 2.8 2.75 7.0
Lz (m) 3 3.05 5.4
a (mm) 41 41* /
l (mm) 153 138 18.7
θxy (o) 70 63.0 0.6
θxz (o) 24 21.6 0.3
rpe (mm) 6 6* /
rpm (mm) 17.5 17.5 1.0

Dynamic Initial Estimated STD
parameters values values %
Me (kg) 0.157 0.289 0.3

eIexx (kg·m2) 4.97 · 10−3 1.49 · 10−4 10.3
eIeyy (kg·m2) 6.91 · 10−3 2.07 · 10−4 13.0
eIezz (kg·m2) 6.91 · 10−3 2.07 · 10−4 13.0
eIexy (kg·m2) 0 0* /
eIeyz (kg·m2) 0 0* /
eIexz (kg·m2) 0 0* /
jeq (kg·m2) 2.91 · 10−5 3.88 · 10−5 0.4

fveq ((N·m)/(rad/s)) 3.1 · 10−3 6.68 · 10−5 3.8
fceq ((N·m)/(rad/s)) 1.8 · 10−3 4.4 · 10−3 3.3

ksp (N/m) 16 14.4 0.05
kem ((N·m)/A) 60.3 · 10−3 60.3 · 10−3* /

τ (ms) 1.3 no id. /
Table 1. Initial and estimated values of the kinematic and dynamic parameters of the INCA 6D robot (∗: parameters that
have been kept equal to their initial value)

In Fig. 7 are provided for the first three motors: the reference current (on the top), the estimated
and measured motor angular positions (2nd row) and a zoom on the motor position error (lower
row).
Table 2 provides the numerical values of the fit (22) on the motor positions. The fit obtained with

the identification trajectory (see the column labeled “Dynamic ident”) is complemented with the fit
obtained for six different validation trajectories with variable amplitudes and frequencies. One can
see that the model reproduces accurately the measurement, even on the validation data that were
not used for identification. These results validate the assumptions used for deriving the model such
as the negligible mass of the cables and their infinite stiffness.

4.2.4 Frequency-domain behaviour

The linearisation has been performed for the end-effector velocity and acceleration equal to zero.
The nominal model corresponds to a position of the platform at the center of the workspace, with
the nominal values of the kinematic and dynamic parameters previously estimated.
The frequency behaviour of the nominal linear model Gn(s) is reported in Fig. 8. The singular

values for both position and orientation models behave as a second order under-damped LTI system
with a resonance at the frequencies close to 5 rad/s for position and of 22 rad/s for orientation.
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Figure 7. Identification and validation results of the dynamic model, for the first three motors (left to right). On the top:
reference (plain line) and measured (dashed) values of the motor current; on the second row: predicted value (plain) and
measured values (dashed) of the motor positions; lower row: motor prediction error. Before 5 s: data used for identification;
after 5 s: validation data

PRBS Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
parameters Ident Val(a) Val(b) Val(c) Val(d) Val(e) Val(f)
Imin (A) 0 0 0 0.5 0.5 0 0.5

Imax (A) 1 1 1 1.5 1.5 1 1.5

fmax (Hz) 1 1 2 1 2 5 5

Motors Kinematic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic
Ident Ident Val(a) Val(b) Val(c) Val(d) Val(e) Val(f)

Motor 1 88.6 91.2 92.5 84.8 86.1 90.1 83.3 82.2
Motor 2 88.2 85.1 88.0 84.8 81.4 86.8 69.9 69.3

Motor 3 85.7 88.2 89.1 82.6 81.5 82.6 80.4 77.9
Motor 4 92.9 93.9 93.4 88.2 85.7 89.1 79.3 74.1
Motor 5 88.9 86.8 84.7 77.9 82.0 82.6 79.9 79.7

Motor 6 84.1 93.6 92.0 87.1 85.4 89.3 81.3 75.9
Motor 7 83.4 90.3 90.5 83.7 86.0 88.8 83.0 82.0
Motor 8 95.1 85.7 87.8 82.1 84.3 87.0 70.9 72.0

Average 88.4 89.3 89.7 83.9 84.1 87.0 78.5 76.6
Table 2. Identification results: fit on the motors positions

5. Position control and tension distribution

The system can be considered as redundant as the number of actuators exceeds the number of DoF
of the platform (refer to Kanoun et al. (2011) for a more general reflexion on redundant systems).
The extra DoF are used to handle the cable tension. The considered control scheme presented in
Fig. 9 is composed of two parts detailed in this section:

• Position control that aims to control the pose of the end-effector at a reference value. It is
typically a dynamic position-based visual control scheme (also known as Position-Based Visual
Servoing (PBVS) or 3D Visual Servoing (3DVS)).

• Tension distribution that aims to maintain the tension of the cables inside a feasible workspace.
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Figure 8. Singular values of the nominal model Gn(s) : position and orientation parts

Figure 9. Control scheme

5.1 Position control

5.1.1 H∞ synthesis

The H∞ synthesis provides a framework for tuning dynamic output-feedback MIMO controllers in
the frequency domain, allowing to handle easily the robustness versus performance trade-off (Duc
and Font, 1999).
In the standard synthesis scheme described in Fig. 10, the controllerK(s) to be designed closes the

loop of the extended plant Ge(s), thus modifying the performance channel from v to z. Weighting
filters located at the input (Wi(s)) and output (Wo(s)) complete the so-called augmented scheme.

Figure 10. Standard H∞ synthesis scheme with the extended plant Ge(s), the weighting filters Wi(s) and Wo(s) and the
controller K(s)
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A number of problems can be recast into the following H∞ synthesis problem that consists in
computing K(s) that:

• stabilises the weighted closed-loop system in Fig. 10;
• minimises γ := minK(s) ‖ Tz̃ṽ(s) ‖∞, i.e. the H∞ norm1 of the weighted closed-loop system
Tz̃ṽ(s) = Wo(s) Tzv(s) Wi(s).

Assuming that the weighting filters Wi(s) and Wo(s) are diagonal, and denoting Wi(s) =
diag(Wi1(s), . . . ,Winv

(s)) and Wo(s) = diag(Wo1(s), . . . ,Wonz
(s)), where nv and nz being the di-

mensions of v and z respectively, then any SISO transfer Tzkvl(s) between input vk and output zl
satisfies:

|Tzkvl(jω)| ≤ γ

|Wol(jω)| · |Wik(jω)|
(∀ ω ∈ R+) (23)

Therefore, 1
Wol(s)Wik(s)

is a template for the performance channel Tzkvl(s) and the template is sat-
isfied as soon as γ ≤ 1.
The resolution of the standard problem of the H∞ synthesis can be done by solving the resulted

Riccati (Dolye et al., 1989) or LMI equations (Gahinet and Apkarian, 1994) resulting in full-order
controllers, i.e. controllers with the same order as the augmented plant. Solvers are also available
for the structured H∞ synthesis: let us mention the HIFOO package (Burke et al., 2006) and
hinfstruct available in the the Robust Control Toolbox (Apkarian et al., 2006).
To summarise, the method consists in the following steps:
• select the performance channels,
• design the weighting functions according to the requirements,
• compute the augmented plant and design the controller,
• iterate the two previous steps until γ is close to one.

5.1.2 Controller design

Fig. 11 depicts the synthesis scheme. The control scheme is deduced by ignoring the weighting
filtersW1(s),W2(s) andW3(s). It allows to control the measurement vector y = Xe to the reference
r = X∗e , while rejecting the disturbance d that is added on the control vector u and considering
the measurement noise bm. As bm and r have the same effects on the signals of interest e and u,
only r is considered for building the extended plant Ge(s), leading to a four-block design scheme
equivalent to the scheme of Fig. 10 by selecting the signals v = [rT dT ]

T and z = [eT uT ]
T , and the

weighting filters Wi(s) = diag(I6×6,W3(s)) and Wo(s) = diag(W1(s),W2(s)).
The weighing filters are chosen as following:

• W1(s) allows to tune the sensitivity function S(s) = Ter(s), i.e. the transfer from r to e. It
is chosen as constant, to impose the modulus margin ∆M . As ∆M = 1/||S(s)||∞, we select
W1(s) = ∆∗M where ∆∗M denotes the required modulus margin.
• W2(s) allows to tune Tur(s), the transfer between r to u, which is equal to Tubm(s). So W2(s)

has the charge of reducing the effect of the measurement noise on the control signal. Thus, W2(s)
must amplify in the high frequencies and 1/W2(s) is chosen as a low-pass filter.
• W3(s) is used to penalise the disturbance in the low frequency thus enhancing the disturbance

rejection properties.

The desired performances are: a bandwidth of 5 rad/s, a modulus margin of 6 dB and an accuracy
of 10−3 due to d for both position and orientation, with a reasonable amplitude of the control inputs

1The H∞ norm of a linear system is the maximum singular value of its complex gain over frequency. It is also the
maximum amplification when considering the L2 norm on signals. For a system G(s) of input u(t) and output y(t),
||G(s)||∞ = maxω∈R σ(G(jω)) = maxu(t)

||y(t)||2
||u(t)||2

.
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Figure 11. Design scheme with the weighting filters W1(s), W2(s) and W3(s) for the H∞ synthesis

for both forces and moments. The weighting filters W1(s), W2(s) and W3(s) are chosen under the
shape Wk(s) = diag(wk1(s) I3×3, wk2(s) I3×3), where the SISO weighting filters wk1(s) correspond
to the positions or forces and wk2(s) corresponds to the orientations or moments. The weighting
filters were tuned to achieve the requested closed-loop performances, resulting in:

w11(s) = 0.5

w21(s) =

(
250

s+ 10−2

s+ 104

)2

w31(s) = 10
s+ 10

s+ 104


w12(s) = 0.5

w22(s) =

(
100

s+ 10−2

s+ 104

)2

w32(s) =
s+ 10

s+ 104

(24)

Notice that the more simple two-bloc scheme, based on weighting filters W1(s) and W2(s) only, was
not sufficient to reject the disturbances induced by the non-linear behaviour of the system.
The frequency response of the controller (singular values) is given in Fig. 12. For both position

and orientation, the controller exhibits a high gain in low frequencies that favors the disturbance
rejection, then the gain increases in the medium frequencies, bringing phase to allow a high band-
width and finally decreases in the high frequencies, thus reducing the effects of the measurement
noise.
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Figure 12. Singular values of the H∞ position controller K(s)
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Figure 13 shows the singular values of the closed-loop transfer functions of interest involved
in the H∞ synthesis and their corresponding templates. The resolution has been done with the
Riccati method. The obtained value of γ = 0.92 being slightly smaller than 1, the templates are
fully satisfied and the tracking trajectories performances slightly exceed those intended with a
bandwidth of 6 rad/s for position and of 2 rad/s for orientation, a modulus margin of 0.57 for
position and of 0.61 for orientation and a static error less than 1 % on position and orientation (see
Fig. 13(a)).
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Figure 13. Singular values of the closed-loop transfer functions of interest Tzkvl (s) and their corresponding templates
γ/Wik(s)Wol(s)

5.2 Tension distribution

5.2.1 Problem statement and state of the art

The wrench Fev computed by the H∞ controller must be converted into motor current vector I∗m.
This requires to solve the system of linear equations (13) under the inequality constraints (11), in
order to ensure that the cable tension vector T remains inside the interval [Tmin Tmax]. Due to the
actuation redundancy, the system of equations (13) is under-determined and then has an infinity
of solutions (assuming that WI has full rank r = n −m). This can be exploited to minimise the
distance towards some objective value Iobj corresponding to an objective tension vector Tobj. This
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is done by solving the quadratic optimisation problem of the objective function E(I∗m, λ) given by:

E(I∗m, λ) =
1

2
(I∗m − Iobj)T (I∗m − Iobj) + (Fev −WI I

∗
m)T λ (25)

where λ ∈ Rm is the Lagrange multiplier associated to the equality constraints Fev −WI I
∗
m = 0.

The solution writes:

I∗m = I∗mp + I∗mn (26)

where:

• I∗mp, the particular solution that minimises the norm of I∗m − Iobj, acts on the end-effector pose:

I∗mp = W+
I (Xe) Fev (27)

with W+
I = W T

I (WI W
T
I )
−1 the Moore-Penrose pseudo-inverse of the wrench matrix WI .

• I∗mn, the homogeneous solution of WI null-space, acts on the tensions, without effect on the
end-effector pose:

I∗mn = [In×n −W+
I (Xe) WI(Xe)] Iobj (28)

A number of approaches are available in the literature for the determination of the objective
tension vector Tobj that maintains the cable tension vector T inside a feasible tensions workspace.
The available works can be classified in two categories. The first approach opted for iterative algo-
rithms, so that efficient constrained optimisation methods can be used such as Linear Programming
Methods (LPM) (Gosselin and Grenier, 2011; Ming and Higuchi, 1994; Oh et Agrawal, 2005), but
the cable tension continuity is not guaranteed. Other optimisation methods are also used such
as Non-Linear Programming Methods (NLPM) in the particular case of Quadratic Programming
Methods (QPM) (Oh et Agrawal, 2005; Vafaei et al., 2010), and the general NLPM with the gradi-
ent descent method to solve the problem in a quadratic formulation (Gholami et al., 2008). These
quadratic methods guarantee the tensions continuity but have a non-predictable runtime, which is
a drawback for real-time implementation. The second approach relies on non-iterative algorithms
to handle the real-time control constraints. For instance, Mikelsons et al. (2008) proved that the
Center of Gravity (CoG) of the feasible tension distribution workspace (the set of solutions of equa-
tions (13) satisfying the tension constraints (11)) is a solution that ensures the tensions continuity.
Recently, Gouttefarde et al. (2015) have proposed contributions to improve the CoG method to the
case of two degrees of redundancy.

5.2.2 Considered algorithm

The proposed approach is inspired from the algorithm proposed by Lafourcade (2004) appropriate
to satisfy real-time constraints (currently less than 1 ms). It has been improved to account for
the motor dynamics (9) by considering a variable Iobj and accounting for the current limits of the
motors. It consists in:

(1) selecting Tobj inside the feasible tension workspace and calculating Iobj from Eqn. (9) by con-
sidering T = Tobj and solving in Iobj = Im;

(2) computing the current reference I∗m that satisfies constraints (13) while minimizing the mean-
square error on I∗m − Iobj without considering the tension inequalities constraints (11) as given
by (27);
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(3) if some inequality constraints on the tensions are violated, then q concerned inequalities selected
among them are transformed into equality constraints on the currents (not more than r tension
inequality constraints can be saturated simultaneously) and included into the optimisation
problem. All combinations of 1 to r violated tension inequality constraints are considered until
one solution is met that satisfies all the non-saturated tension inequalities constraints. The
process is repeated until a feasible solution is met. If no solution is found, the vector Iobj can
be scaled by a scalar factor without impact on the trajectory. If the problem has no solution,
the reference trajectory must be decelerated.

More precisely, for a combination of q tension constraints, the current vector I∗m is obtained by
solving the new quadratic optimisation problem of the objective function Esat(I

∗
m, λ, µ) given by:

Esat(I
∗
m, λ, µ) =

1

2
(I∗m − Iobj)T (I∗m − Iobj) + (Fev −WI I

∗
m)T λ+ (ST I∗m − Isat)T µ (29)

where:

• the selection matrix S = [s1 . . . sq] ∈ Rn×q concatenates the vectors sk of the canonical basis
of Rn to select the combinations of the violated tension constraints to be saturated,
• the vector µ ∈ Rq is the Lagrange multiplier associated to the current equality constraints
ST I∗m − Isat = 0, such as the vector Isat ∈ Rq is the current vector that corresponds to the
saturated tension vector Tsat and is calculated from Eqn. (9).

The solution of the optimisation problem (29) writes:

I∗m = I∗mp + I∗mt (30)

where:

I∗mt = I∗mn +
[
W+
I (Xe) W

sat
I (Xe)− S

] [
ST W+

I (Xe) W
sat
I (Xe)− Iq×q

]−1 4sat (31)

in which the resulting saturated wrench matrix is W sat
I (Xe) = WI(Xe) S, and the vector of the

excessive motor currents 4sat = Isat − ST (I∗mp + I∗mn) is an image of the excess in cable tensions
evaluated from Eqn. (9).

5.3 Experiments

5.3.1 Evaluation tasks

A set of trajectories have been chosen in order to evaluate the performance of the controlled system.
Starting from the center of the workspace identified by a null position and orientation, the trajectory
is composed of steps: the end-effector is requested to follow the edges of a square centred into the
workspace, belonging to the plane (Xo, Yo) and of width 0.2 m.
The feasible tension workspace is defined by the boundaries Tmin = 1.48 N and Tmax = 18.5 N

(the maximum tension supported by the cables being of 247 N), which have been calculated based
on the static model of the actuators, considering the limits of the motor currents Imin = 0 A and
Imax = 3 N, and the limits of the unwinding cable lengths Lmin = 0 m and Lmax = 4.82 m. The
objective tension vector is chosen as Tobj = 10 N.

5.3.2 Results

The experimental results obtained with the square trajectory are reported in Fig. 14. One can
notice that the position is properly controlled in a decoupled fashion (Fig. 14.a), while the currents
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(Fig. 14.b) and tensions (Fig. 14.c) remain inside the prescribed workspace and the tensions are
close to Tobj = 10 N. The cables tensions have been estimated using the dynamic model of the
actuators (9).

0 20 40 60 80 100 120
−15

−10

−5

0

5

10

15

t (s)

x
(
c
m
)

 

 

Reference

Measurement

0 20 40 60 80 100 120
−15

−10

−5

0

5

10

15

t (s)

y
(c
m
)

 

 

Reference

Measurement

(a) Platform position (x and y coordinates): reference and mea-
surement

0 20 40 60 80 100 120

−5

0

5

t (s)

f
e
(N

)

 

 

X-Axis
Y-Axis
Z-Axis

0 20 40 60 80 100 120

−0.2

−0.1

0

0.1

0.2

0.3

t (s)

m
e
(N

.m
)

 

 

X-Axis
Y-Axis
Z-Axis

(b) Control signals: force fe and moment me

39 40 41 42 43 44 45
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

t (s)

I
(A

)

 

 

Motor 1
Motor 2
Motor 3
Motor 4
Motor 5
Motor 6
Motor 7
Motor 8

(c) Measured currents

39 40 41 42 43 44 45
6

7

8

9

10

11

12

13

t (s)

T
(N

)

 

 

Cable 1
Cable 2
Cable 3
Cable 4
Cable 5
Cable 6
Cable 7
Cable 8

(d) Estimated tensions

Figure 14. Experimental results with the H∞ position controller

Simulation results provided in Fig. 14 include Coulomb frictions that were found as a major
source of misfit between the simulated and the measured signals. As shown in Fig. 15, the prediction
provided by the model is much more accurate as soon as Coulomb friction is included.

6. Conclusion

This paper is a methodological contribution for the identification and control of 6-DoF CDPRs.
First, a two-step identification methodology has been proposed to estimate sequentially the com-
bined kinematic and dynamic parameters of 6-DoF CDPRs. The method has been successfully
implemented on the INCA 6D robot, allowing to improve the input-output behaviour of the model,
as shown by the good fit on the motor positions. Moreover, the estimated values of both kinematic
and dynamic parameters remain close from their initial guessed values, except for the viscous fric-
tion term. The validity of the identified model remains satisfying even when the cables are subject to
non-negligible vibrations, as could be observed on the validations with faster trajectories. Then, an
H∞ methodology has been proposed for the vision-based position control of 6-DoF CDPRs, which
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Figure 15. Effect of Coulomb friction on H∞ position controller: the comparison of step responses on models with and without
Coulomb friction and on the experimental system validate the sensitivity of the closed-loop system with respect to Coulomb
friction

has been then implemented to the INCA 6D robot. The simulation and experiment results have
shown that the H∞ position controller combined with the tension distribution algorithm allows
good bandwidth, accuracy and disturbance rejection, while maintaining the cables under feasible
tensions. Notice that strong disturbance rejection properties had to be conferred to the controller
in order to dominate the non-linear behaviour of the system. One strong limitation of the H∞
methodology is that it leads to a LTI controller that is restricted to a neighborhood of the nominal
position. However, the robustness of the designed controller was sufficient for an evolution in a
reasonably large domain. For a larger workspace, gain-scheduling techniques would be fruitful to
adapt the controller behaviour.
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