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In this paper, we study the problem of estimating a regression function in a convolution model. We consider the following model: ypx k q " hpx k q `εk , hpxq " f ‹ gpxq " ş R f px ´yqgpyqdy, k " ´n, . . . , n ´1 where g is assumed to be known and f is the unknown function to be estimated; the errors pε k q ´nďkďn´1 are independent and identically distributed (i.i.d.) such that Erε k s " 0 and Varpε k q " σ 2 ε ă `8, known; the points px k " kT {nq ´nďkďn´1 are deterministic and equispaced on the interval r´T, T s, where 0 ă T ă 8 is fixed. Two estimation methods for f are considered by exploiting the properties of the Hermite basis. We study the quadratic risk of each estimator. If f belongs to the Sobolev (first approach) or Sobolev-Hermite (second approach) spaces, we obtain rates of convergence. We also present an adaptive procedure to select the relevant parameter inspired by Goldenshluter and Lepski method, and prove that the resulting estimator satisfies an oracle inequality for sub-Gaussian ε's. Finally, we illustrate numerically these approaches. January 7, 2022

Introduction

Consider the convolution model (1) ypx k q " hpx k q `εk , k " ´n, . . . , n ´1, where

(2)

hpxq " f ‹ gpxq " ż R f px ´yqgpyqdy,
where the kernel function g is supposed to be known and f is the unknown function to be estimated; the errors pε k q ´nďkďn´1 are independent and identically distributed (i.i.d.) such that Erε k s " 0 and Varpε k q " σ 2 ε ă `8, known; the points px k " kT {nq ´nďkďn´1 are deterministic and equispaced on the interval r´T, T s, where 0 ă T ă 8 is fixed. This model appears in several application contexts: in Dynamic Contrast Enhanced (DCE) imaging data analysis (see [START_REF] Goh | Quantitative colorectal cancer perfusion measurement using dynamic contrast-enhanced multidetector-row computed tomography: effect of acquisition time and implications for protocols[END_REF], [START_REF] Cuenod | Tumor angiogenesis: pathophysiology and implications for contrast-enhanced mri and ct assessment[END_REF], [START_REF] Goh | Functional imaging of colorectal cancer angiogenesis[END_REF], [START_REF] Cao | Response to letter regarding article:"developing dce-ct to quantify intra-tumor heterogeneity in breast tumors with differing angiogenic phenotype[END_REF] and [START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging[END_REF]) and in the study of time-resolved measurements in fluorescence spectroscopy (see [START_REF] Gafni | Analysis of fluorescence decay curves by means of the laplace transformation[END_REF], [START_REF] Mckinnon | The deconvolution of photoluminescence data[END_REF], [START_REF] O'connor | Deconvolution of fluorescence decay curves. a critical comparison of techniques[END_REF], Ameloot and Hendrickx (1983), [START_REF] Abramovich | Laplace deconvolution with noisy observations[END_REF]). If the function of interest is the unknown function h, this problem is known as a fixed design regression model. Nonparametric estimation of h has been studied at length in the literature, see [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], [START_REF] Baraud | Model selection for regression on a fixed design[END_REF] and recently [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF] for random design. Estimating the density f of a random variable X when observing Z " X `ε with ε independent of X with density g amounts to reconstruct f from an estimate of f Z " f ‹ g. This problem is known as a deconvolution problem. It is an inverse problem which has also been studied extensively in the literature, see [START_REF] Carroll | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Fan | Asymptotic normality for deconvolution kernel density estimators[END_REF], [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF], [START_REF] Comte | Penalized contrast estimator for adaptive density deconvolution[END_REF], [START_REF] Delaigle | On deconvolution with repeated measurements[END_REF], [START_REF] Mabon | Adaptive deconvolution on the non-negative real line[END_REF], [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF], [START_REF] Sacko | Hermite density deconvolution[END_REF] among others, see also the monograph of [START_REF] Meister | On testing for local monotonicity in deconvolution problems[END_REF].

Model (1) cumulates the two questions of regression and deconvolution, and this is why it is difficult. We mention that in Model (1), the unknowns f and the kernel are not necessarily densities. When f and g are r0, 1s-supported, [START_REF] Rice | Smoothing splines: regression, derivatives and deconvolution[END_REF] solved the problem (1) using a smoothing spline approach for x k " k{n with k " 1, . . . , n. They obtain a control of the risk for f of class C 4 . However, the question of the smoothing parameter is not considered in their work. Another special case of Model (1) occurs when f and g are R `-supported, it is called Laplace convolution. Then, we have hpxq " ş x 0 f px ´yqgpyqdy, whose discrete noisy version is given by (1) with k " 1, . . . , n. It has been studied in [START_REF] Dey | Input recovery from noisy output data, using regularized inversion of the laplace transform[END_REF] for gpxq " be ´ax 1 xě0 , using that the solution of (2) satisfies a linear differential equation. The authors compute convergence rates for n Ñ 8, under the assumption that the s-th derivative of f is continuous, the procedure is not adaptive. [START_REF] Abramovich | Laplace deconvolution with noisy observations[END_REF] study the Laplace deconvolution problem for g known: they summarize the estimating problem of f to estimation of the derivative of h. These derivatives are estimated by a kernel method, the procedure is adaptive and minimax optimal for f in a Sobolev class. Note that the rate depends on T " T n Ñ 8 as n Ñ 8. [START_REF] Vareschi | Noisy Laplace deconvolution with error in the operator[END_REF] studies also the Laplace deconvolution problem using the Galerkin projection on Laguerre functions for a g kernel contaminated by white noise. More recently, [START_REF] Comte | Laplace deconvolution on the basis of time domain data and its application to dynamic contrast-enhanced imaging[END_REF] proposed a projection estimator, based on the development of the functions f , g and h in the Laguerre basis. The coefficients of the decomposition of h are expressed as a linear combination of those of f , the link matrix being invertible. They also propose an adaptive procedure by penalization: the resulting estimator verifies an oracle inequality up to multiplicative log n factor. We emphasize that the px k q 1ďkďn are not necessary equispaced on r0, T s and T is fixed. Finally, if, f is a function of 3 variables and g of one variable, [START_REF] Benhaddou | Anisotropic functional Laplace deconvolution[END_REF] consider also the projection method on Laguerre and wavelet bases for a Gaussian white noise. Their method is adaptive and asymptotically optimal up to a logarithmic factor when f belongs to a three-dimensional Laguerre-Sobolev ball. Note that regression model and inverse problems can be encountered in different setting, see for instance [START_REF] Loubes | Adaptive estimation for an inverse regression model with unknown operator[END_REF] who study an econometric model; then, the inverse problem arises from instrumental variables taken as covariate.

However, all of the afore studies were conducted for R `supported f and g. The novelty of the present work, is that we consider Model (1) with R-supported functions and our aims are the following: Define a consistent estimator of f ; Provide rates of convergence; Propose an adaptive procedure and illustrate numerically its performances. The Laguerre basis which is R `-supported clearly no longer suits for our problem. We consider here the Hermite basis which has non compact support and is well adapted in our context. When using compactly supported bases, the support is a fixed interval determined in practice from the dataset. Hermite basis does not require this preliminary choice and is well adapted in our context. Recently, [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] show that the Hermite basis allows to build estimators of low complexity and therefore numerically fast.

In this paper, we first propose a Fourier-Hermite (denoted by FH in the sequel) approach to estimate f . It consists in estimating h as regression function by a nonparametric least squares method, based on the development of h in the Hermite basis. Then, we use the inverse Fourier transform to recover f . Contrary to [START_REF] Baraud | Model selection for regression on a fixed design[END_REF], we do not consider a compactly supported basis. Moreover, we obtain a new (to our knowledge) bound on the L 2 pRq-risk for regression function h. We provide an upper bound on the risk of the estimator of f which shows that a bias-variance compromise must be performed. For f belonging to a Sobolev ball, we obtain rates of convergence for adequate choice of some parameters (cut-off parameter and dimension of the regression function). We also present an adaptive procedure inspired by [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] method to select the relevant parameters: the resulting estimator satisfies an oracle inequality for ε sub-Gaussian (see below or [START_REF] Vershynin | Introduction to the non-asymptotic analysis of random matrices[END_REF] for more details), and automatically realizes a bias-variance compromise up to a logarithm term. We also introduce another approach, called the Hermite-Hermite (denoted by HH in the following) strategy. Both functions f and h are decomposed in the Hermite basis. We construct an estimator of f by replacing h by its nonparametric least squares estimator in the formula of the coefficients of f . As for the FH strategy, we provide a risk bound and the rate obtained therein for f belonging to a Sobolev-Hermite ball, and we propose a procedure to select automatically the relevant dimension.

The plan of the paper is the following: The study of the estimation of regression function h in the Hermite basis for fixed design is described in Section 2. Those results are exploited to study the FH and HH strategies. Section 3 is devoted to the FH strategy. In particular, we define the FH estimator in Section 3.1. A bias-variance decomposition is given in Section 3.2. In Section 3.3, we provide rates of convergence. Section 3.4 is devoted to selection of model for the FH procedure and an oracle inequality is proved for the resulting estimator therein. In Section 4, we describe the HH estimation strategy and a comparison with the FH method is performed. As for FH method, we also propose an adaptive procedure and an oracle inequality is proved in Section 4.4. Section 5 is devoted to the numerical study to illustrate the performance of the adaptive procedure and comparisons between FH and HH method are performed. Finally, all the proofs are presented in Section 6, technical Lemmas and some useful results are given in the Appendix.

Hermite regression estimation of h

We first present a study concerning the estimation of h. From this point of view, model (1) corresponds to a standard fixed design regression. Nonparametric estimation in this context can be found in [START_REF] Baraud | Model selection for regression on a fixed design[END_REF], who consider compactly supported bases. In view of the following steps for "extracting" f , we need to handle the non compactly supported Hermite basis. Let us start by recalling the definition and useful properties of this basis, and the associated regularity spaces.

2.1. Notations. For φ, ψ belonging to L 2 pRq X L 1 pRq, denote xϕ, ψy " ş ϕpuqψpuqdu the scalar product on L 2 pRq and }ϕ} 2 " ş |ϕpuq| 2 du the associated norm on L 2 pRq. The Fourier transform of ϕ is defined by ϕ ˚puq " ş e iux ϕpxqdx. Lastly, we recall the Plancherel-Parseval equality xϕ, ψy " p2πq ´1xϕ ˚, ψ ˚y.

2.2. The Hermite basis. Define the Hermite basis pϕ j q jě0 from Hermite polynomials pH j q jě0 : ϕ j pxq " c j H j pxqe ´x2 {2 , H j pxq " p´1q j e x 2 d j dx j pe ´x2 q, c j " p2 j j! ? πq ´1{2 , x P R, j ě 0. (3)

The Hermite polynomials pH j q jě0 are orthogonal with respect to the weight function e ´x2 : ş R H j pxqH k pxqe ´x2 dx " 2 j j! ? πδ j,k (see Abramowitz and Stegun (1964), 22.2.14), where δ j,k is the Kronecher symbol. It follows that the sequence pϕ j q jě0 is an orthonormal basis on R. Moreover, ϕ j is bounded by

}ϕ j } 8 " sup xPR |ϕ j pxq| ď φ 0 , with φ 0 " π ´1{4 , (4) 
(see [START_REF] Abramowitz | Extension of the performance of laplace deconvolution in the analysis of fluorescence decay curves[END_REF]Stegun (1964), chap.22.14.17 and[START_REF] Indritz | An inequality for Hermite polynomials[END_REF]) and the following bound holds (5)

}ϕ j } 8 ď C 8 pj `1q 1 12
, where C 8 is a constant given in [START_REF] Szegö | Orthogonal polynomials[END_REF]. The Fourier transform pϕ j q jě0 is given as follows (6) ϕ j " ? 2πpiq j ϕ j .

From [START_REF] Askey | Mean convergence of expansions in Laguerre and Hermite series[END_REF], it holds:

(7) |ϕ j pxq| ď C 1 8 e ´ξx 2 , |x| ě a 2j `1,
where C 1 8 and ξ are constants independent of x and j. The infinity norm of the derivative of ϕ j satisfies (see [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF], Lemma 7.3):

(8) }ϕ 1 j } 8 ď C 2 8 pj `1q 5 12 , j ě 0,
where C 2 8 ą 0 is a numerical constant.

2.3. Regularity spaces. We consider in the sequel the following regularity spaces (see [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF]).

Definition 2.1. Let s, L ą 0, define the Sobolev-Hermite ball of regularity s by

W s H pLq " tθ P L 2 pRq, ÿ kě0 k s a 2 k pθq ď Lu, where a k pθq " ż θpxqϕ k pxqdx. (9)
For s an integer, it is proved in [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF] and [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] (see Proposition 4) that θ belongs to W s H pLq if and only if θ admits derivatives up to order s and if the functions θ, θ 1 , . . . , θ psq , x s´l θ plq for l " 0, . . . , s ´1 belong to L 2 pRq. Recall also that the usual Sobolev ball W s pLq is defined, for s ą 0 by (10) W s pLq " tθ P L 2 pRq, ż p1 `u2 q s |θ ˚puq| 2 du ă Lu.

If s is an integer and L ą 0, it holds (see [START_REF] Bongioanni | Sobolev spaces associated to the harmonic oscillator[END_REF] and [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF]) then; ! θ P W s pLq " is equivalent to ! there exists L ˚ą 0 such that ř s j"0 }f pjq } 2 ă L ˚". (11) the linear space generated by ϕ 0 , . . . , ϕ d´1 , where ϕ j is the Hermite basis defined in (3). Assume that h belongs to L 2 pRq. Then, we can write h " ř jě0 b j phqϕ j , with b j phq " xh, ϕ j y. Moreover, we define h d " ř d´1 j"0 b j phqϕ j , the orthogonal projection of h on S d . Introduce the matrices:

(12) Φ d " pϕ j px i qq ´nďiďn´1,0ďjďd´1 , Ψ d " T n Φ t d Φ d ,
where Φ t d denotes the transpose of the matrix Φ d . We need of following Lemma to get an estimator of h. Lemma 2.1. For all d ď n, Ψ d is invertible.

By the least squares method and Lemma 2.1, we derive the following projection estimator of h on S d :

(13) p h d " d´1 ÿ j"0 p b pdq j ϕ j , where p b pdq " p p b pdq 0 , . . . , p b pdq d´1 q t " pΦ t d Φ d q ´1Φ t d y " T n Ψ ´1 d Φ t d y,
y " pypx ´nq, . . . , ypx n´1 qq t .

Comment on the assumption h P L 2 pRq. Let 1 ď p, q, r ď 8 such that 1{p `1{q " 1 `1{r.

Let us recall that with the Young inequality, we have }h} r " }f ‹ g} r ď }f } p }g} q . Thus, for (f P L 2 pRq and g P L 1 pRq) or (g P L 2 pRq and f P L 1 pRq), it follows that h P L 2 pRq.

2.5. Risk bound of p h d and rate of convergence. For any s, t in L 2 pRq, we define:

}t} 2 n :" T n n´1 ÿ i"´n t 2 px i q, xs, ty n :" T n n´1 ÿ i"´n spx i qtpx i q,
The following bias-variance decompositions hold.

Proposition 2.1. Let px i , ypx i qq ´nďiďn´1 be observations from model (1). Assume that h belongs to L 2 pRq and consider the estimator p h d defined in ( 13).

(i) Then, it holds that

(14) E " } p h d ´h} 2 n ı " inf tPS d }t ´h} 2 n `σ2 ε T d n .
(ii) Moreover, we have

Er} p h d ´h} 2 s ď }h ´hd } 2 `λmax `Ψ´1 d ˘}h ´hd } 2 n `σ2 ε T n tr `Ψ´1 d ˘, ( 15 
)
where trpAq is the trace of the matrix A and λ max pAq denotes the spectral radius of the matrix A.

The part (i) of Proposition 2.1 corresponds to a classical bias-variance decomposition for the empirical norm } ¨}n . The first term in the right-hand side of ( 14) is the bias term and the second term is the variance term. They behave in the opposite way with respect to d: inf tPS d }t ´h} 2 n decreases with d while σ 2 ε T d{n increases with d. The risk bound given in ( 15) is new to our knowledge and handles the integrated L 2 risk on R. It is a bias-variance decomposition with bias equal to }h ´hd } 2 `λmax

`Ψ´1 d ˘}h ´hd } 2 n and variance σ 2 ε tr `Ψ´1 d ˘T {n.
In both cases, we have a bias-variance trade-off to make.

The bias term is studied by exploiting the specific property of the Hermite basis. The following Lemma leads to find the order of the bias:

Lemma 2.2. Assume that h belongs to W α H pLq (Sobolev-Hermite ball defined in (9)). (i) If α ą 11{6, we have }h ´hd } 2 n ď }h ´hd } 2 `Cpα, Lq T 2 n , where Cpα, Lq is a positive constant depending only on α and L. (ii) If α ą 17{6, it hold that }h ´hd } 2 n ď }h ´hd } 2 `C1 pα, Lq T 3 12n 2 , where C 1 pα, Lq is a positive constant which depends on α and L.

For fixed T , the additional term T 2 {n or T 3 {n 2 is a residual term which is negligible compared to the variance term σ 2 ε dT {n for the empirical norm or σ 2 ε tr `Ψ´1 d ˘T {n for the integral L 2 pRq-norm. Furthermore, to get the rate of convergence for the integral norm } ¨}, we have to control tr `Ψ´1 d ˘and λ max pΨ ´1 d q. We consider the following assumption pA0q There exists a constant λ ą 0 such that the maximum eigenvalue of Ψ ´1 d satisfies 

λ max pΨ ´1 d q ď λ ă `8,
hPW α H pLq E " } p h dopt ´h} 2 n ı ď Cpα, L, T, σ ε qn ´α α`1 ,
where Cpα, L, T, σ ε q depends on α, L, T and σ ε . (ii) If in addition pA0q is satisfied, it yields that (17) sup

hPW α H pLq E " } p h dopt ´h} 2 ı ď Cpα, L, T, σ ε , λqn ´α α`1 .
Our estimator reaches the same rate as in the case where px i q are random variables (see [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF]). From the lower bound stated therein, this rate is optimal when we use the Laguerre or the Hermite basis (at least for gaussian ε's). Note that it is not standard and is specific to the Laguerre and Hermite basis: in [START_REF] Baraud | Model selection for regression on a fixed design[END_REF], [START_REF] Baraud | Model selection for regression on a random design[END_REF], [START_REF] Barron | Risk bounds for model selection via penalization[END_REF], the least squares estimator converges with rate n ´2α{p2α`1q if the regression function h belongs to a Besov space with regularity index α. The reason is that the variance order does not depend on the basis used while bias order does and changes according to the regularity spaces associated with the basis.

Remark 1. The constraint α ą 11{6 or α ą 17{6 comes from the study of }h ´hd } 2 n (see the Proof of Lemma 2.2). It excludes some functions h (e.g. Cauchy since α " 3{2 ´η with 0 ă η ă 3{2 see Section 4 in [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF]). Without this constraint, we have for α ě 1 and h

P W α H pLq }h ´hd } 2 n " T n n´1 ÿ i"´n ph d px i q ´hpx i qq 2 ď 2T φ 2 0 ¨ÿ jěd j α{2 a j phqj ´α{2 '2 À d ´α`1 ,
where φ 0 is given in (4). It follows for the choice d opt " rn 1{pα`2q s that E " } p h dopt ´h} 2 n ı " Opn ´α´1 α`2 q. This rate is worse than the one obtained in (16). The estimator remains consistent in this case even if the rate deteriorates. In the sequel, we will see that the condition α ą 11{6 or α ą 17{6 is often satisfied.

2.6. Adaptive estimator for h. However, the choice of d " d opt depends on the regularity of h which is unknown; thus this choice is only theoretical and cannot be used in practice. This is why an adaptive procedure is developed now. It allows to choose the relevant dimension by replacing the bias and variance terms by computable quantities. Let γ n p¨q be the empirical contrast:

γ n ptq " T n n´1 ÿ i"´n rypx i q ´tpx i qs 2 .
It is easy to see that p h d " arg min

tPS d γ n ptq. The quantity γ n p p h d q " ´}p h d } 2
n is a classical estimator of the bias term. Then, we select the space S d by setting:

p d :" arg min dPMn tγ n p p h d q `penpdqu, where penpdq " κT d n σ 2 ε , κ ą 1 (18)
where M n " t1, . . . , d max u, d max ď n is the maximal dimension which depends on n and κ is a positive numerical constant. The constant κ is independent of the data and a value must be assigned in practice. Methods are proposed in [START_REF] Baudry | Slope heuristics: overview and implementation[END_REF] and programs for density estimation are given in the Softwares R and Matlab called "Capushe". The following oracle inequalities hold for the resulting estimator.

Theorem 2.3. Let px i , ypx i qq ´nďiďn´1 be observations, from model (1). Assume that Erε 8 1 s ă 8.

(i) Then, the estimator p h p d satisfies:

(19) Er} p h p d ´h} 2 n s ď Cpκq inf dPMn ˆinf tPS d }t ´h} 2 n `σ2 ε T d n ˙`C 1 T n ,
where Cpκq " 2κp1 `4{pκ ´1qq ą 1 (for instance for κ " 2.5, Cp2.5q " 9.17) and C 1 ą 0 are numerical constants. (ii) If in addition pA0q holds, we have

Er} p h p d ´h} 2 s ď C 1 inf dPMn ˆp2λ 2 `1q}h ´hd } 2 n `}h d ´h} 2 `σ2 ε T d n ˙`C 1 1 λT n , ( 20 
)
where λ is given in pA0q, C 1 " maxp1, 2λ 2 Cpκqq and C 1 1 " 2C 1 are positive constants.

The estimator p h p d is adaptive and minimax optimal in the sense that the bias-variance compromise is realized automatically, since C 1 T {n and λC 1 1 T {n are residual terms. Indeed, for h P W α H pLq, we deduce from Proposition 2.2 that Er} p h p d ´h} 2 n s À n ´α α`1 and Er} p h p d ´h} 2 s À n ´α α`1 . Theorem 2.3 is a consequence of Theorem 3.1 given in [START_REF] Baraud | Model selection for regression on a fixed design[END_REF] and the bound given in (15).

Remark 2. The variance σ 2 ε of the noise which appears in ( 18) is assumed to be known but is in general unknown and must be estimated. A classical estimator is the residual least squares estimator:

x σ 2 ε :" T n n´1 ÿ i"´n " ypx i q ´p h d ˚px i q ı 2 ,
where d ˚is an arbitrarily chosen dimension (for instance d ˚" r ? ns suits see [START_REF] Baraud | Model selection for regression on a fixed design[END_REF]).

3. Fourier-Hermite approach for the estimation of f

In this section, we construct an estimator of f using the Fourier inverse transform and then the least squares estimator. First, we consider the following assumption on the unknown f .

pA1q The unknown function f and its Fourier transform f ˚belong to L 1 pRq. Assumption pA1q is introduced to use the Fourier transform inverse: tpxq " 1{p2πq ş R e iux t ˚puqdu. We will also need of the following assumption on the kernel g which are classical in deconvolution context: pA2q The Fourier transform of g denoted g ˚is well defined and such that: g ˚‰ 0, where t ˚puq " ş e iux tpxqdx, and i is the complex number with i 2 " ´1.

pA3q There exist c 1 ě c 1 1 ą 0, and γ ě 0, such that (21)

c 1 1 p1 `t2 q γ ď |g ˚ptq| ´2 ď c 1 p1 `t2 q γ , @t P R.
pA2q is necessary to define the estimator and pA3q is generally useful to study its risk. Under pA3q, the function g and the errors are called "ordinary smooth". Observe that pA3q implies pA2q and is verified by some classical distributions: we can cite for example the Laplace distribution (with γ " 2), Gamma distributions (γ " p, where p is the shape parameter) and more generally for all symmetric Gamma distributions.

3 The estimator is well defined because the Hermite basis decreases as e ´ξx 2 (see ( 7)), which makes the ratio p h d {g ˚integrable for many functions g (see also [START_REF] Sacko | Hermite density deconvolution[END_REF]). The quality of p f pdq is related to that of p h d which is studied in Section 2. The dimension d must be optimized. In practice, we must introduce a cut-off to compute p f pdq . Moreover, to control the risk of p f pdq , we first consider the following estimator (25) p f p q,d pxq " 1 2π

ż

´ e ´iux p h d puq g ˚puq du, for ą 0.

3.2. Risk bound for the deconvolution estimator. Now, we study the integrated quadratic risk of p f pdq given by (24). Define (26) ∆p q " sup |u|ď |g ˚puq| ´2, f p q pxq " 1 2π

ż

´ e ´iux h ˚puq g ˚puq du,

Consider also the following assumption:

pA4q }h} 8 " sup xPR |hpxq| ă 8. We recall that, by the Cauchy-Schwarz inequality, }h} 8 ď }f }}g}. Therefore, if f and g are square integrable then, condition pA4q is automatically satisfied.

Then, we can state the following upper bound on the risk.

Proposition 3.1. Suppose that the assumptions pA0q to pA4q hold. For p f pdq given in (24), p f p q,d defined in (25) and ě ? 2d, we have

E " } p f pdq ´f } 2 ı ď 2CλT e ´ξd `2E " } p f p q,d ´f } 2 ı , ( 27 
)
where C is a constant depending on C 1 8 , ξ given in (7), c 1 in pA3q and }h} 8 . For p f p q,d defined in (25) and any ą 0, it holds that

(28) E " } p f p q,d ´f } 2 ı ď }f ´fp q } 2 `∆p q ˆ}h ´hd } 2 `λmax `Ψ´1 d ˘}h ´hd } 2 n `σ2 ε T n tr `Ψ´1 d ˘˙.
(a) The first term on the right-hand side of (28) (}f ´fp q } 2 " 1 2π ş |u|ą |f ˚puq| 2 du) is the classical bias term: it is decreasing with the cut-off . (b) The term ∆p q corresponds to the deconvolution aspect of problem: it is studied using the regularity condition on g ˚given in pA3q and is increasing with . (c) Finally, the terms in the big parenthesis represent the regression aspect of problem (see Proposition 2.1 (ii)).

We also mention that the term CλT e ´ξd is negligible compared to E " } p f p q,d ´f } 2 ı for large enough and f P W s pLq (Sobolev ball see (10) for the definition of W s pLq) and under pA3q. Then, the two estimators ( p f p q,d and p f pdq ) have the same rate of convergence. We can also consider p f p q,d as an estimator. However, this requires to optimize two parameters, the cut-off and the dimension d in practice, contrary to p f pdq which requires only to optimize d.

Rate of convergence of p

f p q,d and p f pdq . In this section, we compute rates of convergence in a collection of specified cases. To derive convergence results, we will make two consecutive bias-variance compromises, first for the regression part (compromise in ( 17)) and then for the deconvolution part, by substituting this value in (28) and optimizing in to get the rates of p f p q,d and p f pdq . The following result of convergence holds.

Theorem 3.2. Let assumptions pA0q to pA3q hold. Assume that h P W s`γ H pL 1 q, then we have for d opt " rn 1{ps`γ`1q s with s `γ ą 11{6 and opt ∝ n 1{2ps`γ`1q that

sup f PW s pLq E " } p f p optq,dopt ´f } 2 ı " O ´n´s s`γ`1 ¯,
where W s pLq is the classical Sobolev ball of regularity s defined in (10) and γ is given in pA3q.

The same result holds for the estimator p f pdoptq with the assumption pA4q, see ( 27). The estimator p f p optq,dopt and p f pdoptq converge at a polynomial rate as in density deconvolution for ordinary smooth noise.

Clearly, the hypothesis h P W s`γ H p¨q can be related to the regularity of f and g. Note that as 2 opt ∝ d opt , then, we can just set " c ? 2d with c ě 1 in the constraint ě ? 2d given in Proposition 3.1. If we had a Fourier bias instead of Hermite bias (i.e. we have }h ´hp ? dq } 2 instead of }h hd } 2 ), for f P W s pLq and under pA3q, we have by an elementary calculation that h " f ‹ g P W s`γ pL{c 1 1 q (see Remark 3). Therefore, it yields under pA0q to pA3q that sup f PW s pLq E

" } p f p optq,dopt ´f } 2 ı " O ´n´s s`γ`1 ¯.
Remark 3. Assume that f belongs to W s pLq (see Section 2.3) and g is ordinary smooth (i.e. g satisfies ( 21)). Then, h belongs to W s`γ pL{c 1 1 q, where c 1 1 is given in (21). Indeed, we have ż p1 `u2 q s`γ |h ˚puq| 2 du "

ż p1 `u2 q s |f ˚puq| 2 p1 `u2 q γ |g ˚puq| 2 du ď 1 c 1 1 ż p1 `u2 q s |f ˚puq| 2 du ď L c 1 .
We derive that h is s `γ times differentiable if s `γ is assumed integer and these derivatives up to order s `γ belong to L 2 pRq. Then, it belongs to W s`γ H pLq if and only if the functions x s`γ´η h pηq belong to L 2 pRq for η " 0, . . . , s `γ ´1 (see Section 2.3).

For some classical functions, we can obtain the exact order of bias of the unknown function f and the regression function h. We only calculate the rate for p f p q,d , these results extend naturally to p f pdq (see Equation ( 27)) considering pA4q.

3.3.1. Rate of convergence for f Gaussian. Let (29) f σ pxq " 1 ? 2πσ exp ˆ´x 2 2σ 2 ˙,
we can establish the following result.

Proposition 3.3. Let assumptions pA0q to pA3q hold and f " f σ where f σ is defined in (29). Further suppose that x α g P L 1 pRq X L 2 pRq for α an integer which can be chosen as large as possible and l " 0, . . . , α ´1. Set d opt " rn 1{pα`1q s and 2 opt " β logpnq with β " α{pα `1qσ 2 , we have

E " } p f p optq,dopt ´f } 2 ı À logpnq γ n α α`1
, where γ is given in pA3q.

Note that the condition x α g P L 1 pRq X L 2 pRq holds for classical ordinary smooth functions (Laplace or Gamma distributions). As α can be chosen large, then, for α Ñ `8 (which corresponds to d opt " 1), p f p optq,dopt is order logpnq γ {n. In this case, the rate logpnq γ {n is better than the rate obtained in the classical density deconvolution since the rate is order logpnq γ`1{2 {n, see [START_REF] Butucea | Deconvolution of supersmooth densities with smooth noise[END_REF].

3.3.2. Rate of convergence for Gaussian kernel. By reversing the role of f and g in Proposition 3.3, namely that gpxq " p2πσ 2 q ´1{2 e ´x2 2σ 2 and f P W s pLq, we recover the classical rate of the density deconvolution framework, see [START_REF] Fan | Adaptively local one-dimensional subproblems with application to a deconvolution problem[END_REF] and [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF].

Proposition 3.4. Let Assumptions pA0q, pA1q and pA3q hold, gpxq " p2πσ 2 q ´1{2 e ´x2 2σ 2 , f P W s pLq and x α f P L 1 pRq X L 2 pRq for α an integer which can be chosen as large as desired and l " 0, . . . , α ´1. Then, we have for d opt " rn 1{pα`1q s and 2 opt "

σ 2 α 2pα`1q logpnq that E " } p f p optq,dopt ´f } 2 ı À logpnq ´s.
3.3.3. Rate of convergence for f and g Gaussian. If f and h belong to W s H pLq and are of Gaussian-type, the order of the bias term decreases exponentially (see [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF], section 4.3 and Lemma 2 in [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF]). The rate is therefore imposed by the variance term.

Proposition 3.5. Assume that pA0q, pA1q and pA2q hold, f pxq " p2πσ 2 q ´1{2 e ´x2 2σ 2 and gpxq " p2πθ 2 q ´1{2 e ´x2 2θ 2 with σ 2 `θ2 ‰ 1. Then, for d opt " rlogpnq{λ σ,θ s with, λ σ,θ " log

" ´σ2 `θ2 `1 σ 2 `θ2 ´1 ¯2 , we have E " } p h dopt ´h} 2 ı À logpnq n . (30) Consequently, it comes for 2 opt " 1 σ 2 `θ2 logpnq ´3 2 1 θ 2 `σ2 log logpnq that E " } p f p optq,dopt ´f } 2 ı À n ´σ2 σ 2 `θ2 logpnq σ 2 ´θ2 2 σ 2 `θ2 .
The same result holds if f is a mixture of Gaussian random variables. It is known that the rates in double super smooth case are of type n ´δ with δ ą 0 up to a certain power of logpnq (see [START_REF] Lacour | Rates of convergence for nonparametric deconvolution[END_REF], Theorem 3.1 in density deconvolution setting). Note that if σ 2 `θ2 " 1, we have h " f ‹ g " p ? 2q ´1pπq ´1 4 ϕ 0 where ϕ 0 is the first function of the Hermite basis given by (3), in this case h d " h and }h ´hd } :" 0 which implies that the rate can be better than the one given in Proposition 3.5.

3.3.4.

Rate of convergence for the Gamma case. When f is Γpp, θq and g Γpq, θq, where Γpa, bq is the Gamma distribution of with shape parameter a and scale b, then, the regression function h is Γpp `q, θq. If in addition the shape parameter is an integer, we can derive the exact bias order of h and then the rate of convergence. Proposition 3.6. Let pA0q to pA3q hold, p and q be two integers such that p `q ą 2. Assume that f " Γpp, θq and g " Γpq, θq. For d opt " rn 1{pp`q´1q s, we have

E " } p h dopt ´h} 2 ı À n ´p`q´2 p`q´1 .
Therefore, it follows for opt ∝ n

p`q´2 pp`q´1qp2p`2q´1q that E " } p f p optq,dopt ´f } 2 ı " O ˆn´p p`q´2qp2p´1q pp`q´1qp2p`2q´1q
˙.

The estimator p f p optq,dopt converges with rate n ´pp`q´2qp2p´1q{pp`q´1qp2p`2q´1q if f and g are Gamma functions. The same results holds if f is a mixture of Gamma function.

Let us now summarize the previous results in the Table 1:

f g Gaussian Gamma N p0, θ 2 q Γpq, θq Gaussian n ´σ2 σ 2 `θ2 logpnq σ 2 ´θ2 2 σ 2 `θ2 logpnq q n ´α α`1 N p0, σ 2 q α large Gamma logpnq ´p`1 2 n ´pp`q´2qp2p´1q pp`q´1qp2p`2q´1q
Γpq, θq Table 1. Rate of convergence for the MISE of p f p optq,dopt in the specific cases.

3.4. Adaptive procedure for Fourier-Hermite strategy. The objective of this section is to propose a way of selection for the estimator p f p q,d . First, we remark that p f p q,d cannot be written as a minimizer of a contrast. Thus, we cannot use a procedure by penalization. This is why, we describe an adaptive choice inspired by the ideas developed by [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF]. The procedure is mainly based on the comparison of estimators of f . From now, we set " ? 2d and introduce the following estimator r f pdq pxq :" p f p ? 2dq,d pxq "

1 2π ż ? 2d 
´?2d

e ´iux p h d puq g ˚puq du. (31)
This choice of is motivated by the results obtained in Proposition 3.1 and Theorem 3.2. Indeed: the optimal choice of is the order of ? d and as the minimal admissible choice is " ? 2d; this is why, we set " ? 2d. Consider the following collection of models

M p1q n :" t1 ď d ď n, σ 2 ε λT d∆p ? 2dq n ď 1u
where ∆pdq is given by ( 26) and λ in pA0q. Define p Apdq :" max

d 1 PM p1q n " ´} r f d 1 ´r f d^d 1 } 2 ´κ1 V pd 1 q ¯`* , ( 32 
)
where κ 1 ą 0 is numerical constant which must be calibrated in practice by simulations and

V pdq " 2 p1 `24 logpnqq σ 2 ε ∆p ? 2dq λdT n . (33)
Then, we select p d as follows

p d :" arg min dPM p1q n ! p Apdq `κ2 V pdq ) , (34) 
where κ 1 ď κ 2 and κ 2 must be also calibrated. The term p

Apdq is an estimator of bias of r f pdq and its construction is based on the comparison of estimators of f . We add the following assumption on the noise pA5q ε 1 is sub-Gaussian variable with proxy variance b ą 0, that is for every t P R, it holds

Erexpptε 1 qs ď expp b 2 t 2 2 q.
It is also said that ε 1 is b-sub-Gaussian or sub-Gaussian with parameter b. The natural example of a sub-Gaussian random variable is a centered Gaussian. If ε 1 has N p0, σ 2 q distribution, it is easy to check Erexpptε 1 qs ď expp σ 2 t 2 2 q, then, ε 1 is sub-gaussian with parameter σ 2 . Assumption pA5q is also satisfied if ε 1 is bounded. The following non asymptotic result holds for r f p p dq .

Theorem 3.7. Let assumptions pA0q to pA3q and pA5q hold, r f pdq be defined by ( 31), p d selected by (34). Then, for κ 1 ě 12, we have

Er} r f p p dq ´f } 2 s ď C inf dPM p1q n ´}f ´fp ? 2dq } 2 `Rb pdq `V pdq ¯`C 1 logpnq n , (35) where R b pdq :" max d 1 PM p1q n ,dďd 1 ´∆p ? 2d 1 q}h ´Er p h d 1 s} 2 ¯C is a numerical constant and C 1 " C 1 pErε 4 1 s, γ, c 1 , ξ, λ, C 1 8 q with c 1
1 , γ given in pA3q, ξ, C 1 8 in (7) and λ in pA0q. In addition, if f belongs to W s pLq and h to W s`γ H pL 1 q with s `γ ě 17{6, it holds

Er} r f p p dq ´f } 2 s ď C 1 inf dPM p1q n `d´s `V pdq ˘`C 1 1 logpnq n , ( 36 
)
where C 1 is a constant depending on C, L, L 1 , s, γ and C 1 1 depending on C 1 , s and γ.

The term R b pdq has the same order as the classical bias of f (}f ´fp ? 2dq } 2 ) under adequate regularity conditions on f and g. Inequalities ( 35) and ( 36) are non asymptotic. In the assumptions of regularity, the values of s (for f ) and γ (s `γ for h) need not to be known for implementing the procedure or computing the estimator. The two inequalities show that r f p p dq realizes automatically a bias-variance trade-off up to log term, and an additional residual term C 1 logpnq n , which is negligible in general. Moreover, we derive from Theorem 3.2 with n replaced by n{ logpnq that under the assumptions of Theorem 3.7

Er} r f p p dq ´f } 2 s ď Cp n logpnq q ´s s`γ`1 ,
where C ą 0 is a numerical constant.

Hermite-Hermite strategy for the estimation of f

Our aim is to build a projection estimator of the unknown function f using the Hermite basis. The ideas is to decompose both functions f and h in the Hermite basis.

4.1. Estimation strategy. Let px k , ypx k qq ´nďkďn´1 from model (1), m ě 1, integer and consider S m defined in (11). Assuming that f belongs to L 2 pRq, we decompose f in the Hermite basis pϕ j q jě0 : f " ř 8 j"0 a j pf qϕ j , a j pf q " xf, ϕ j y " ş f pxqϕ j pxqdx and the orthogonal projection of f on S m is given by: f m " ř m´1 j"0 a j pf qϕ j . To estimate f , we build m estimators of the coefficients a j pf q. Under pA2q, using the Plancherel theorem and as h " f ‹ g, it follows that:

(37)

a j pf q " 1 2π x h g ˚, ϕ j y " 1 2π ż h ˚puq g ˚puq ϕ j puqdx " p´iq j ? 2π ż h ˚puq g ˚puq ϕ j puqdu.
Replacing h ˚by p h d defined in ( 23) and plugging this in (37), we define the following estimator:

(38) p f m,d " m´1 ÿ j"0 p a j,d ϕ j , p a j,d " p´iq j ? 2π ż p h d puq g ˚puq ϕ j puqdu,
provided that p h d ϕ j {g ˚is integrable for j " 0, . . . , m ´1. The coefficients p a j,d are real. Indeed, using that ϕ j pxq " p´1q j ϕ j p´xq (since H j p´xq " p´1q j H j pxq), we have

p a j,d " piq j ? 2π ż p h d puq g ˚puq ϕ j puqdu " p´iq j ? 2π ż p h d puq g ˚puq ϕ j puqdu " p a j,d ,
where z is the complex conjugate of the complex number z. Under pA3q, the integrability condition of the ratio p h d ϕ j {g ˚is ensured (see Equation ( 7)). The two dimensions m and d must be optimized. As for 

p f pdq or p f p q,d ,
E " } p f m,d ´f } 2 ı ď}f ´fm } 2 `2Σpmq ˆ}h ´hd } 2 `λmax `Ψ´1 d ˘}h ´hd } 2 n `σ2 ε T n `tr `Ψ´1 d ˘^2π 2 m ˘˙. (40) 
Note that the constant ρ ą 0 is independent from n, m and d. The same comments given after Proposition 3.1 for the deconvolution estimator p f p q,d hold here. The difference with p f p q,d can be found on the bias of p f m,d and the term Σpmq, the regression part does not change. Moreover, the term ř m´1 j"0 ş |x|ě ?

ρm |ϕ j pxq| 2 |g ˚pxq| ´2dx is exponentially decaying in m for ρ ě 2 (see Proposition 3.1 in Sacko (2020)) and thus negligible with respect of sup |x|ď ? ρm p|g ˚pxq| ´2q " ∆p ? ρmq, where ∆p q is given in (26).

Thus, for f P W s H pLq and choosing -? m, the estimator p f p q,d and p f m,d have the same order and then rate of convergence (see also [START_REF] Comte | Laguerre and Hermite bases for inverse problems[END_REF] and [START_REF] Sacko | Hermite density deconvolution[END_REF] in the framework of density deconvolution).

Rate of convergence of p

f m,d . As for p f pdq , we propose a two-step bias-variance trade-off.

Theorem 4.2. Suppose that pA0q, pA3q and h belongs to W s`γ H pLq. For d opt " m opt " rn 1{ps`γ`1q s with s `γ ą 11{6, we derive that

sup f PW s H pLq E " } p f mopt,dopt ´f } 2 ı " O ´n´s s`γ`1 ¯,
where W s H pLq is the classical Sobolev-Hermite ball defined in (9). The estimator p f mopt,dopt achieves the same rate as p f pdoptq obtained in Theorem 3.2. Note that the results for some special functions obtained for p f pdoptq in Proposition 3.3, 3.4 and 3.5 apply here. If f is a Gamma function (see Proposition 3.6), we have a loss on the order of the bias of f , }f ´fm } 2 which is linked to the Hermite basis. Indeed, for 2 -m, p f m,d and p f p q,d have the same variance order but the bias is order: }f ´fm } 2 ď ´2p`4 contrary to the Fourier bias where }f ´f } 2 -´2p`1 where p is the shape parameter of Gamma function. For p f m,d , we get for m opt " d 2 opt " rn 1 2pp`q´1q s the following rate of convergence

E " } p f mopt,dopt ´f } 2 ı " O ´n´p ´2 p`q´1
¯.

4.4.

Adaptive procedure for Hermite-Hermite approach. As for the Fourier-Hermite method and in view of Theorem 4.2, we set d " m and we consider the following estimator

r f m " p f m,m , (41) 
where p f m,m is given in (38) Now, we are interested in the choice of m. Let us define the collection of models M p2q n by

M p2q n :" 1 ď m ď n, σ 2 ε λT mΣpmq n ď 1 ( ,
where Σpmq is given by (39) and λ in pA0q. Analogously to FH approach, we estimate the bias by p Bpmq " max

m 1 PM p2q n " ´} r f m 1 ´r f m^m 1 } 2 ´κ1 1 W pm 1 q ¯`* , W pmq " 4 p1 `24 logpnqq σ 2 ε Σpmq λmT n , (42) 
where κ 1 1 ą 0 is a numerical constant which must be adjusted in practice. Then, we set r m :" arg min

mPM p2q n ! p Bpmq `κ1 2 W pmq ) , (43) 
with κ 1 2 ě κ 1 1 ą 0 must be also calibrated in practice. We can prove the following oracle inequality Theorem 4.3. Let Assumptions pA0q to pA3q and pA5q hold, r f m be defined by (41), r m selected by (43).

Then, for κ 1 1 ě 12, it yields Er} r f r m ´f } 2 s ď C inf mPM p2q n `}f ´fm } 2 `R1 b pmq `W pmq ˘`C 1 logpnq n , ( 44 
) where R 1 b pmq " max m 1 PM p2q n ,mďm 1 Σpm 1 q}h´Er p h m 1 s} 2 , C is a numerical constant and C 1 " C 1 pErε 4 1 s, γ, c 1 , ξ, λ, C 1 8 q with c 1
1 , γ given in pA3q, ξ, C 1 8 in (7) and λ in pA0q. In addition, if f belongs to W s H pLq and h to W s`γ H pL 1 q with s `γ ě 17{6, we derive

Er} r f r m ´f } 2 s ď C 1 inf mPM p2q n `m´s `W pmq ˘`C 1 1 logpnq n , ( 45 
)
where C 1 is a constant depending on C, L, L 1 , s, γ and C 1 1 depending on C 1 , s and γ.

The same comments for HH strategy given after Theorem 3.7 hold for r f r m . In particular, we deduce from Theorem 4.2 (with n{ logpnq playing the role of n),

Er} r f r m ´f } 2 s ď Cp n logpnq q ´s s`γ`1 ,
where C is an universal constant.

Numerical illustration

5.1. Practical implementation. In this section, we present the results of a simulation study to illustrate the performances of our strategies. We compute the estimator r f p p dq given in (31) with p d selected by ( 34) and r f r m defined in (41) with r m chosen in (43). We consider the following test functions which are estimated on the interval I (i) f pxq " expp´2x 2 q , I " r´2, 2s, (ii) Gamma distribution Γp4, 4q, I " r0, 2.5s, (iii) f pxq " 4 ? 2π p0.4 expp´8px `1q 2 q `0.6 expp´8px ´1q 2 qq, I " r´2, 2s, (iv) f pxq " ´2xp1 `x2 q ´2, I " r´2, 2s. For the kernel g, we choose a Γp2, θq distribution i.e. gpxq " θ 2 x expp´θxq1 xě0 with θ " 4. The errors pε k q are centered Gaussian with standard deviation σ ε P t1{8, 1{4u. We also choose T " 10 and consider two sample sizes n " 250, 1000. The regression h " f ‹ g is computed for each test function f and kernel g by Riemann sum discretization in 500 points. We consider the following collection of models M p2q n " M p1q n " t1, 2, . . . , 25u. The Fourier transform of g is equal to g ˚ptq " p1 ´i t θ q ´2 with θ " 4 then, we consider the following variance term in practice for the FH method: (46)

V pdq " 2 p1 `24 logpnqq σ 2 ε p1 `2d θ 2 q 2 λdT n , θ " 4, λ " 1.

For the HH method, we take W pmq " 2V pmq. The adaptive procedure is implemented as follows:

For

each d P M p1q n , compute p Apdq " max d 1 PM p1q n " ´} r f pd 1 q ´r f pd^d 1 q } 2 ´κ1 V pd 1 q ¯`*
, where the integral } r f pd 1 q ´r f pd^d 1 q } 2 is computed by Riemann's approximation and V pdq given in ( 46 1 " 2κ 1 and κ 1 2 " 2κ 2 where 2V pmq plays the role of V pdq. In the sequel, this procedure is called ! GLM " (for the Goldenshluger and Lepski method). Choice of constants κ 1 and κ 2 . We can choose κ 1 " κ 1 and have just one constant to calibrate, it is in this kind that the procedure (Goldenshluger and Lepski) was developed. Recently, [START_REF] Lacour | Minimal penalty for Goldenshluger-Lepski method[END_REF] suggested the idea of considering two different constants (κ 1 ‰ κ 2 ) and propose to take κ 2 " 2κ 1 for kernel density estimation using [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] method. Here, we adopt the same idea to find the values of κ 1 and κ 2 . In a rather "rough" way and after some numerical tests, we choose κ 1 " 1.5 ˆ10 ´3 and κ 2 " 3 ˆ10 ´3. Then, we illustrate the procedure by some graphs. As GLM method is slow and therefore difficult to calibrate, we implement the penalization method, which allows us to perform repetitions and propose risk tables. The penalization strategy has the advantage to be faster. Furthermore, we must only calibrate one constant denoted κ p1q . More precisely, the method (called ! PM " for the penalization method) is described (only for the FH method) as follows Calibration of constant κ p1q . To find the value of κ p1q , we have evaluated the MISE for different test functions and different proposals for κ p1q . This preliminary study leads to fix κ p1q " 1.5 ˆ10 ´3 for the FH procedure and 10 ´3 for the HH method. 5.2. Numerical simulation results. First, we illustrate the methods by presenting some pictures. Figure 1 presents the true unknown function (the bold red line), and twenty estimators chosen by the GLM procedure in green dotted lines, for each test function (i), (ii), (iii) and (iv). The dimension selected by the procedure and the value of Signal-to-noise ratio s2n are given under each graph. Note that s2n is defined here by: s2n :"

1 2n ř n´1 i"´n hpx i q 2 1 2n ř n´1 i"´n ε 2 i « 1 2n ř n´1 i"´n ypx i q 2 ´σ2 ε σ 2 ε ,
where the above approximation is obtained using the law of large numbers. We observe that the GLM procedure give very satisfactory results, visually.

In Figures 2 to 5, we plot the true function in bold red line with 20 estimators in dotted lines for the test functions (iii), (iv) by considering the PM algorithm for the two estimation procedures. The first line illustrates the influence of sample size and the second line shows how the noise level can affect the performance of the estimates. We observe that increasing n improves the estimation and, on the contrary, that increasing the noise makes the problem more difficult. We can also see some oscillations when σ ε " 1{4 which corresponds to a s2n ratio less than 1 (see Table 3), this effect decreases when the sample size increases. The mean of selected dimensions are given in Table 2. We observe that these averages are comparable to the dimension obtained in Figure 1 for (iii) and (iv) with GLM algorithm.

In Table 3, we report the values of the MISEs with standard deviation in parentheses multiplied by 100 computed from 100 simulated samples for the estimator r f p r dq and r f r m with r d and r m selected using the PM algorithm. We also provide the average of r d or r m selected by each procedure. As for graphical study, we see that increasing the sample size or decreasing the variance of noise (which corresponds to a larger s2n, see Table 3) improves the estimation. When n increases, the average of r d or r m is increasing except in the case of function (i) with σ ε " 1{4. This case corresponds to a s2n equal to 0.58 see Table 3 and then the estimation is most difficult; this can explain why the procedure chooses a large dimension for n " 250. Clearly, the influence of signal-to-noise ratio s2n is important, see Figures for graphical analysis. Comparisons between FH and HH procedures. We observe that the two estimation methods seem to be equivalent. The computing time is the main difference between the two procedures. For example: we need about 25 minutes to obtain the MISEs for n " 250 and almost 1 hour for n " 1000 for the FH method, while the HH procedure takes only about 4 minutes for n " 250 and less than 10 minutes for n " 1000. This difference in computation time is probably related to the fact that the Hermite basis allows to build low complexity estimators, see [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] Proof of Lemma 2.1. Let w " pw 0 , . . . , w d´1 q t , with Ψ d w " 0. Then, it holds

T n w T Φ T d Φ d w " T n }Φ d w} 2 2 "
T n n ÿ i"´n ˜d´1 ÿ j"0 w j ϕ j px i q ¸2 " 0. Therefore, for all ´n ď i ď n ´1, we have, ř d´1 j"0 w j ϕ j px i q " 0. As ϕ j pxq " c j H j pxqe ´x2 {2 , we derive P d px i q :" ř d´1 j"0 w j c j H j px i q " 0 i.e., P d is a polynomial of degree d ´1 admitting n ą d distinct roots. Consequently, it follows P d " 0 and thus w " 0.

Proof of Proposition 2.1. Denote Π d h " Φ d b pdq " Φ d pΦ t d Φ d q ´1Φ t d hp xq with hp xq " phpx ´nq, . . . , hpx n´1 qq t the orthogonal projection of h on S d for the empirical norm } ¨}2 n .

Proof of part (i). We have

} p h d ´h} 2 n " }Π d h ´h} 2 n `}p h d ´Πd h} 2 n " inf tPS d }t ´h} 2 n `}p h d ´Πd h} 2 n .
Taking the expectation gives 

E " } p h d ´h} 2 n ı " inf tPS d }t ´h} 2 n `E " } p h d ´Πd h} 2 n ı . ( 47 
ε i ε k rP p xq i,k s ‰ " σ 2 ε n´1 ÿ i"´n ErP p xq i,i s " σ 2 ε trpP p xqq " σ 2 ε trpI d q " σ 2 ε d. Consequently, it holds E " } p h d ´Πd h} 2 n ı " σ 2 ε T d n .
Plugging this in (47) ends the proof of ( 14).

Proof of part (ii). By Phythagoras Theorem, we have

Er} p h d ´h} 2 s " Er} p h d ´hd } 2 s `}h ´hd } 2 " Er} p h d ´Er p h d s} 2 s `}Er p h d s ´hd } 2 `}h ´hd } 2 .
We study the two first terms in the right hand side of the previous equality. For the first term, using the definition of p h d given in (23), we get

E " } p h d ´Er p h d s} 2 ı " E} p b pdq ´E p b pdq } 2 R d " 2πE " p p b pdq ´E p b pdq q t p p b pdq ´E p b pdq q  . Note that p b pdq ´E p b pdq " pΦ t d Φ d q ´1Φ t d ε, this implies E " } p h d ´Er p h d s} 2 ı " E " ε t Φ d pΦ t d Φ d q ´1pΦ t d Φ d q ´1Φ t d ε ‰ " E " ε t M p xq ε ‰ , where M p xq " Φ d pΦ t d Φ d q ´1pΦ t d Φ d q ´1Φ t d . As ε i are i.i.d. of variance σ 2 ε , it holds E " ε t M p xq ε ‰ " E " ÿ ´nďi,kďn´1 ε i ε k rM p xq i,k s ‰ " σ 2 ε n´1 ÿ i"´n ErM p xq i,i s " σ 2 ε trpM p xqq " σ 2 ε trppΦ t d Φ d q ´1q. We derive that E " ε t M p xq ε ‰ " σ 2 ε T n tr `Ψ´1 d ˘and E " } p h d ´Er p h d s} 2 ı " σ 2 ε T n tr `Ψ´1 d ˘. (48)
For the other term, we have 

}h d ´Er p h d s} 2 " › › pxh, ϕ 0 y, . . . ,
}h d ´Er p h d s} 2 " }pΦ t d Φ d q ´1Φ t d ph d p xq ´hp xqqq } 2 R d ď }pΦ t d Φ d q ´1Φ t d } 2 op n´1 ÿ i"´n ph d px i q ´hpx i qq 2 ,
where }A} 2 op is the operator norm of the matrix A defined as the square root of the largest eigenvalue of A t A. Then, it yields

}pΦ t d Φ d q ´1Φ t d } 2 op " λ max pΦ d pΦ t d Φ d q ´1pΦ t d Φ d q ´1Φ t d q " T n λ max `Ψ´1 d (49) This implies (50) }h d ´Er p h d s} 2 ď λ max `Ψ´1 d ˘}h ´hd } 2 n ,
From ( 48) and ( 6.1), we derive

Er} p h d ´h} 2 s ď σ 2 ε T n tr `Ψ´1 d ˘`}h ´hd } 2 `λmax `Ψ´1 d ˘}h ´hd } 2 n . ( 51 
)
Proof of Proposition 2.2. For h P W α H pLq with α ą 11{6, we have from Proposition 2.1 (i) and Lemma 2.2 that

E " } p h d ´h} 2 n ı ď }h d ´h} 2 `pσ 2 ε T `Cpα, LqT 2 q d n ď Ld ´α `pσ 2 ε `Cpα, LqT 2 q d n ,
where Cpα, Lq ą 0 depends on α and L. The choice d " d opt " rn 1{pα`1q s yields

E " } p h dopt ´h} 2 n ı " Opn ´α α`1 q.
Hence the part (i) of Proposition 2.2. The part (ii) is similar considering pA0q.

Proof of Theorem 2.3. Inequality ( 19) follows from Corollary 3.1 in [START_REF] Baraud | Model selection for regression on a fixed design[END_REF], where all terms are multiplied by T with q " 1 and p " 8. The constant C 1 is given by:

C 1 " C 2 pκq Erε 8 1 s σ 6 ε ˜1 `ÿ dPMn d ´2¸ă `8.
Let us now prove (20). We recall that (see Equation ( 17) in [START_REF] Baraud | Model selection for regression on a fixed design[END_REF])

(52) @d P N , sup tPS d ,t‰0 }t} }t} n " λ max pΨ ´1 d q.
Using that

Er} p h p d ´h} 2 s ď 2Er} p h p d ´hd } 2 s `2}h d ´h} 2
Under pA0q and as p h p d ´hd P S dn , where d n ď n is the maximum dimension of the collections of models M n , it holds from (52) that } p h

p d ´hd } 2 ď 2λ 2 } p h p d ´h} 2 n `2λ 2 }h ´hd } 2 n . Thus, for any d ě 1, Er} p h p d ´h} 2 s ď 2λ 2 Er} p h p d ´h} 2 n s `2λ 2 }h ´hd } 2 n `}h d ´h} 2 .
From ( 19), we derive that

Er} p h p d ´h} 2 s ď2λ 2 " Cpκq inf dPMn ˆinf tPS d }t ´h} 2 n `σ2 ε T d n ˙`C 1 n  `2λ 2 }h ´hd } 2 n `}h d ´h} 2 ď maxp1, 2λ 2 Cpκqq inf dPMn ˆp2λ 2 `1q}h ´hd } 2 n `}h d ´h} 2 `σ2 ε T d n ˙`2λ 2 C 1 T n .
This gives (20) and ends the proof of Theorem 2.3.

Proofs of Section 3.

Proof of Proposition 3.1.

Proof of Equation ( 27). We have

Er} p f pdq ´f } 2 s ď 2 Er} p f pdq ´p f p q,d } 2 s `2 Er} p f p q,d ´f } 2 s.
We examine the first term. Using successively the Cauchy-Schwarz inequality, ( 7) and under pA3q, we deduce that

} p f pdq ´p f p q,d } 2 " 1 2π ż |u|ą | p h d puq| 2 |g ˚puq| 2 du " 1 2π ż |u|ą ˇˇp h d puq ´E p h d puq `E p h d puq ˇˇ2 |g ˚puq| 2 du " ż |u|ą ˇˇř d´1 j"0 ´p b pdq j ´E p b pdq j `E p b pdq j ¯ϕj puq ˇˇ2 |g ˚puq| 2 du ď d´1 ÿ j"0 ´p b pdq j ´E p b pdq j `E p b pdq j ¯2 d´1 ÿ j"0 ż |u|ą ϕ j puq 2 |g ˚puq| 2 du ď c 1 C 12 8 d´1 ÿ j"0 ´p b pdq j ´E p b pdq j `E p b pdq j ¯2 de ´ξ 2 2 ż e ´ξu 2 2 p1 `u2 q γ du.
As ş e ´ξu 2 2 p1 `u2 q γ du ď c 1 1 ă 8 with c 1 1 " c 1 1 pγ, ξq and ě ? 2d, then, it follows that 

E " } p f pdq ´p f p q,d } 2 ı ď c 1 c 1 1 C 2 8 E « d´1 ÿ j"
E p h d } 2 " } Er p b pdq s} 2 R d " }pΦ t d Φ d q ´1Φ t d h} 2 R d ď }pΦ t d Φ d q ´1Φ t d } 2 op ř n´1
i"´n phpx i qq 2 . Using ( 48) and ( 49) (where h d :" 0), we derive that

E « d´1 ÿ j"0 ´p b pdq j ´E p b pdq j `E p b pdq j ¯2ff " Er} p h d ´E p h d } 2 s `} E p h d } 2 ď σ 2 ε T n trpΨ ´1 d q `λmax `Ψ´1 d ˘}h} 2 n .
Under pA0q and pA4q, we have

σ 2 ε T n trpΨ ´1 d q `λmax `Ψ´1 d ˘}h} 2 n ď maxpσ 2 ε , 2}h} 2 8 qλT . It comes that E " ř d´1 j"0 ´p b pdq j ´E p b pdq j `E p b pdq j ¯2 ď maxpσ 2 ε , 2}h} 2 8 qλT . Injecting this in (53), we obtain Er} p f pdq ´p f p q,d } 2 s ď c 1 c 1 1 C 12 8 maxpσ 2 ε , 2}h} 2 8 qde ´ξd " CλT e ´ξd 2 ,
where C " CpC 1 8 , c 1 , }h} 8 , ξq and therefore that Er} p f pdq ´p f p q,d } 2 s ď CλT e ´ξd `2 Er} p f p q,d ´f } 2 s.

Proof of Equation (28). For all ą 0, d ě 1, we have the following decomposition:

E " } p f p q,d ´f } 2 ı " }f ´fp q } 2 `E " }f p q ´p f p q,d } 2 ı . ( 54 
)
We evaluate E " }f p q ´p f p q,d } 2 ı using the Plancherel formula :

Er} p f p q,d ´fp q } 2 s " 1 2π E » - ż ´ ˇˇˇˇp h d puq ´h˚p uq g ˚puq ˇˇˇˇ2 du fi fl ď ∆p qE " } p h d ´h} 2 ı .
Plugging successively (15) in the above bound and in ( 54) gives ( 28).

Proof of Theorem 3.2. Under pA3q, pA0q and for h belongs to W α H with α " s `γ, we get from Lemma 2.2:

E " } p f p q,d ´f } 2 ı ď L ´2s `p1 ` 2 q γ " σ 2 ε λ dT n `p1 `λqL 1 d ´α `Cpα, Lq T 2 n  .
The choices d opt " rn 1{pα`1q s and opt " n 1 2pα`1q end the proof.

Proof of Proposition 3.3. As f is Gaussian, then it belongs to W α H pDq (see ( 9)) with α as large as desired, since f is infinitely differentiable and f, . . . , f pαq , x α´l f plq for l " 0 . . . α ´1, see Section 2.3. Using the differentiation under the integral sign theorem, we have that h " f ‹ g is also infinitely differentiable for g P L 1 pRq and we write h plq " f plq ‹ g. Besides, it yields }h plq } ď }f plq }}g} 1 . Then, h belongs to W α p¨q (Sobolev ball) since these derivative up to order α belong to L 2 pRq. Thus, h P W α H p¨q if the function x α´l h plq is square integrable. This is equivalent to prove that x α h plq is square integrable. Now, we write }x α h plq } 2 " 2π} ´xpαq h plq ¯˚} 2 " 2π}rph plq q ˚spαq } 2 " 2π}rg ˚pf plq q ˚spαq } 2 .

As x α g P L 1 pRq X L 2 pRq and x α f plq P L 1 pRq, we get by the Leibniz Formula and the Cauchy-Schwarz inequality that:

}x α h plq } 2 "2π} α ÿ k"0 ˆα k ˙pg ˚qpkq rpf plq q ˚spα´kq } 2 "2π ż ˇˇˇˇα ÿ k"0 ˆα k ˙pg ˚qpkq puqrpf plq q ˚spα´kq puq ˇˇˇˇ2 du ďCpαq max 0ďkďα´l }rpf plq q ˚spα´kq } 2 8 α ÿ k"0 ˆα k ˙ż |pg ˚qpkq puq| 2 du. Moreover, it holds ş |pg ˚qpkq puq| 2 du " 1 2π ş |x k gpxq| 2 dx ď ş |x|ď1 |gpxq| 2 dx `ş|x|ě1 |x pαq gpxq| 2 dx ă `8. Therefore, }x α h plq } 2 ă `8 and h belongs to W α H pLq. Proposition 2.2 (ii)
gives Er} p h dopt ´h} 2 s À n ´α α`1 . Plugging this in (28) and using Lemma 2 in [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF] 

yield E " } p f p q,dopt ´f } 2 ı À ´1e ´σ 2 `c1 p1 ` 2 q γ n ´α α`1 .
Replacing 2 by 2 opt " α pα`1qσ 2 logpnq ends the proof.

Proof of Proposition 3.4. The proof is similar to that of Proposition 3.3. The regression part does not change i.e. for the choice d opt " rn 1{pα`1q s, we have always that Er} p h dopt ´h} 2 s À n ´α α`1 . (see the Proof of Proposition 3.3) with α as large as desired. But for the deconvolution part, the rate change since the order of the bias of f and ∆p q have changed. Now, these order are: ∆p q " sup |u|ď |g ˚puq| ´2 ď e σ 2 2 because g ˚puq " expp´σ 2 t 2 2 q and }f ´fp q } 2 " 1 2π ş |u|ą |f ˚puq| 2 du ď ´2s for f P W s pLq (see ( 10)). From the previous results, we derive from ( 28)

E " } p f p q,dopt ´f } 2 ı À ´2s `eσ 2 2 n ´α α`1 . Choosing 2 opt " p α 2pα`1qσ 2 logpnqq, it yields that E " } p f p optq,dopt ´f } 2 ı À logpnq ´s.
Proof of Proposition 3.5. First, note that as f and g are Gaussian densities, then h " f ‹ g is it also a Gaussian density with variance σ 2 `θ2 . It is proved in [START_REF] Belomestny | Sobolev-Hermite versus Sobolev nonparametric density estimation on R[END_REF] (see Proof of Proposition 7, p. 55-56) that the bias for Gaussian density is exponentially decaying and its order is given by

}h ´hd } 2 À 1 ? d expp´λ σ,θ dq, where λ σ,θ " log " ´σ2 `θ2 `1 σ 2 `θ2 ´1 ¯2 ą 0.
We derive that:

(55) Er} p h d ´h} 2 s À σ 2 ε λ T n d `1 ? d expp´λ σ,θ dq `Op T 2 n q
Injecting d opt " rlogpnq{λ σ,θ s in (55), we have (30). Injecting this in (28), it comes

E " } p f p q,dopt ´f } 2 ı ď }f ´fp q } 2 `∆p q logpnq n .
As g ˚puq " expp´θ 2 t 2 2 q then, it holds ∆p q " sup |u|ď |g ˚puq| ´2 ď e θ 2 2 . Using Lemma 2 in Comte and Lacour (2011), we have

}f ´fp q } 2 " 1 2π ż |u|ą |f ˚puq| 2 du -´1e ´σ2 2 .
Consequently, we get from (28)

E " } p f p q,dopt ´f } 2 ı À ´1e ´σ2 2 `eθ 2 2 logpnq n ,
Replacing 2 opt " 1 pσ 2 `θ2 logpnq ´3 2pθ 2 `σ2 q log logpnq gives the announced result. Proof of Proposition 3.6. Recall that as f is Γpp, θq and g Γpq, θq, then, the regression function h " f ‹g " Γpp `q, θq and belongs to h P W pp`q´2q H since p `q ą 2. We have

Er} p h d ´h} 2 s ď Cd ´pp`q´2q `σ2 ε λ T n d `Op T 2 n q.
Replacing d by d opt " rn 1{pp`q´1q s, we derive

Er} p h dopt ´h} 2 s À n ´p`q´2 p`q´1 .
Now, we consider the deconvolution part. The Fourier transform of g and its modulus are given by g ˚ptq " p1 ´i t θ q ´q, |g ˚ptq| " p1 `t2 θ 2 q ´q 2 . Then, it holds that ∆p q " sup |u|ď |g ˚puq| ´2 ď p1 ` 2 θ 2 q q " c 2q and using Lemma 2 in [START_REF] Comte | Data-driven density estimation in the presence of additive noise with unknown distribution[END_REF], it follows }f ´fp q } 2 " 1 2π ş |u|ą |f ˚puq| 2 du -p θ q ´2p`1 . Plugging the previous results in (28) yields

E " } p f p q,dopt ´f } 2 ı À p θ q ´2p`1 `c 2q n ´p`q´2 p`q´1 . Choosing opt :" n p`q´2 pp`q´1qp2p`2q´1q gives E " } p f p optq,dopt ´f } 2 ı " O ˆn´p p`q´2qp2p´1q pp`q´1qp2p`2q´1q
˙.

Proof of Theorem 3.7. Let us start by the proof of Inequality (35). First, we have by definition of p A, p d and

@d P M p1q n , } r f p p dq ´f } 2 " } r f p p dq ´r f p p d^dq `r f p p d^dq ´r f pdq `r f pdq ´f } 2 ď 3} r f p p dq ´r f p p d^dq } 2 `3} r f p p d^dq ´r f pdq } 2 `3} r f pdq ´f } 2 ď 3p p Apdq `κ1 V p p dqq `3p p Ap p dq `κ1 V pdqq `3} r f d ´f } 2 ď 6p p Apdq `κ2 V pdqq `3} r f d ´f } 2 .
Taking the expectation in the previous inequality, we get

E " } r f p p dq ´f } 2 ı ď 6 Er p Apdqs `6κ 2 V pdqq `3 E " } r f d ´f } 2 ı . (56) 
Now, we are interested in the study of Er p Apdqs. For all d P M p1q n , we use the following decomposition } r f pd 1 q ´r f pd 1 ^dq } 2 " } r f pd 1 q ´Er r f pd 1 q s `Er r f pd 1 q s ´Er r f pd 1 ^dq s `Er r f pd 1 ^dq s ´r f pd 1 ^dq } 2 ď 3} r f pd 1 q ´Er r f pd 1 q s} 2 `3} Er r f pd 1 ^dq s ´r f pd 1 ^dq } 2 `3} Er r f pd 1 q s ´Er r f pd 1 ^dq s} 2 .

Using this, it comes p Apdq ď3 max

d 1 PM p1q n " ´} r f pd 1 q ´Er r f pd 1 q s} 2 ´κ1 6 V pd 1 q ¯`* `3 max d 1 PM p1q n " ´} Er r f pd 1 ^dq s ´r f pd 1 ^dq } 2 ´κ1 6 V pd 1 q ¯`* `3 max d 1 PM p1q n ! } Er r f pd 1 q s ´Er r f pd 1 ^dq s} 2
) .

Let us remark that if d 1 ď d, the last term is equal to zero. We have max

d 1 PM p1q n } Er r f pd 1 q s ´Er r f pd 1 ^dq s} 2 " max d 1 PM p1q n ,dăd 1 } Er p f p ? 2d 1 q,d 1 s ´Er p f p ? 2dq,d s} 2 " max d 1 PM p1q n ,dăd 1 ! } Er p f p ? 2d 1 q,d 1 s ´fp ? 2d 1 q `fp ? 2d 1 q ´fp ? 2dq `fp ? 2dq ´Er p f p ? 2dq,d s} 2 ) ď 3 max d 1 PM p1q n ,dăd 1 } Er p f p ? 2d 1 q,d 1 s ´fp ? 2d 1 q } 2 `3}f p ? 2dq ´} Er p f p ? 2dq,d s} 2 `3 max d 1 PM p1q n ,dăd 1 }f p ? 2d 1 q ´fp ? 2dq } 2 .
Besides 

d 1 PM p1q n " ´} p f p ? 2d 1 q,d 1 ´Er p f p ? 2d 1 q,d 1 s} 2 ´κ1 6 V pd 1 q ¯`* `3 max d 1 PM p1q n " ´} Er p f p ? 2d 1 ^?2dq,d 1 ^ds ´p f p ? 2d 1 ^?2dq,d 1 ^d} 2 ´κ1 6 V pd 1 q ¯`* `9 max d 1 PM p1q n ,dďd 1 ∆p ? 2d 1 q}h ´Er p h d 1 s} 2 `9}f ´fp ? 2dq } 2 .
As max

d 1 PM p1q n " ´} p f p ? 2d 1 q,d 1 ´Er p f p ? 2d 1 q,d 1 s} 2 ´κ1 6 V pd 1 q ¯`* ď ÿ d 1 PM p1q n " ´} p f p ? 2d 1 q,d 1 ´Er p f p ? 2d 1 q,d 1 s} 2 ´κ1 6 V pd 1 q ¯`*
and V pd 1 q ě V pd 1 ^dq, then, we have the following bound max

d 1 PM p1q n " ´} Er p f p ? 2d 1 ^?2dq,d 1 ^ds ´p f p ? 2d 1 ^?2dq,d 1 ^d} 2 ´κ1 6 V pd 1 q ¯`* ď max d 1 PM p1q n ,d 1 ďd " ´} Er p f p ? 2d 1 q,d 1 s ´p f p ? 2d 1 q,d 1 } 2 ´κ1 6 V pd 1 q ¯`* `"´} Er p f p ? 2dq,d s ´p f p ? 2dq,d } 2 ´κ1 6 V pdq ¯`* ď 2 ÿ d 1 PM p1q n " ´} p f p ? 2d 1 q,d 1 ´Er p f p ? 2d 1 q,d 1 s} 2 ´κ1 6 V pd 1 q ¯`* .
Consequently, it follows

E " p Apdq ı ď 9 ÿ d 1 PM p1q n E " ´} p f p ? 2d 1 q,d 1 ´Er p f p ? 2d 1 q,d 1 s} 2 ´κ1 6 V pd 1 q ¯` `9 max d 1 PM p1q n ,dďd 1 ∆p ? 2d 1 q}h ´Er p h d 1 s} 2 `9}f ´fp ? 2dq } 2 .
Next, we have to control the term ř

d 1 PM p1q n E " ´} p f p ? 2d 1 q,d 1 ´Er p f p ? 2d 1 q,d 1 s} 2 ´κ1 6 V pd 1 q ¯`
. We use the following technical Lemma.

Lemma 6.1. Under the assumptions of Theorem 3.7, it holds for κ 1 ě 12 and C 0 a positive constant,

ÿ dPM p1q n E " ´} p f p ? 2dq,d ´Er p f p ? 2dq,d s} 2 ´κ1 6 V pdq ¯` ď C 0 logpnq n ,
where C 0 " C 0 pErε 4 1 s, γ, c 1 , ξ, λ, C 1 8 q. By Phythagoras Therorem, we have

}h ´Er p h d s} " }h ´hd } 2 `}h d ´Er p h d s} 2 . (57) O. SACKO
Then, we deduce from Lemma 6.1, ( 56), ( 54) and ( 48) that:

Er} r f p p dq ´f } 2 s ď 57}f ´fp ? 2dq } 2 `7κ 2 V pdq `54C 0 logpnq n `57R b pdq, (58) 
where R b pdq :"

" max d 1 PM p1q n ,dďd 1 ∆p ? 2d 1 q}h ´Er p h d 1 s} 2 ı .
Taking the infimum d and choosing C " maxp57, 7κ 2 q, C 1 " 54C 0 in (58) ends the proof of Inequality ( 35). Now, we prove Inequality (36). From ( 57)-( 50) and pA0q, it holds

∆p ? 2d 1 q}h ´Er p h d 1 s} 2 ď p1 `λq∆p ? 2d 1 q}h ´hd 1 } 2 `λ∆p ? 2d 1 q}h ´hd 1 } 2 n .
Under pA3q, it comes from Lemma 2.2 (ii) and for h P W s`γ H pL 1 q, ∆p ?

2d 1 q}h ´Er p h d 1 s} 2 ďc 1 p1 `λqp1 `2d 1 q γ L 1 pd 1 q ´s´γ `C∆p ? 2d 1 q T 3 n 2 ďC ˆd1´s `T 2 n ˙.
Then, for d 1 ě d, we derive that R b pdq ď C ´d´s `T 2 n ¯. Plugging this in (58) and using }f ´f? 2d } 2 ď 2 ´sLd ´s because f P W s pLq concludes the proof of Theorem 3.7.

Proofs of Section 4.

Proof of Proposition 4.1. By the Pythagoras Theorem, we have

(59) E " } p f m,d ´f } 2 ı " }f ´fm } 2 `E " } p f m,d ´fm } 2 ı Let us study the term E " } p f m,d ´fm } 2
ı . On the one hand, by definition of p f m,d and f m , it yields ı .

E " } p f m,d ´fm } 2 ı "Er m´1 ÿ j"0 pp a j,d ´aj q 2 s " E « m´1 ÿ j"0 1 2π |x p h d ´hg ˚, ϕ j y| 2 ff ď 1 π E « m´1 ÿ j"0 |x p h d ´hg ˚1|¨|ď ? ρm , ϕ j y| 2 ff `1 π E « m´1 ÿ j"
Injecting this in (59) and using Proposition 2.1 (ii), we get

E " } p f m,d ´f } 2 ı ď }f ´fm } 2 `2Σpmq ˆ}h ´hd } 2 `λmax `Ψ´1 d ˘}h ´hd } 2 n `σ2 ε T n tr `Ψ´1 d ˘˙. (60)
On the other hand, from (59), we have

E " } p f m,d ´f } 2 ı " }f ´fm } 2 `} Er p f m,d s ´fm } 2 `E " } p f m,d ´Er p f m,d s} 2 ı . ( 61 
)
We study the last two terms on the above expression. Start by the second. To do this, we introduce the matrix:

M :" ˆżR ϕ j ϕ k g ˚˙0ďjďm´1, 0ďkďd´1
By definition p h d given in (13), we remark p a j,d " rM p b pdq s j with p b pdq " p p b pdq 0 , . . . , p b pdq d´1 q t . We set p f m,d " pp a 0,d , . . . , p a m´1,d q t " rM p b pdq s 0ďjďm´1

Then, it yields

E " } p f m,d ´Er p f m,d s} 2 ı " E " } p f m,d ´Er p f m,d s} 2 R pmq  " E " }M pΦ t d Φ d q ´1Φ t d ε} 2 R pmq ‰ " σ 2 ε tr " Φ d pΦ t d Φ d q ´1M t M pΦ t d Φ d q ´1Φ t d ‰ " σ 2 ε T n trrΨ ´1 d M t M s.
As Ψ ´1 d is a definite symmetric positive matrix, then, it is diagonalizable Ψ ´1 d " P DP t with D " diagpµ 1 , . . . , µ d q, where the µ i ą 0 are eigenvalues of matrix Ψ ´1 d and P P t " P t P " I d . We can define the root square of Ψ ´1 d and derive (see Proof of Theorem 3.7 when we compute M 1 ) trrΨ ´1 d M t M s ď λ max pΨ ´1 d qtrrM t M s. The Frobenuis norm and Bessel inequality give: 

}M } 2 F " trrM t M s " m´1 ÿ j"0 d´1 ÿ k"0 ˇˇˇż R ϕ j puqϕ k puq g ˚puq du ˇˇˇ2 ď 2π m´1 ÿ j"0 ż R |ϕ j puq| 2 |g ˚puq|

O. SACKO

Plugging the two last terms on the above bound in 61, we obtain

E " } p f m,d ´f } 2 ı ď }f ´fm } 2 `2Σpmq ˆ}h ´hd } 2 `λmax `Ψ´1 d ˘}h ´hd } 2 n `2π 2 σ 2 ε λ max `Ψ´1 d ˘m T n ˙.
Combining this and (60) ends the proof.

Proof of Theorem 4.2. Under pA3q, pA0q and for h belongs to W α H pL 1 q, it holds from Lemma 2.2:

E " } p f m,d ´f } 2 ı ď Lm ´s `2Σpmq " p1 `λqL 1 d ´α `λσ 2 ε T d n `Cpα, Lq T 2 n 
Besides, under pA3q and from ( 7) with ρ ě 2, we have

m´1 ÿ j"0 ż |u|ě ? ρm |ϕ j puq| 2 |g ˚puq| ´2dx ď m´1 ÿ j"0
C 2 e ´ξρm ż p1 `u2 qe ´ξu 2 du ď Cpξqme ´ξρm .

As sup |x|ď ? ρm |g ˚pxq| ´2 ď c 1 p1`pmρq γ q, then, there exits a constant, denoted C 1 such that Σpmq ď C 1 m γ . Then, we obtain

E " } p f m,d ´f } 2 ı ď Lm ´s `2C 1 m γ " p1 `λqL 1 d ´α `λσ 2 ε T d n `Cpα, Lq T 2 n  ,
and the choices m opt " d opt " rn 1{pα`1q s with α " s `γ ą 11{6 end the proof.

Proof of Theorem 4.3.

Proof of Inequality (44). By definition of p B, r m and @m P M p2q n , we have

} r f r m ´f } 2 ď 6 ´p Bpmq `κ1 2 W pmq ¯`3} r f m ´f } 2 ,
by analogy with the proof of Theorem 3.7. Then, it yields

E " } r f r m ´f } 2 ı ď 6 Er p Bpmqs `κ1 2 W pmq `3 E " } r f m ´f } 2 ı (62)
Next, we study the term Er p Bpmqs. For all m, m 1 P M p2q n , we have the following decomposition

} r f m 1 ´r f m 1 ^m} 2 ď 3} r f m 1 ´Er r f m 1 s} 2 `3} r f m 1 ^m ´Er r f m 1 ^ms} 2 `3} Er r f m 1 s ´Er r f m 1 ^ms} 2 , which implies p Bpmq ď3 max m 1 PM p2q n "ˆ} r f m 1 ´Er r f m 1 s} 2 ´κ1 1 6 W pm 1 q ˙`* `3 max m 1 PM p2q n "ˆ} r f m 1 ^m ´Er r f m 1 ^ms} 2 ´κ1 1 6 W pm 1 q ˙`* `3 max m 1 PM p2q n ! } Er r f m 1 s ´Er r f m 1 ^ms} 2 )
Note that for m 1 ď m, the last term is null. More precisely, we have max 

m 1 PM p2q n ! } Er r f m 1 s ´Er r f m 1 ^ms} 2 ) " max m 1 PM p2q n ,măm 1 ! } Er r f m 1 s ´Er r f m 1 ^ms} 2 ) ď3 max m 1 PM p2q n ,măm 1 ! } Er r f m 1 s ´fm 1 } 2 ) `3}f m ´Er r f m s} 2 `3 max m 1 PM p2q n ,măm 1 }f 1 m ´fm } 2 .
m 1 PM p2q n "ˆ} r f m 1 ´Er r f m 1 s} 2 ´κ1 1 6 W pm 1 q ˙`* `3 max m 1 PM p2q n "ˆ} r f m 1 ^m ´Er r f m 1 ^ms} 2 ´κ1 1 6 W pm 1 q ˙`* `18 max m 1 PM p2q n ,mďm 1 Σpm 1 q}h ´Er p h m 1 s} 2 `9}f ´fm } 2 .
Notice that max

m 1 PM p2q n "ˆ} r f m 1 ´Er r f m 1 s} 2 ´κ1 1 6 W pm 1 q ˙`* ď ÿ m 1 PM p2q n "ˆ} r f m 1 ´Er r f m 1 s} 2 ´κ1 1 6 W pm 1 q ˙`* ,
and W pm 1 q ě W pm 1 ^mq, then, we have the following bound max

m 1 PM p2q n "ˆ} r f m 1 ^m ´Er r f m 1 ^ms} 2 ´κ1 1 6 W pm 1 q ˙`* ď 2 ÿ m 1 PM p2q n "ˆ} r f m 1 ´Er r f m 1 s} 2 ´κ1 1 6 W pm 1 q ˙`* .
Finally, after taking expectation, we get

Er p Bpmqs ď 9 ÿ m 1 PM p2q n E "ˆ} r f m 1 ´Er r f m 1 s} 2 ´κ1 1 6 W pm 1 q ˙` `18 max m 1 PM p2q n ,mďm 1
Σpm 1 q}h ´Er p h m 1 s} 2 `9}f ´fm } 2 . Lemma 6.2. Under the assumption of Theorem 4.3, for κ 1 1 ě 12, we have

ÿ m 1 PM p2q n E "ˆ} r f m 1 ´Er r f m 1 s} 2 ´κ1 1 6 W pm 1 q ˙` ď C 0 logpnq n . Lemma 6.2 implies that Er p Bpmqs ď 9C 0 logpnq n `18 max m 1 PM p2q n ,mďm 1 Σpm 1 q}h ´Er p h m 1 s} 2 `9}f ´fm } 2 .
Injecting this in (62) and from ( 57)-(50), we obtain

E " } r f r m ´f } 2 ı ď 57}f ´fm } 2 `108R b pm 1 q `7κ 1 2 W pmq `54C 0 logpnq n . ( 63 
)
Choosing C " maxp108, 7κ 1 2 q, C 1 " 54C 0 and taking the infimum on m P M p2q n concludes the proof of Inequality (44).

Proof of Inequality (45). Recall that for f P W s pLq, it holds }f ´fm } 2 ď Lm ´s. Similarly to the proof of (36), we derive for h P W s`γ H pL 1 q with s `γ ě 17{6 that R 1 b pmq ď CpS, γ, λ, σ 2 ε qpm ´s `T 2 {nq. Plugging the two previous inequalities into (63) gives (45).

where ψpxq " ph ´hd q 2 pxq " p ř jąd a j phqϕ j pxqq 2 with a j phq " xh, ϕ j y. Next, we evaluate the term }ψ 2 } 8 . By induction on d, the d-th derivative of ϕ j is given by (see Lemma 5.2 in [START_REF] Comte | Optimal adaptive estimation on R or R `of the derivatives of a density[END_REF] for the proof)

ϕ pdq j " d ÿ k"´d b pdq k,j ϕ j`k , where b pdq k,j " Opj d{2 q, j ě d ě |k|.
Using this for d " 2 and (5), it follows |ϕ 2 j pxq| À jpj `kq ´1 12 À j 11 12 and then we get for W α H pLq and

α ą 17{6 | ÿ jąd a j phqϕ 2 j pxq| ď ¨ÿ jąd j α a j phq 2 '1 2 ¨ÿ jąd j ´α`1 1 6 '1 2 À pd ´α`1 1 6 `1q 1 2 " d ´α 2 `17 12 .
This implies that ψ is differentiable of order 2. Then, for any j ą d, it holds

ψ 2 pxq " 2 » - ÿ jąd a j phqϕ 2 j pxq ÿ jěd a j phqϕ j pxq `¨ÿ jąd a j phqϕ 1 j pxq '2 fi fl ,
where the bound of last term is d ´α`1 1 6 for h P W α H pLq (see Proof of part (i)). Besides, the order of ř jěd a j phqϕ j pxq is d ´α 2 `5 12 . Therefore, it comes }ψ 2 } 8 À d ´α`1 1 6 and then }h ´hd } 2 n ď 2}h ´hd } 2 `C T 3 12n 2 . This ends the proof of part (ii) and then the proof of Lemma. ´?2d

ř d´1 j"0 " Ψ ´1 d Φ t d ε ‰ j ϕ j puq g ˚puq t ˚p´uqdu Using that " Ψ ´1 d Φ t d ε ‰ 0ďjďd´1 " " ř n´1 i"´n rΨ ´1 d Φ t d s j,i ε i ı 0ďjďd´1 , it holds ν n ptq " 1 2π T n n´1 ÿ i"´n ε i xt ˚, ř d´1 j"0 " Ψ ´1 d Φ t d ‰ j,i ϕ j g ˚1|¨|ď ? 2d y " 1 2n n´1 ÿ i"´n α t,d,i pε i q where α t,d,i pxq " x T π xt ˚, ř d´1 j"0 " Ψ ´1 d Φ t d ‰ j,i ϕ j g ˚1|¨|ď ? 2d y.
As the noise is not bounded, we cannot apply directly the Talagrand's inequality to the process ν n ptq. In this respect, we use the following decomposition

ε i " ζ i `ξi , ζ i " ε i 1 |ε i |ďkn ´Erε i 1 |ε i |ďkn s, ξ i " ε i 1 |ε i |ąkn ´Erε i 1 |ε i |ąkn s,
where k n is chosen in the sequel. Then, it follows that ν n ptq " ν p1q n ptq `νp2q n ptq, ν p1q n ptq "

1 2n n´1 ÿ i"´n α t,d,i pζ i q, ν p2q n ptq " 1 2n n´1 ÿ i"´n α t,d,i pξ i q, and E «˜s up tPS d ,}t}"1 |ν n ptq| 2 ´κ1 6 V pdq ¸`ff ď 2 E «˜s up tPS d ,}t}"1 |ν p1q n ptq| 2 ´κ1 12 V pdq ¸`ff `2 E « sup tPS d ,}t}"1 |ν p2q n ptq| 2 ff .
This implies that

ÿ dPM p1q n E " ´} p f p ? 2dq,d ´Er p f p ? 2dq,d s} 2 ´κ1 6 V pdq ¯` ď 2 ÿ dPM p1q n E «˜s up tPS d ,}t}"1 |ν p1q n ptq| 2 ´κ1 12 V pdq ¸`ff `2n E « sup tPS d ,}t}"1 |ν p2q n ptq| 2 ff . (64) 
Now, we study the last two terms. We start by the second. 

2 1 s ď Erε 2 1 1 |ε 1 |ěkn s ď b Erε 4 1 s a Pp|ε 1 | ě k n q.
We introduce the following technical Lemma to obtain a bound of Erξ 2 1 s.

Lemma A.1. Under pA5q, it yields Pp|ε 1 | ě k n q ď 2e ´k2 n 2b 2 . Moreover, ε 1 admits a finite moment of any order, Er|ε 1 | p s ď p2b 2 q p 2 spΓp p 2 q, where Γp¨q denotes the gamma function defined by:

Γptq " ż `8 0

x t´1 e ´xdx, @t P R. 

Using Lemma

ÿ i"´n E " α t,d,i pζ i qα t,d,i pζ i q ı "σ 2 ε T 2 2nπ 2 n´1 ÿ i"´n ˇˇˇˇx t ˚, ř d´1 j"0 " Ψ ´1 d Φ t d ‰ j,i ϕ j g ˚1|¨|ď ? 2d y ˇˇˇˇ2 ďσ 2 ε T 2 2nπ 2 n´1 ÿ i"´n }t ˚}2 ż ? 2d 
´?2d

ˇˇř d´1 j"0 " Ψ ´1 d Φ t d ‰ j,i ϕ j puq ˇˇ2 |g ˚puq| 2 du "σ 2 ε T 2 nπ ∆p ? 2dq n´1 ÿ i"´n ż ? 2d 
´?2d

ˇˇˇˇd ´1 ÿ j"0 " Ψ ´1 d Φ t d ‰ j,i ϕ j puq ˇˇˇˇ2 du.
The Fourier transform of pϕ j q, see (6) gives, 1 2n

n´1 ÿ i"´n Varpα t,d,i pζ i qq ď 2σ 2 ε T 2 n ∆p ? 2dq n´1 ÿ i"´n ż R | d´1 ÿ j"0 " Ψ ´1 d Φ t d ‰ j,i ϕ j puq| 2 du " 2σ 2 ε T 2 n ∆p ? 2dq n´1 ÿ i"´n d´1 ÿ j"0 " Ψ ´1 d Φ t d ‰ 2 j,i
where we use the orthonormality pϕ j q. Recall that for A " pa i,j q 1ďiďm,1ďjďn a matrix with real coefficients, the Frobenius norm of A is defined by

}A} 2 F " m ÿ i"1 n ÿ j"1 a 2 i,j " tr " A t A ‰ .
Then, under pA0q, it yields

T n n´1 ÿ i"´n d´1 ÿ j"0 " Ψ ´1 d Φ t d ‰ 2 j,i " T n tr " Φ d Ψ ´1 d Ψ ´1 d Φ t d ‰ " tr " Ψ ´1 d ‰ ď λd, which implies sup tPS d ,}t}"1 1 2n n´1 ÿ i"´n Varpα t,d,i pζ i qq ď 2σ 2 ε T λd∆p ? 2dq ": v.
Computing of M 1 . Using successively ( 6), the Cauchy-Schwarz inequality and the orthonormality of ϕ j , we have on the process ν

p1q n sup tPS d ,}t}"1 }α t,d,i } 8 " sup tPS d ,}t}"1 sup xPR |α t,d,i pxq| " sup tPS d ,}t}"1 sup xPR ˇˇˇˇx 1 xďkn T π xt ˚, d´1 ÿ j"0 " Ψ ´1 d Φ t d ‰ j,i ϕ j g ˚1|¨|ď ? 2d y ˇˇˇď sup tPS d ,}t}"1 ¨2k n T π }t ˚}? 2π ˜ż ? 2d 
´?2d

| ř d´1 j"0 " Ψ ´1 d Φ t d ‰ j,i ϕ j puq| 2 |g ˚puq| 2 du ¸1 2 ‹ ' ď 4k n T ˜∆p ? 2dq d´1 ÿ j"0 " Ψ ´1 d Φ t d ‰ 2 j,i ¸1 2 .
To bound the term ř d´1 j"0

" Ψ ´1 d Φ t d ‰ 2 
j,i , we use:

d´1 ÿ j"0 " Ψ ´1 d Φ t d ‰ 2 j,i " d´1 ÿ j"0 " Ψ ´1 d Φ t d ‰ j,i " Ψ ´1 d Φ t d ‰ i,j " " Φ d Ψ ´1 d Ψ ´1 d Φ t d ‰ ´nďi,iďn´1 " e t i Φ d Ψ ´1 d Ψ ´1 d Φ t d e i ,
where p e i q ´nďiďn´1 is the vector of the canonical basis of R 2n . The matrix Ψ ´1 d is a definite symmetric, then diagonalizable and we can write Ψ ´1 d " P DP t , P t P " P P t " I d , D " Diagpµ 1 , . . . , µ d q,

where pµ i q 1ďiďd are the eigenvalues of matrix Ψ ´1 d . We can define its square root and we have for

w " P t Ψ ´1 2 d Φ t d e i d´1 ÿ j"0 " Ψ ´1 d Φ t d ‰ 2 j,i " e t i Φ d Ψ ´1 2 d Ψ ´1 d Ψ ´1 2 d Φ t d e i "
d´1 ÿ j"0 µ j w 2 j ď λ max pΨ ´1 d q w t w,

The definition of operator norm implies,

d´1 ÿ j"0 " Ψ ´1 d Φ t d ‰ 2 j,i ď λ max pΨ ´1 d q sup } x}"1 ˆ x t Φ d Ψ ´1 2 d Ψ ´1 2 d Φ t d x ˙" λ max pΨ ´1 d qλ max pΦ d Ψ ´1 d Φ t d q.
Ppε 1 ą sq `Ppε 1 ă ´sq ď 2e Using the definition of the gamma function, we get Er|ε 1 | p s " p2b 2 q p 2 pΓp p 2 q.

Proof of Lemma 6.2. Define the linear process ν n psq " xs, r f m 1 ´Er r f m 1 sy. For all function s, it holds } r f m 1 ´Er r f m 1 s} 2 " sup sPSm,}s}"1 |ν n psq| 2 . By definition of r f m given in (41), we have As the noise is not necessarily bounded, we cannot used the Talagrand inequality directly to the process ν n , then, we split the noise as follows:

ε i " ζ i `ξi , ζ i " ε i 1 |ε i |ďkn ´Erε i 1 |ε i |ďkn s, ξ i " ε i 1 |ε i |ąkn ´Erε i 1 |ε i |ąkn s,
where k n is chosen in the sequel. Thus, it comes ν p1q n psq " ν p1q n psq `νp2q n psq, ν p1q n psq " where where (see Equation ( 13)) hd " ř d´1 j"0 bpdq j ϕ j , bpdq " p bpdq 0 , . . . , bpdq d´1 q t " pΦ t d Φ d q ´1Φ t d y " T n Ψ ´1 d Φ t d y, y " pypx ´nq, . . . , ypx n´1 qq t with ypx i q " hpx i q `ξi , only here. T 2 n  .

This function is null in t " x, x i and x i`1 . By the Rolle theorem, there exists a constant c x such that φ 2 pc x q " ψ 2 pc x q ´2 ψpxq´ψ i pxq px´x i qpx´x i`1 q " 0 which gives ψpxq ´ψi pxq " px ´xi qpx ´xi`1 q ψ 2 pcxq 2 . From this, we deduce that ż x i`1

x i |ψ i pxq ´ψpxq|dx ď }ψ} 8 2 ż x i`1

x i px ´xi qpx i`1 ´xqdx ď }ψ} 8 12 px i`1 ´xi q 3 , and ˇˇT n ř n´1 i"´n ψpx i q`ψpx i`1 q 2 ´şT ´T ψpxqdx ˇˇď }ψ} 8 T 3

12n 2 . This concludes the proof.
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  ˚puq du. This description remains valid for the HH strategy by setting κ 1
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 2 Figure 2. 20 estimates of (iii) with FH method, and n " 250 (first line) or n " 1000 (second line) using the PM algorithm. The true function is in bold red and the estimates in green dotted lines (left σ ε " 1{4, right σ ε " 1{8).
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 3 Figure 3. 20 estimates of (iv) with FH method, and with n " 250 (first line) or n " 1000 (second line) using the PM algorithm. The true function is in bold red and the estimates in green dotted lines (left σ ε " 1{4, right σ ε " 1{8).
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 4 Figure 4. 20 estimates of (iii) with HH method, and n " 250 (first line) or n " 1000 (second line) using the PM algorithm. The true function is in bold red and the estimates in green dotted lines (left σ ε " 1{4, right σ ε " 1{8).
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 5 Figure 5. 20 estimates of (iv) with HH method, and n " 250 (first line) or n " 1000 (second line) using the PM algorithm. The true function is in bold red and the estimates in green dotted lines (left σ ε " 1{4, right σ ε " 1{8).

  First line: empirical 100ˆMISE (with 100ˆsd) for the estimation of unknown function f computed over 100 independent simulations; second line: mean of r d in the for r f p r dq or mean of r m for r f Ă m , selected by the PM algorithm; third line: mean of Signal/Noise ratio.

  p h d given in (13), it yields E

´s2 2b 2 .

 2 This prove the first part by setting s " k n . For the second part, we have by the definition of the expectation for non negative variable Er|ε 1 | p s "

  j,m ´Erp a j,m s ˘spuqϕ j puqdu " p h mpvq ´Er p h mpvqs g ˚pvq ϕ j pvqdv ¸ϕj puqspuqdu " ϕ k pvq g ˚pvq ϕ j pvqdv ¸G .

  the terms on the right-hand side of previous bound. Let us start the last term. hm pvq ´Er hm pvqs g ˚pvq ϕ j pvqdv ¸ϕj puqspuqdu,

'

  For each d P M p1q n , compute r Apdq " ´} r f d } 2 , by Riemann's approximation.

	!	)
	' Choose r d via r d " arg min dPM p1q n ' Compute r f p r dq pxq " 1 2π ş ? 2 r d ´?2 r d e ´iux r Apdq `κp1q V pdq p h r d puq g ˚puq du.	.

  .

		(i)						(ii)	
	p d " 11.20, s2n " 2.38, s ÝÑ 8		p d " 13.85, s2n " 1.60, s " 3
		(iii)						(iv)	
			σ ε " 1 8			σ ε " 1 4	
	n	250		1000	250		1000
	f	FH	HH	FH	HH	FH	HH	FH	HH
	(iii) 13.30 13.75 22.20 21.45 14.05 11.75 17.20 13.05
	(iv) 12.65 10.25 12.95 11.40 10.05 9.65 12.90 10.45
	Table 2. Mean of selected dimensions r d or r m presented in Figures 2 to 5.

p d " 20.05, s2n " 1.18, s ÝÑ 8 p d " 12.65, s2n " 1.87, s ÝÑ 8 Figure 1. 20 estimates of r f p p dq for the GLM algorithm. The true function is in bold red and the estimate in green dotted lines for n " 1000. 6. Proofs 6.1. Proofs of Section 2.

Table 3 .

 3 

			σ ε " 1 8					σ ε " 1 4	
	n	250		1000		250		1000	
	f	FH	HH	FH	HH	FH	HH	FH	HH
		1.28 p0.99q 1.24 p0.67q 0.35 p0.26q 0.43 p0.17q 4.66 p4.33q 3.11 p2.05q 1.12 p0.88q 1.16 p0.71q
	(i)	11.75	9.53	11.35	10.83	10.10	7.51	9.95	8.65
		2.37	2.36	2.36	2.36	0.58	0.58	0.58	0.59
		1.40 p0.82q 1.51 p0.85q 0.61 p0.28q 0.65 p0.25q 4.48 p3.04q 3.11 p1.90q 0.46 p0.22q 1.47 p0.63q
	(ii)	13.23	11.87	15.31	14.66	11.94	9.07	12.21	10.67
		1.58	1.57	1.57	1.57	0.37	0.39	0.39	0.39
		3.95 p1.61q 4.96 p1.83q 1.36 p0.71q 1.52 p1.09q 9.85 p3.95q 9.65 p3.92q 4.27 p1.61q 5.41 p1.45q
	(iii)	18.96	15.39	22.33	21.93	13.42	11.20	16.59	13.60
		1.19	1.18	1.17	1.18	0.28	0.30	0.29	0.30
		1.60 p1.05q 1.38 p0.83q 0.49 p0.27q 0.45 p0.24q 5.10 p4.12q 4.53 p3.69q 1.46 p0.78q 1.41 p0.58q
	(vi)	12.71	10.41	13.11	12.74	10.45	8.87	10.65	9.39
		1.88	1.89	1.90	1.90	0.48	0.48	0.48	0.47

)

  Then, for p b pdq given in (13), we can write p h d p xq " ´p h d px ´nq, . . . , p h d px n´1 q ¯t " Φ d p b pdq and Π d h " Er p h d p xqs.

	Setting P p xq " Φ d pΦ t d Φ d q ´1Φ t d , we have } p h d ´Πd h} 2 n " }P p xq ε} 2 n " Er ε t P p xq εs " E " ÿ ε Moreover, it yields T n ´nďi,kďn´1

t P p xq t P p xq ε " T n ε t P p xq ε.

  xh, ϕ d´1 yq t ´pΦ t d Φ d q ´1Φ t d phpx ´nq, . . . , hpx n qq t › › 2 R d . Now, we remark that ph d px ´nq, . . . , h d px n´1 qq t " xh, ϕ k y pϕ k px ´nq, . . . , ϕ k px n´1 qq t " Φ d pxh, ϕ 0 y, . . . , xh, ϕ d´1 yq t and therefore, pΦ t d Φ d q ´1Φ t d ph d px ´nq, . . . , h d px n´1 qq t " pxh, ϕ 0 y, . . . , xh, ϕ d´1 yq t .

	d´1
	ÿ
	k"0
	Thus, it follows

  Schwarz inequalities and Parseval equality, we obtain }f m ´Er r f m s} 2 ď 2Σpmq}hÉ r p h m s} 2 . For m ă m 1 , we have }f 1 m ´fm } 2 ď }f ´fm } 2 . Consequently, it holds

	Moreover, it yields									
	}f m ´Er r f m s} 2 "	1 2π	ÿ j"0 ˇˇˇˇm ´1	ż	g ˚puq h ˚puq ´Erh mpuqs	ϕ j puqdu ˇˇˇˇ2	
	ď	1 π	ˇˇˇˇm ´1 ÿ j"0	ż |u|ď ? ρm	h ˚puq ´Erh mpuqs g ˚puq	ϕ j puqdu ˇˇˇˇ2 `1 π	ÿ j"0 ˇˇˇˇm ´1	ż |u|ą	? ρm	g ˚puq h ˚puq ´Erh mpuqs	ϕ j puqdu ˇˇˇˇ2
	From Bessel, the Cauchy-p Bpmq ď3 max						

  " pypx ´nq, . . . , ypx n´1 qq t with ypx i q " hpx i q `ξi , here and only for the study of n E

	Upper bound for n E	" sup tPS d ,}t}"1 |ν n ptq| 2 p2q	ı	. For t P S d , we remark that
	ν p2q n ptq "	1 2π	T n	ż ? 2d ´?2d	ř d´1 j"0	" Ψ ´1 d Φ t d ξ g ˚puq	ı j	ϕ j puq	t ˚p´uqdu "	1 2π	ż ? 2d ´?2d	ȟd puq ´Er ȟd puqs g ˚puq	t ˚p´uqdu,
	where (see Equation (13)) ȟd "	ř d´1 j"0	bpdq j ϕ j , bpdq " p bpdq 0 , . . . ,	bpdq d´1 q t " pΦ t d Φ d q ´1Φ t d y " T n Ψ ´1 d Φ t d y, y " sup tPS d ,}t}"1 |ν p2q n ptq| 2	ı	.
	It comes that												
					E	«	sup	|ν p2q n ptq| 2	ff	ď }t} 2 ∆p ?	2dq E	"	} ȟd ´Er ȟd s} 2 ‰	.
						tPS d ,}t}"1				
	The bounds obtained for p h d extend to ȟd . Then, it yields from (48) (with σ 2 ε replaced by Erξ 2 1 s) and under pA0q that E " sup tPS d ,}t}"1 |ν p2q n ptq| 2 ı ď ∆p ? 2dqλd Erξ 2 1 s T n . By the Cauchy-Schwarz inequality, we have
							Erξ					

  Talagrand inequality given in Appendix C.2. Let us first compute the three constants H 2 , M 1 and v.

		A.1 with p " 4 and choosing
	(65)												k n " 2	?	2b a logpnq,
	we get											
	(66)		n E	« tPS d ,}t}"1 sup	|ν p2q n ptq| 2	ff	ď n∆p ?	2dqλd b	Erε 4 1 s a Pp|ε 1 | ě k n q	T n	ď	C n	,
	since ∆p ?	2dqλdT À n by definition of M	p1q n .
									"		
	Upper bound for	ř	dPM p1q n	E	´sup tPS d ,}t}"1 |ν n ptq| 2 ´κ1 p1q 12 V pdq ¯`	. We bound this term applying the
	Computing of H 2 . Similarly to the study of E	" sup tPS d ,}t}"1 |ν n ptq| 2 p2q	ı , we have under pA0q and from
	(48),											
			E	« tPS d ,}t}"1 sup	|ν p1q n ptq| 2	ff	ď λ Erζ 2 1 s∆p	? 2dq	dT n	ď λσ 2 ε ∆p	?	2dq	dT n	:" H 2 .
	Computing of v. For t P S d , it holds by the Cauchy-Schwarz inequality, Erζ 2 1 s ď σ 2 ε and as }t} 2 " 1,
		1 2n	n´1 ÿ i"´n	Varpα t,d,i pζ i qq "	2n 1	n´1

Table 4 .

 4 The Cauchy Schwarz inequality implies ρm p¨q `ş|¨|ą ? ρm p¨q, using Bessel, the Cauchy Schwarz inequalities and Parseval equality, we derive |ν p2q n psq| ď 2} hm ´Er hm s} 2 Σpmq. Recall that the bounds obtained for p h m remain valid for hm . In particular, it holds from (48) with Erξ 2 1 s plays the role of σ 2 ε and under pA0q, E Next, by the Cauchy Schwarz inequality and as ε 1 is sub-Gaussian, we derive from Lemma A.1 We apply the Talagrand inequality given in Appendix C.2. We must compute three constant H 2 , M 1 and v. Computing H 2 . Analogously to the study of n E Computing of v. For all s P S m , we have by the Cauchy-Schwarz inequality, Erζ 2 1 s ď σ 2 ε , as ϕ j " First line: Matrix norm of A´I d with A " Ψ d without parentheses and A " Ψ ´1 d in parentheses for T " ? 2d ´1. Second line: values of d with T in parentheses. 1{2 s 9.19e-16 ( 9.19e-16) 2.03e-15 (2.14e-15) 9.57e-11 (9.57e-11) rn 1{3 s 5.02e-16 (5.15e-16) 6.07e-16 (6.07e-16) 4.84e-16 (4.84e-16) rn 1{4 s 7.29e-16 (8.40e-16) 5.00e-16 (5.00e-16) 3.45e-16 (3.45e-16) 

			|ν p2q n psq| ď	1 4π 2 }s} 2	› › › › ›	m´1 ÿ j"0 x	hm ´Er hm s g ˚, ϕ j yϕ j	› › › › › 2	"	1 π	m´1 ÿ j"0	ˇˇˇˇx hm ´Er hm s g ˚, ϕ j y ˇˇˇˇ2 .
	Splitting	ş	R p.q "	ş	|¨|ď ?			
	" } hm ´Er hm s} 2	ı	ď λm Erξ 2 1 s T n , which implies E	" sup sPSm,}s}"1 |ν n psq| 2 p2q	ı	ď 2Σpmqλm Erξ 2 1 s T n ď	Erξ 2 1 s σ 2 ε
	since 2Σpmqλm T n ď 1 σ 2 ε		by definition of M
						Erξ 2 1 s " Erε 2 1 1 |ε 1 |ěkn s ď	b Erε 4 1 s a Pp|ε 1 | ě k n q ď 4	?	2b 2 e	´k2 n 4b 2 ,
	where b ą 0 is a constant given in pA5q. Choosing
	(69)										k n " 2b ?	2 logpnq,
	we deduce								
											«	ff
	(70)										n E	sup sPSm,}s}"1	|ν p2q n psq| 2	ď	C n	.
								"		
	Bounding of	ř mPM p2q n	E	´sup sPSm,}s}"1 |ν n psq| 2 ´κ1 1 p1q 12 W pmq ¯` . " sup sPSm,}s}"1 |ν p2q n psq| 2	ı , we derive under pA0q and as
	Erζ 2 1 s ď σ 2 ε								
										«	ff
									E	sup sPSm,}s}"1	|ν p1q n psq| 2	ď 2Σpmqλmσ 2 ε	T n	:" H 2 .

p2q

n .

Table 5 .

 5 Matrix norm of A ´Id with A " Ψ d without parentheses and A " Ψ ´1 d in parentheses for T " 10.Proof of Lemma B.1. We prove the result only for the particular norm defined in (73) but the result is valid for any matrix norm since we are in finite dimension. The general term of pΨ d ´Id q is j piT {nqϕ k piT {nq ´ż T ´T ϕ j puqϕ k puqdu ´ż|u|ěT ϕ j puqϕ k puqdu. j piT {nqϕ k piT {nq ´ż T ´T ϕ j puqϕ k puqdu ˇˇˇˇď }pϕ j ϕ k q 1 } 8

	ˆT n	Φ T d Φ d ´Id	˙j,k	"	˜T n
	Using Lemma B.2, we get			
	ˇˇˇˇT n	n´1 ÿ i"´n						T 2 n	ď φ 0 d	5 12	T 2 n	.
	From (7) and as T ě	?	2d ´1, we have
	ż							ż	ż
	|	ϕ j pxqϕ k pxqdx| ď	|ϕ j pxqϕ k pxq|dx ď C 12 8 e ´ξT 2	e ´ξx 2 dx ď C 1 e ´ξT 2 ,
	|x|ěT						|x|ěT
	where C 1 is a positive constant since	ş	e ´ξx 2 dx ă `8. It comes
								"
	(74)					~Ψd ´Id ~1 ď d	C 1 e ´ξT 2	`φ0 d	5 12

n ÿ i"´n ϕ j piT {nqϕ k piT {nq ´ż ϕ j puqϕ k puqdu ¸0ďj,kďd´1 For 0 ď j, k ď d ´1, we write T n n´1 ÿ i"´n ϕ j piT {nqϕ k piT {nq ´ż ϕ j puqϕ k puqdu " T n n´1 ÿ i"´n ϕ ϕ
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where ψpxq " p ř jěd a j phqϕ j pxqq 2 . Using ( 5), ( 8) and the Cauchy-Schwarz inequality, we have for h P W α H pLq that ÿ jěd a j phqϕ 1 j pxq ď ¨ÿ jěd j α |a j phq| 2 '1 2 ¨ÿ jěd j ´α`5 6 '1 2 À ´d´α`5 6 `1¯1

2 " d ´α 2 `11

12 , provided ´α`5{6`1 ă 0, that is α ą 11{6. Then, ψ is differentiable and ψ 1 pxq " 2 ř jěd a j phqϕ 1 j pxq ř jěd a j phqϕ j pxq. Again, using (5) and the Cauchy-Schwarz inequality, we have for h P W α H pLq that ÿ jěd |a j phqϕ j pxq| ď

Consequently, it follows for α ą 11{6 that T n ř n´1 i"´n ph d px i q ´hpx i qq 2 ´şT ´T ph ´hd q 2 puqdu ď C T 2 n and therefore }h ´hd } 2 n ď Cpα, Lq T 2 n `}h ´hd } 2 . This gives the part (i).

Proof of part (ii). Let us start by writing

Under pA0q, we obtain sup

For δ ą 0, the Talagrand inequality gives,

where

As T d∆p ? 2dq À n, then, it yields ř

With this choice of δ and k n given by (65), we derive Cpδq " 1 and

Finally, it holds for κ 1 ě 12 that

Plugging this and ( 66) in ( 64) concludes the proof.

Proof of Lemma A.1. Let us prove the first bound. Using the Markov inequality, we have for any t, s ą 0

where the last bound is obtained using the fact that ε 1 is b-sub-Gaussian. The above inequality holds for any t ą 0, then, for the t which minimizes the bound. Set rptq " b 2 t 2 2 ´st, we have r 1 ptq " 0 in t " s{b 2 and r 2 ptq ą 0 for any t ą 0. It follows that t " s{b 2 is the minimizer of rptq and inf tě0 rptq " ´s2 {p2b 2 q and then, Ppε 1 ą sq ď e 

?

2πpiq j ϕ j (see ( 6)) and }s} 2 " 1 1 2n

ρm p¨q `ş|¨|ą ? ρm p¨q, the Bessel and Cauchy-Schwarz inequalities, ϕ j " ? 2πpiq j ϕ j , it yields

which implies 1 2n

By definition of Frobenius norm, it holds under pA0q

Therefore, we get sup sPSm,}s}"1

Computing M 1 . Using the Cauchy-Schwarz inequality, (6) and from (71), it holds sup sPSm,}s}"1

, .

-.

Under pA0q and from (67), we derive sup sPSm,}s}"1

Applying the Talagrand inequality, we have for all δ ą 0,

- T pmq ď C{n. From this choice of δ and k n given in (65), we deduce from pA1q

Consequently, we get for κ 1 1 ě 12

Plugging this and ( 70) in ( 68) ends the proof.

Appendix B. Study of trpΨ d q and discussion on Assumption pA0q

In this section, T depends on d. 0.

Thus, for n large enough pA0q holds and is not a strong condition.

In Table 4 and 5, we report the matrix norm of Ψ d ´Id and Ψ ´1 d ´Id for

Comment on Table 4 and5. Globally, we see that increasing n makes the norm smaller but on the other hand the increase of d increases the norm. This is in accordance with the theory. Indeed in (72), we observe that for d large enough, it is the second term that determines the precision of these two norms.

The increase with d of the norms is thus excepted. The results of Table 5 are better than those of Table 4. This is due to the choice T " 10 larger than T " ? 2d ´1 for the choices of n et d given in 

(ii) For ψ be a function of class C 2 on r´T, T s, ˇˇˇˇT

Proof of Lemma B.2. These proof are very classic when we approximate an integral by Rieman's sum.

Proof of part (i). By Chasles's relation, it yields

On the other hand, we write

Then, we have by the mean value theorem that ˇˇˇˇT

Proof of part (ii). Define the Lagrangian interpolation polynomial of ψ by ψ i pxq " ψpx i q `ψpx i`1 q ´ψpx i q x i`1 ´xi px ´xi q.

This linear function coincide with ψ for x P tx i , x i`1 u. We first remark that:

Then, it follows that ˇˇˇˇT

Now, we look for a bound of ş x i`1

x i |ψ i pxq ´ψpxq|dx for all x P R. We introduce the following function for fixed x on rx i , x i`1 s φptq " ψptq ´ψi ptq ´pt ´xi qpt ´xi`1 q px ´xi qpx ´xi`1 q pψpxq ´ψi pxqq

Appendix C. Some inequalities

The proof of the following Theorem can be found in [START_REF] Stewart | Matrix perturbation theory[END_REF].

Theorem C.1. Let A and E be two square matrices. If A is nonsingular and for some norm }A ´1E} ă 1, then we have }pA `Eq ´1 ´A´1 } ď }A} 2 }E} 1 ´}A ´1}}E} , Theorem C.2 (Talagrand's inequality). Let pX i q ´nďiďn´1 be independent real random variables, F a class at most countable of measurable functions.

ν n psq " 1 2n n´1 ÿ i"´n pspX i q ´ErspX i qsq, @s P F.

We assume there exist third strictly positive constants M 1 , H, v such that: Cpδq " p ? 1 `δ ´1q ^1, K 1 " 1{3 and K 1 1 a universal constant. The Talagrand inequalities has been proven in [START_REF] Talagrand | New concentration inequalities in product spaces[END_REF], reworded by [START_REF] Ledoux | On Talagrand's deviation inequalities for product measures[END_REF]. This version is given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF].