
HAL Id: hal-03517593
https://hal.science/hal-03517593

Submitted on 16 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Aortic arch anatomy characterization from MRA: A
CNN-based segmentation approach

Mounir Lahlouh, Yasmina Chenoune, Raphaël Blanc, Jérome Szewczyk,
Nicolas Passat

To cite this version:
Mounir Lahlouh, Yasmina Chenoune, Raphaël Blanc, Jérome Szewczyk, Nicolas Passat. Aortic arch
anatomy characterization from MRA: A CNN-based segmentation approach. International Symposium
on Biomedical Imaging (ISBI), 2022, Kolkata, India. pp.1-5, �10.1109/ISBI52829.2022.9761708�. �hal-
03517593�

https://hal.science/hal-03517593
https://hal.archives-ouvertes.fr


AORTIC ARCH ANATOMY CHARACTERIZATION FROM MRA:
A CNN-BASED SEGMENTATION APPROACH

Mounir Lahlouh1,2,3, Yasmina Chenoune2,4, Raphaël Blanc3,5, Jérôme Szewczyk3,6, Nicolas Passat1

1 CReSTIC, Université de Reims Champagne Ardenne, Reims, France
2 ESME Sudria Research Lab, Paris, France

3 Basecamp Vascular, Paris, France
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ABSTRACT

Neurovascular pathologies are often treated with the help of imag-
ing to guide catheters inside arteries. However, positioning a micro-
catheter into the aortic arch and threading it through blood vessels for
embolization, mechanical thrombectomy or stenting is a challenging
task. Indeed, adverse aortic arch anatomies are frequently encoun-
tered, especially when the aortic arch is dilated, or the supra-aortic
branches are elongated and tortuous. In this article, we propose a
pipeline using convolutional neural networks for the segmentation of
the aortic arch from magnetic resonance images for further anatomy
classification purpose. This pipeline is composed of two successive
modules, dedicated to the localization and the accurate segmentation
of the aortic arch and the origin of supra-aortic branches, respec-
tively. These segmentations are then used to generate 3D models
from which the anatomy and the type of the aortic arches can be
characterized. A quantitative evaluation of this approach, carried
out on various U-Net architectures and different optimizers, leads to
satisfactory segmentation results, then allowing a reliable character-
ization.

Index Terms— Aortic arch, segmentation, characterization, U-
Net, magnetic resonance angiography, endovascular therapy.

1. INTRODUCTION

Neurovascular diseases are mainly treated by endovascular proce-
dures such as embolization, mechanical thrombectomy or stenting.
However, the tools used by physicians are not always maneuver-
able and intuitive. Thus, to choose the catheter best fitting the pa-
tient’s morphology and to anticipate the neuroradiologist gesture, an
anatomical study of the vessels is essential, especially at the level of
the aortic arch, due to its interpatient anatomical variability.

The aortic arch is a complex structure, which has been the sub-
ject of several studies aiming to characterize and classify its anatomy
according to different criteria. To this end, Madhwal’s classification
[1], according to [2], appears to be easier to reproduce and provides
relevant clinical outcomes. Besides, it is less frequently influenced
by pathological derangements of the aortic wall such as aneurysms
compared to Casserly’s classification [3]. In Madhwal’s classifica-
tion (Fig. 1), the comparison between the diameter of the left com-
mon carotid artery (CCA) and the vertical distance from the top of
the aortic arch to the origin of the brachiocephalic branch (BCA) de-
termines the arch type. This leads to the definition of three types (I,

Fig. 1. Aortic arch anatomy classification [1]. Type I: the distance
from the top of the aortic arch to the origin of the BCA is lower than
CCA diameter. Type II: the distance is between 1 and 2 times CCA
diameter. Type III: the distance is more than 2 times CCA diameter.

II and III) that constitute an anatomical standard according to many
contemporary guidelines on thoracic aortic repairing [4, 5].

In Madhwal’s classification, each type of arch has its own
anatomical and biomechanical characteristics that have clinical im-
plications in the prevalence of neurovascular diseases. For instance,
the type III aortic arch is characterized by an increase in angulation
and tortuosity of supra-aortic branches. As a consequence, it was
shown that type III arch is strongly correlated with the risk of type
B aortic dissection and type B intramural hematoma [6].

The arch anatomy plays a major role in predicting the success of
endovascular procedures but the studies on the impact of aortic arch
types on procedural complexity and outcomes are recent. For ex-
ample, in carotid artery stenting (CAS), catheter manipulation time
(CMT) is significantly influenced by the aortic arch type. Therefore,
patients with type III arch have a longer CMT compared to type I or
type II [7] which increases the risk for adverse outcome. Type III
arches are also associated with more difficulties and complications
in CAS procedures [8]. Identifying the type of aortic arch before
endovascular procedures is then crucial since it provides informa-
tion on the complexity of navigation to the pathological area, and
can help physicians to better plan procedures and choose the most
appropriate catheter.

Several works have been proposed for the segmentation of the
aorta in which different approaches were used to better capture its
angioarchitecture. An atlas-based method combined with registra-
tion technique was applied for aorta segmentation in computed to-
mography (CT) scans [9]. In [10] a multi-atlas approach was consid-
ered to localize abdominal organs including the abdominal aorta in
CT scans before feeding a 3D convolutional neural network (CNN)



Fig. 2. The proposed CNN-based pipeline consists of two modules: the first for localizing, recentering, and cropping volumes around the
aortic arch (U-Net 1), the second for the segmentation of the arch and the beginnings of supra-aortic branches (U-Net 2).

for organs segmentation. Multi-view 2D CNN approaches were also
applied for multipart segmentation of the aorta. An automatic seg-
mentation of the ascending aorta, the aortic arch, and the descending
aorta in low-dose chest CT scans was proposed using dilated CNN
[11]. It aggregates the classification of voxels in axial, sagittal, and
coronal CT slices. The same idea has been used in [12] for the seg-
mentation of the aortic lumen from the ascending aorta to the iliac
arteries. In this study, a CNN-based pipeline localizes the aorta in
CT scans before carrying out its segmentation. The paradigm of
combining localization with segmentation has also been used in [13]
for aorta segmentation from CT cardiac angiography using U-Net
architectures. In the context of detection and diagnosis of abdominal
aortic aneurysm, in [14] a classifier using CNN on aorta CT angiog-
raphy patches aims to detect the aorta, before carrying out diame-
ter estimation. In [15], a CT angiography multi-stage segmentation
pipeline of type B aortic dissection was proposed. In this study, two
cascaded CNNs were used, the first for the segmentation of aortic
branches and the second for the segmentation of the true and false
lumen of the type B aortic dissection.

To the best of our knowledge and despite the importance of aor-
tic arch anatomical typology, none of the approaches involving deep
neural architectures in aorta segmentation procedures have proposed
an automated pipeline aiming to characterize the aortic arch in its
three categories. In addition, the segmentation methods proposed in
the literature only deal with CT images, which are easier to anal-
yse than Magnetic Resonance Angiographic (MRA) images. How-
ever, MRAs are important in our context, since many French health-
care institutions treat patients in the acute phase of stroke with MRA
modality. In this article, we tackle this issue, by proposing a CNN-
based pipeline composed of two modules relying on U-Net models
[16]: one for localizing and cropping MRA volumes around the aor-
tic arch and the origins of the supra-aortic branches, the other for the
vascular structures segmentation from the cropped area. Different
U-Net architectures are investigated and we also assess the perfor-
mance of a new adaptive optimizer, namely AdaBelief [17], versus
other standard optimizers.

This article is organized as follows. The proposed CNN pipeline
and its settings are described in Sec. 2. The results are presented and

discussed in Sec. 3. Conclusions and perspectives are given in Sec. 4.

2. MATERIAL AND METHOD

2.1. Data acquisition and preprocessing

A dataset1 of 27 MRA volumes was collected. They were obtained
from patients between 31 and 95 years old (avg. 72 years, 59%/41%
of male/female).

Patients underwent 3T MR exams on Philips imaging sys-
tem (Ingenia 3T, Best, The Netherlands) using a 16 channels head
coil. All examinations included a contrast enhanced MRA of aortic
arch, supra-aortic trunks and intracranial vessels using the follow-
ing parameters: coronal plane covering: 250 slices; active TR/TE
= 5.5/2.2 ms; flip angle = 27◦; number of excitations = 1; ac-
quisition bandwidth = 476.7 Hz; FOV = 380 × 321; voxel size =
0.5 × 0.5 × 1.0 mm (with further interpolation, see below). The
imaging time was 69 sec. Bolus track injection technique was used
to time the start of data acquisition.

Aortic arch types of these volumes were assigned by experi-
enced neuroradiologists. Types II or III were observed in 18.5%
of patients, respectively compared to 63% of type I.

The whole dataset is not fully homogeneous. Most of the MRA
volumes have a resolution of 0.495 × 0.495 × 0.500 mm after in-
terpolation. This can be problematic for automatic analysis using
deep learning architectures. To deal with this issue, we resampled
the whole dataset using spline interpolation to an isotropic resolu-
tion of 1 × 1 × 1 mm, leading to coronal slices of size 256 × 256.
MRA volumes intensities were also normalized (mean and standard
deviation values) in order to provide comparable data.

2.2. Data labeling and augmentation

The aortic arch and supra-aortic branches in MRA volumes were 3D
modeled with Materialise Mimics software2. The generated STL

1This dataset is private. It was provided by the Department of Neuroradi-
ology of the Adolphe de Rothschild Foundation Hospital, Paris, France.

2https://www.materialise.com/medical/mimics-innovation-suite/mimics



meshes, were manually corrected and validated by neuroradiolo-
gists. Coronal slices were then extracted from these labeled data
and automatically overlapped on the patients’ DICOM volumes us-
ing 3D Slicer software3. Two sets of ground-truth binary masks were
then created: one for the aortic arch only and another for the whole
aorta (aortic arch and supra-aortic branches).

The two sets of ground-truths and the MRA volumes were orga-
nized into 2D slices (6 849 images) to feed the CNN-based pipeline.
Twenty patients were used for training the CNNs, two for the vali-
dation set and five for the test set.

To avoid overfitting and improve generalization, we augmented
our dataset using random operations (rotations, translations and
rescalings) during the training and validation phases in order to
enlarge the set of examples handled by the CNNs.

2.3. CNN-based segmentation pipeline

The proposed pipeline consists of two modules (Fig. 2) based on
U-Net-like architectures that have proven their success in medical
image segmentation where the amount of data is small. The first
module aims at localizing the aortic arch in the initial (256 × 256)
images, in order to determine cropped (128× 128) images focusing
on it. To reach that goal, we rely on the ground-truths of the only
aortic arches associated with patients’ MRA slices to feed a standard
U-Net. As this first network carries out a localization task via a
rough segmentation of the aortic arch; this segmentation does not
need to be fully accurate. The segmentation output is post-processed
(smoothing, hole filling, area filtering), and a cuboid is defined as the
bounding box of the resulting segmentation. This cuboid is dilated
by 25 pixels in the coronal slices to generate a volume centered on
the aortic arch. This volume then allows to define cropped coronal
slices of dimension 128 × 128 that can be involved in the second
segmentation module.

This second module aims to carry out a fine segmentation of the
cropped images. To reach that goal, we also use the second ground-
truth that contains the entire aorta (arch plus supra-aortic branches).
Both ground-truths and the cropped 128× 128 MRA slices are used
to feed a second U-Net-like architecture for the segmentation of the
aortic arch and the beginnings of supra-aortic branches. By con-
trast with the first module, where a standard U-Net architecture was
sufficient to obtain a segmentation used for localization purpose, in
this second module, the segmentation needs to be fully accurate.
As a consequence, various architectures building upon the U-Net
paradigm can be considered (see Sec. 3).

To summarize, each new patient goes through the U-Net local-
ization network to have the volumes of interest containing only the
arches and the beginnings of supra-aortic branches. Then, these vol-
umes of interest pass through the U-Net segmentation module in or-
der to obtain a binary segmentation. More precisely, an STL mesh
is obtained by stacking the 2D segmented slices. These 3D models
are post-processed (smoothing, hole filling, removing isolated vox-
els). They constitute the input for a further geometric characteriza-
tion of aortic arches developed under the Vascular Modeling Toolkit
(VMTK)4. In particular, centerlines, takeoff angles and aortic arch
type can be easily extracted from such 3D models.

2.4. Experimental settings

Our experiments were performed on an NVIDIA GeForce RTX 3090
(24 GB) graphic card with CUDA compute capability (V11.3), un-

3https://www.slicer.org
4http://www.vmtk.org

Table 1. Segmentation results of the first module (localization, crop-
ping) with different optimizers (values given in %).

Optimizer Metrics Train Validation Test

SGD

DSC 90.02 62.74 81.51
IOU 84.93 53.63 75.93
Prec. 96.18 62.91 82.96
Rec. 83.37 59.71 88.59

Adam

DSC 97.92 87.48 88.11
IOU 96.73 81.94 83.79
Prec. 98.54 87.56 94.58
Rec. 97.32 88.93 88.07

AdaBelief

DSC 97.45 86.69 89.65
IOU 96.12 80.98 85.75
Prec. 98.45 84.49 93.75
Rec. 97.16 87.99 91.08

der Windows 10 operating system. The CNN-based pipeline was
developed using Python and the deep learning models were imple-
mented in Keras based on Tensorflow GPU support5. The evaluation
of the models was done by calculating the following metrics: Dice
Similarity Coefficient (DSC), Jaccard coefficient (IOU), precision
(Prec.), and recall (Rec.).

To train the models, different optimizers were used. We assessed
the performance of the new AdaBelief optimizer [17] versus Adam
[18] and the Stochastic Descent Gradient (SGD) [19]. A learning
rate of 10−4 decreasing by a factor of 0.9 with patience value set to
5 epochs if no improvement was noticed on DSC of the validation
set. A batch size of 8 and 32 slices randomly sampled was provided
for the localization and the segmentation CNNs, respectively. The
slices in each batch for each iteration were augmented on the fly for
the training and validation phases. The training process was stopped
after 20 epochs if no improvement was noticed on DSC of the vali-
dation set.

The dataset suffers from the usual class imbalance problem.
This can significantly alter the optimization if the considered loss
function does not take into account this lack of equilibrium. For
these reasons, we focused on the Focal Tversky (FT) loss [20] and
its combination with binary cross-entropy (CE) for the segmentation
of small structures and imbalanced datasets. We have:

FT =
∑
c

(
1−

∑
i picgic + ε∑

i picgic + α
∑
i picgic + β

∑
i picgic + ε

)1/γ
with c the two classes; i the pixels; 0 < ε � 1; gic = 1 (resp.
0) if i ∈ c (resp. /∈ c); pic ∈ [0, 1] the prediction of i ∈ c. The
α and β parameters handle the trade-off between false positives and
false negatives; γ ∈ [1, 3] is the focal parameter. Based on our
experiments, we set α = 0.4, β = 0.6, γ = 4/3.

Since the aim of the first CNN in the pipeline is to localize the
aortic arches, a precise segmentation is not required. Thus, we only
used the standard U-Net model from [16]. By contrast, the second
CNN model has to carry out an accurate segmentation of the aortic
arches and the beginnings of supra-aortic branches. In this context,
different variants of U-Net architectures were investigated to eval-
uate their effectiveness for this task. In particular, we considered
the Attention U-Net [21] and Inception U-Net [22] architectures, in
addition to the standard U-Net.

5All results and developments described in this article are the property of
Basecamp Vascular and fall within the scope of its research and development
needs.



Table 2. Segmentation results of the second module (fine segmentation) with different U-Net-like architectures and optimizers.
Model Optimizer Train (%) Validation (%) Test (%)

DSC IOU Prec. Rec. DSC IOU Prec. Rec. DSC IOU Prec. Rec.

U-Net
SGD 31.50 21.26 53.74 39.86 35.46 23.33 39.83 43.86 34.96 25.00 27.85 97.21
Adam 94.21 91.55 96.76 94.95 75.66 67.96 82.59 83.03 82.95 75.96 73.48 94.65
AdaBelief 95.40 92.86 97.06 95.29 77.15 68.80 84.10 72.99 85.15 79.00 78.77 91.93

Attent. U-Net
SGD 61.80 56.02 90.73 83.61 41.16 34.79 79.49 58.05 80.14 72.29 76.84 85.73
Adam 95.27 92.79 97.33 95.35 76.82 67.70 83.00 74.51 83.78 77.15 79.24 90.69
AdaBelief 94.78 92.12 97.02 94.96 78.47 70.03 84.73 76.09 84.05 77.33 79.24 91.05

Incept. U-Net
SGD 76.54 73.37 96.34 93.72 56.63 48.66 81.34 71.43 79.25 71.33 71.09 92.56
Adam 87.03 84.65 97.28 95.74 77.80 70.46 87.87 81.31 87.73 82.11 82.84 93.86
AdaBelief 93.28 91.21 97.68 96.39 80.91 73.59 88.50 79.98 88.07 82.56 84.10 93.80

3. RESULTS AND DISCUSSION

Experiments for both localization and segmentation modules were
carried out and the different models were run during 150 epochs.
We report the mean of each evaluation metric (DSC, IOU, Prec. and
Rec.) for 3 runs with random initialization for each optimizer.

Regarding the first module (localization), the standard U-Net
model [16] with different optimizers was trained. The obtained
results are summarized in Tab. 1. The best scores for the test set
were achieved using AdaBelief and Adam optimizers with a slight
advantage to the first one. In particular, AdaBelief achieves a DSC
of 89.65% and an IOU of 85.75% with respect to the ground-truth
provided by experts. We also notice a reduction in the differ-
ence between precision and recall when using AdaBelief optimizer
(|Prec.−Rec.| = 2.67%) compared to SGD and Adam.

Regarding the second module (segmentation), that requires a
higher accuracy, we tested 3 architectures: U-Net [16], Attention U-
Net [21] and Inception U-Net [22] with the same optimizers as the
previous experiment. Results are summarized in Tab 2. The training
of the Inception U-Net with the AdaBelief optimizer achieved the
best DSC (88.07%) and IOU (82.56%), and also the best precision.
This combination also minimizes the gap between precision and re-
call on the test set. Attention U-Net showed promising results with
a DSC of 84.05%. The use of attention gates, that perform features
selectivity, and inception blocks, that increase the depth of the U-Net
network, seems to improve generalization ability.

In [17] it is claimed that AdaBelief achieves three goals: gen-
eralization, fast convergence, and training stability. In our segmen-
tation problem, AdaBelief actually generalizes better than the other
tested optimizers, whatever the architecture used. The results ob-
tained with Inception U-Net + AdaBelief are exemplified in Fig. 3.

The predicted binary masks generated as output of our pipeline
were used for the reconstruction of 3D models as illustrated in Fig. 4.
These 3D models contain both the aortic arch and the beginnings of
supra-aortic branches (BCA and CCA arteries). From such model,
Madhwal’s classification rules can be easily applied to determine the
arch type. Using the VMTK library, the BCA and CCA arteries are
determined so that the vertical distance from the top of the aortic
arch to the origin of the brachiocephalic branch (BCA) can be com-
pared to the diameter of the left common carotid artery (CCA). Other
characteristics (bifurcation angles, centerlines) can be also extracted.

4. CONCLUSION AND PERSPECTIVES

In order to automatically characterize the aortic arch from MRA vol-
umes, we proposed a CNN-based pipeline composed of two mod-
ules: localization and segmentation of the aortic arches and the ori-

Fig. 3. First row: MRA slices (coronal view). Second row: ground-
truth segmentation. Third row: segmentation results obtained with
our pipeline (Inception U-Net + AdaBelief).

Fig. 4. 3D model (left) and centerlines (right) of an aortic arch with
the origins of supra-aortic branches generated from the proposed
CNN-based pipeline.

gins of supra-aortic branches. The best results were achieved with
the AdaBelief optimizer using the Inception U-Net architecture. The
binary masks predicted are quite similar to the ground-truth validated
by neuroradiologists. These binary masks are then used to construct
3D models of the aortic arch that can be easily involved for character-
ization purpose, which is essential in interventional neuroradiology.

This work could be improved by increasing our dataset size,
enhancing the tested models or investigating variants like UNet++
or TransUNet for a better generalization. This approach could also
be extended beyond the aortic arch characterization. Indeed, this
pipeline could be improved to provide a complete segmentation of
the supra-aortic branches so that other factors such as tortuosity and
angulations of supra-aortic branches could be calculated.
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