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Abstract

Copper  loaded  η-alumina  catalysts  with  different  copper  contents  were  prepared  by

impregnation/evaporation method. The catalysts were characterized by XRD, FTIR, BET, UV–

vis, H2-TPR and evaluated, for the first time, in the selective catalytic reduction of NO by NH3

and in the selective catalytic oxidation of NH3. The characterization techniques showed that the

impregnation/evaporation method permits to obtain highly dispersed copper oxide species on the

η-alumina  surface  when  low  amount  of  copper  is  used  (1wt.  %  and  2  wt.%).  The  wet

impregnation method made it possible to reach a well dispersion of the copper species!on the

surface  of  the  alumina  for  the  low copper  contents  Cu(1)-Al2O3 and  Cu(2)-Al2O3.  The latter

justifies the similar behavior of Cu(1)-Al2O3) and Cu(2)-Al2O3 in the selective catalytic oxidation

of NH3 where these catalysts exhibit a conversion of NH3 to N2 of the order of 100% at T> 500

°C. 

Keywords: Cu/η-Al2O3; NH3-SCR; NH3-SCO; H2-TPR; TEM
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1 Introduction

The selective catalytic reduction (SCR) of NO by ammonia in the presence of excess oxygen is

considered a mature technology for the removal of NO from stationary sources (Forzatti, 2001;

Usberti et al.  2015). Moreover, this technology has been adapted for the modern diesel exhaust

after treatment system using urea as the ammonia precursor (urea-SCR) (Goldbach et al.,  2017;

Jung et al., 2017; Kröcher,  2018; Nova and Tronkoni,  2014; Piumetti et al.,  2015; Yuan et al.,

2015). This system contains besides the urea delivery device, a catalyst for the selective catalytic

reduction of NO with NH3 (NH3-SCR) combined with an ammonia slip catalyst (ASC) for the

selective catalytic oxidation of ammonia (NH3-SCO) (Piumetti et al., 2015; Walker, 2016). 

Vanadium-based  catalysts  (V-catalysts)  V2O5-WO3/TiO2 or  V2O5−MoO3/TiO2  are  widely

employed in stationary applications since the 1970s (Lai and Wachs, 2018). However, the major

drawbacks bounded to the toxicity of vanadium and its weaker activity at low temperature limit

the utilization of V-catalysts in automotive applications. Besides, some country regulations such

as USA forbid the use of V-catalysts for automotive applications. Therefore, Cu/Fe-exchanged

zeolites have been reported as alternative to vanadium-based catalysts because they are active and

N2 selective for the NH3-SCR (Boron et al., 2019; Villamaina et al., 2019; Xin et al., 2018) and

for the NH3-SCO (Jablonska, 2020). Among all the zeolite-catalysts, Cu/Fe-ZSM-5 and Fe/Cu-

BEA are the most extensively investigated in the past 30 years (Hamoud et al., 2019; Villamaina

et  al.,  2019;  Xin  et  al.,  2018).  Copper-based  zeolites  are  usually  more  active  in  the  low-

temperature  (<350°C) range while  iron-based zeolites  are  more active at  higher temperatures

(>350°C). Small-pore zeolite Cu-SSZ-13 has received great attention due to its higher activity

and selectivity at low temperatures and improved hydrothermal stability for diesel vehicles. (Gao

and Szanyi, 2018; Lambert, 2019; Shibata et al., 2019)  

On the other hand, noble metals (Pt, Pd, and Rh) supported on metal oxides have been studied

for the diesel exhaust after treatment system. Common metal oxides such as Al2O3, SiO2, CeO2,

TiO2, and ZrO2 are used as support materials for the diesel oxidation catalyst (Jablonska, 2015;
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Sun et al., 2019). Nevertheless, γ-Al2O3 due to its high surface area (100–200 m2/g) and its good

thermal stability is preferred to all other metal oxides (Kong et al., 2020; Panahi and Delahay,

2017). For instance, Pt-γ-Al2O3 is used in the diesel oxidation catalyst (DOC) and ammonia slip

catalyst (ASC) (svintsitskiy et al., 2020). The DOC oxidizes CO, unburnt hydrocarbons and NO

in the exhaust gas to CO2,  H2O and NO2, respectively. The ASC removed the excess of NH3 by

selective catalytic oxidation (SCO) with oxygen to N2 and H2O. Pt-γ-Al2O3 catalyst is considered

to be the most active for ammonia oxidation below 300 °C than the other noble metals (Pd, and

Rh). However, Pt-γ-Al2O3 catalyst has high selectivity towards N2O and NO over 300°C (Hansen

et al. 2017). The drawbacks of noble-metal catalysts motivate the vehicle manufacturers to reduce

their content or substitute them with cheaper Mn/Cu-based oxides catalysts (Damma et al., 2019).

Cu based systems are discussed more comprehensively in the review of (Jablonska and Palkovits,

2016). Among Cu based systems, CuO/Al2O3 catalyst has been proposed to substitute the noble

metal-based emission control catalysts in the NH3-SCR (Jeong et al., 1999; Kwak et al., 2012;

Xie et  al.,  2004) and NH3-SCO (Gang et al.,  1999;  Jablonska et  al.,  2018; Jablonska, 2015;

Strom et al., 2018). In the early research of (Il’chenko and Ivanovna 1976), CuO was found as

one of the most efficient oxide in selective ammonia oxidation into nitrogen and water vapour.

Further studies over  preoxidised polycrystalline copper foil proved that CuO is an active phase

for NH3-SCO (Mayer et al. 2003). However, due to unsatisfying selectivity to N2, further studies

concerning ammonia oxidation  were carried out over CuO supported e.g. on Al2O3 (Jones et al.,

2005). It should be mentioned that all cited studies have used γ-Al2O3 to support copper oxide. To

our  best  knowledge,  η-Al2O3 has  never  been  employed  as  support  for  the  preparation  of

CuO/Al2O3 catalysts for the NH3-SCR of NO and for the NH3-SCO. Gang et al., 1999 studied

supported CuO/γ-Al2O3 catalysts containing 5, 10 and 15 wt.% of copper . They found that the

best catalytic results in the NH3-SCO were obtained for the sample loaded with 10 wt.% of Cu

(90% of NH3 conversion with 97% selectivity to N2 at 300°C). This effect was explained by the
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formation of the surface CuAl2O4-like species, active in NH3-SCO, in the catalyst containing 10

wt.%  of  copper.  Liang  et  al.,  2012  obtained  similar  results  for  Cu(10%)/γ-Al2O3 catalysts

prepared by different copper precursors (nitrate, acetate and sulfate). They showed that a mixture

of CuO and CuAl2O4 species is formed on the various Cu(10%)/γ-Al2O3 catalysts. 

In our previous work (Jraba et al., 2018), we reported the preparation of  γ-Al2O3  and η-

Al2O3 with high surface areas using aluminum chips collected from metal manufacturing industry

as starting materials. η-Al2O3 and γ-Al2O3 were obtained by calcination at 500 °C of bayerite (α-

Al(OH)3) and pseudo-boehmite, respectively. γ-Al2O3 and η-Al2O3 are considered to be the most

important among other alumina’s due to their high specific surface area (200–500 m2/g) and acid-

base  properties.  The  two  alumina  polytypes  γ-Al2O3 and  η-Al2O3 have  the  same  non-

stoichiometric spinel structure. η-Al2O3 has a higher population of stronger Lewis acid sites and a

slightly higher activity than γ-Al2O3 as an acid catalyst (Jraba et al., 2018). On one hand, γ-Al2O3

counts for the most important industrial applications as adsorbents, catalysts and catalyst supports

but on the other hand the application of η-Al2O3 is rarely reported (Peintinger et al., 2014). The

literature  showed that  η-Al2O3 is  mostly  used  as  catalyst  in the  dehydration  of  methanol  to

Dimethyl Ether (DME) (Osman et al., 2017; Osman et al., 2018; Hoyong et al., 2017). Osman et

al.,  (2017) showed that loading  η-Al2O3  with 10 wt.% of silver  enhanced both surface Lewis

acidity and the hydrophobicity of the carrier.  Accordingly, they obtained a catalyst  with high

degree of activity and stability under steady-state conditions for the production of DME.  Le et

al., (2017) investigated the methanation of CO and CO2 using Ni catalysts supported by alumina

with  different  crystalline  phases  (α-Al2O3,  θ-Al2O3,  δ-Al2O3,  η-Al2O3,  γ-Al2O3,  and  κ-Al2O3).

Among these catalysts, Ni/θ-Al2O3 showed the highest activity for both CO and CO2 methanation.

Nikoofar  et  al.,  (2019)  published  a  review  which  describes  the  various  organic  reactions

promoted by nano alumina catalysts (η-Al2O3, γ-Al2O3, θ-Al2O3,..) relevant up to 2017.

Herein, CuO/ η-Al2O3 catalysts were prepared by impregnation/evaporation method using

copper acetate as precursor. Then, these catalysts were tested for the first time in the reactions of
4
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NH3-SCR of NO and of NH3-SCO in presence of water vapour. The prepared CuO/ η-Al2O3

catalysts  were  characterized  by  XRD,  SEM,  TEM,  NH3-TPD,  H2-TPR,  UV-vis  and  N2

adsorption-desorption techniques.

2 Experimental 

2.1 Preparation of the catalysts 

Five copper loaded η-alumina catalysts Cu(x)-Al2O3, with x theoretical copper loadings

were  prepared  by  wet  impregnation/evaporation  technique.  In  a  flask  containing  100 mL of

distilled water, the desired amount of copper acetate Cu(CO2CH3)2.H2O (Sigma Aldrich, ACS

reagent, ≥ 98%) was added to obtain the copper contents of  1 wt.%, 2 wt.%, 3wt.%, 5 wt.%  and

7.5 wt%. After the total dissolution of the copper acetate, a mass of 1.5 g of alumina η-Al2O3 was

added. The flask is then mounted on a rotary evaporator and the suspension is stirred for 4 hours

at 80 ° C. After this step, the water was evaporated under reduced pressure for about 1 hour. Once

dry, the solid was placed in an oven at 80 °C overnight and finally calcined at 500 °C under an air

stream  (2  °C/min)  for  10  hours.  In  figure  1 are  reported  the  photographs  of  the  prepared

catalysts.
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Figure 1: Colors of the prepared catalysts after copper loading and calcination.
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2.2 Characterization of Cu(x)-Al2O3 catalysts  

X-ray powder diffraction patterns were obtained using a D8 ADVANCE BRUKER 40 Kv

40 mA Detector Lynx eye Geometrie Bragg Brenterno (ICGM MAES) using Cu Kα (λ = 0.15418

nm) incident radiation. The diffractograms were recorded at room temperature (RT) between 4°

and 70 ° counted in 2θ at a scan speed of 0.02°/s. 

The textural properties, surface area and porosity of the support and the catalysts were

determined  from  nitrogen  adsorption–desorption  isotherms  measured  at  -196  °C  using  the

“micrometrics Tristar Surface Area and Porosity analyzer”. The sample (approximately 100 mg)

was weighed exactly in a glass tube lined with an "insert" to reduce the void volume. Before all

measurements, the samples were treated under high vacuum overnight at 150 °C. 

H2-TPR  profiles  were  carried  out  with  an  automated  Micromeritics  Autochem  2910

analyzer.  Before H2-TPR measurements,  samples (50 mg) were pretreated in a quartz U-tube

reactor under 5%O2/He flow (30 cm3/min) at 550 °C (10 °C/min) for 30 min and then cooled

under helium to 60 °C. The samples were then reduced from 60 °C to 800 °C (5 °C/min) under

3% H2/Ar  atmosphere  (30  cm3/min).  The  reduction  gas  H2/Ar,  was  passed  after  the  reactor

through a freezing trap (propan-2-ol + liquid nitrogen) kept at -80°C to remove the formed water.

Hydrogen consumption was monitored continuously by a thermal conductivity detector. 

The ammonia desorption programmed as a function of the temperature (NH3-TPD) was

carried out using the same H2-TPR equipment. A mass of 30 mg of catalyst is pretreated at 450

°C for 30 min, under air flow (30 cm3/min), then saturated with ammonia at 100 °C and purged

with helium for 45 min.  Following this  adsorption,  the physisorbed ammonia is  removed by

leaving the sample  for  2  h  at  100 °C, under  a  helium flow rate  of 30 cm3/min.  Finally,  the

temperature was raised to 550 °C (10 °C/min), under a helium flow rate of 30 cm3/min. 

The Selective Catalytic Reduction of NO by NH3 was carried out in a fixed-bed quartz

flow reactor  operating at  atmospheric  pressure.  The catalyst  (24 mg) was activated  in-situ  at

550°C for 1 hour under a flow of O2/He (20/80, v/v) and then cooled to 180°C. A feed mixture of
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1000 ppm NO, 1000 ppm NH3, 8% O2 in He and 3.5% H2O was then passed through the catalyst

at a flow rate of 100 cm3/min (GHSV = 250000 cm3/g. h). The NH3-SCR was carried out on

programmed temperature from 180 °C to 500 °C with the heating rate of 5 °C/min. 

For the Selective Catalytic Oxidation of ammonia (NH3-SCO), the test was carried out on

the catalysts already tested in the NH3-SCR of NO. At 550 °C, the NO flow is cut off and the

NH3-SCO experiments were carried out adjusting He flow and by decreasing the temperature

from 500 °C to 180 °C with the heating rate of 5 °C/ min. 

The reactants  and products  were analysed by a quadruple mass spectrometer  (Pfeiffer

Omnistar)  equipped  with  Channeltron  and  Faraday  detectors  (0–200  amu)  following  these

characteristic masses: NO (30), N2 (14, 28), N2O (28, 30, 44), NH3 (15, 17, 18), O2 (16, 32) and

H2O (17, 18).

The percentages of NO (XNO) and NH3 (XNH3) conversions were calculated on the basis of

the differences in their concentrations measured before and after the catalyst bed.

3 Results and discussion

3.1  Characterization of the catalysts  

The XRD patterns of the support η-Al2O3, CuO (Sigma Aldrich, ACS reagent    99.0 %) and

the prepared catalysts Cu(x)-Al2O3 are shown in figure 2. The characteristic peaks at angles in 2θ

19.5°,  37.5°,  39.7°,  45.8°,  60.8° and 67.2° correspond to  η-Al2O3 phase having spinel  lattice

(JCPDS, No. 04-0875). The introduction of copper leads to the destruction of the structure of η-

Al2O3 for the catalysts with higher copper contents Cu(3)-Al2O3, Cu(5)-Al2O3 and Cu (7.5)-Al2O3.
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These catalysts showed the characteristic peaks of CuO (JCPDS, No. 80-0076) at the angles in 2θ

32.6°, 35.6°, 38.8° and 48.8°, 58.3° and 61.5° (Liang et al., 2012). On the other hand, for the

Cu(1)-Al2O3  and Cu(2)-Al2O3 catalysts, there is a slight decrease in the intensity of the peaks of

the support and particularly the peak at 19.5 ° and the absence of the diffraction peaks of CuO. It

appears that the copper species present in the Cu(1)-Al2O3  and Cu (2)-Al2O3  catalysts are small

and  well  dispersed  on  the  surface  of  the  support.  Friedman  et  al.,  (1978)  showed  that  the

saturation of the CuO/ γ-Al2O3 catalyst surface a CuO monolayer occurs for a Cu content of about

4-5% by weight for every 100 m2/g of alumina.  Beyond this threshold,  crystalline CuO was

observed.
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Figure 2: XRD patterns of η-Al2O3, CuO and the prepared catalysts Cu(x)-Al2O3.

The SEM micrographs of the η-Al2O3 and the catalysts Cu(2)-Al2O3 and Cu(3)-Al2O3 are

illustrated in figure 3. The SEM micrograph of alumina η-Al2O3 is made up small agglomerate

particles. The introduction of copper leads to a change in the morphology of η-Al2O3 particles.

For example, the Cu(2)-Al2O3  catalyst presents a sponge-like morphology, which reveals a high

level of porosity. On the other hand, for the Cu(3)-Al2O3 catalyst, one can see two phases. The
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first one is relative to sintered alumina particles and the second is related to CuO particles. It

appears that high levels of copper favor the sintering of alumina at lower temperatures than usual.

Sintering leads to the drop of the specific surface and the deterioration of the dispersion state of

the copper species on the surface of the support.
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Figure 3: SEM images of the support η-Al2O3 (A1, A2) and the catalysts Cu(2)-Al2O3 (B1, B2), 

Cu(3)-Al2O3 (C1, C2) with different magnifications.
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The TEM images of the Cu(1)-Al2O3, Cu(2)-Al2O3 and Cu(3)-Al2O3 catalysts are reported

in figures 4. For (Cu(1)-Al2O3 catalyst, we note that the copper particles are very small and well

dispersed on the support η-Al2O3. The increase of the amount of copper leads to the increase of

copper species size. For Cu(2)-Al2O3 catalyst, copper particles have size about 5-10 nm. Whereas

for the Cu(3)-Al2O3 catalyst, we note the presence of black spherical particles exceeding 70 nm

attributed to copper oxide CuO as shown by XRD.
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(SBET = 343 m2/g) and 60% with the higher content of copper 7.5% (SBET = 169 m2/ g). Indeed, the

XRD  technique has  shown that Cu(3)-Al2O3, Cu(5)-Al2O3 and Cu(7.5)-Al2O3 catalysts contain

large CuO particles which block the porous structure of η-Al2O3. On the other hand, for Cu(1)-

Al2O3 and Cu (2)-Al2O3 catalysts  the copper species are well  dispersed on the surface of the

support and  the decrease of SBET was moderate (only 16% for Cu(2)-Al2O3 catalyst). On the other

hand, we notice an increase in the pore volume up to a copper quantity of 2% wt. and then a

decrease beyond this value. Actually,  the pore volume of the support which was Vp = 0.295

cm3/g increases by about 30% (Vp = 0.387 cm3/g) for 1% Cu and 40% (Vp = 0.411cm3/ g) for 2%

Cu. This result could explain the morphology of η-Al2O3 and the formation of macropores as

shown by SEM technique.  On the other hand, increasing the copper content from 3% to 7.5%

induces a reduction in the pore volumes of the catalysts due to the sintering of η-Al2O3 particles. 

In  figure 5 are reported the N2 adsorption-desorption isotherms of η-Al2O3 and Cu(x)-

Al2O3 catalysts. All adsorption isotherms are of type IV having hysteresis loops characteristics for

mesoporous solids (Petitto et al., 2013). Nevertheless, we note that the addition of copper to the

η-Al2O3 changes the hysteresis loop from H3 to H2(b) type. This behavior could reflect a change

in the pore shape and distribution with the introduction of copper. Indeed, H3 type hysteresis loop

indicates the presence of narrow slit-like pores particles with internal voids of irregular shape and

broad size distribution but the H2(b) hysteresis loop type shows a narrow distribution of pore

shape with a wide neck size distribution (Cychosz and Thommes, 2018). Likewise, when the

amount of copper increases there is a decrease in the adsorbed volume at low relative pressure

(P/P°), indicating the decrease in microporosity and the increase in mesoporosity. 
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Table 1: Textural parameters of the prepared catalysts Cu(x)-Al2O3

Sample SBET (m2/g) BJH Pore

volume (cm3/g)

BJH pore

diameter (nm)

η-Al2O3 417 0.295 4.50

Cu(1)-Al2O3 343 0.387 4.79

Cu(2)-Al2O3 351 0.411 4.85

Cu(3)-Al2O3 226 0.319 4.27

Cu(5)-Al2O3 229 0.229 4.67

Cu(7.5)-Al2O3 169 0.165 4.69

Figure 5: Adsorption–desorption isotherms of η-Al2O3 and Cu(x)-Al2O3 catalysts.
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H2-TPR profiles of the studied samples are shown in figure 6. It is observed that Cu(1)-Al2O3 and

Cu(2)-Al2O3 catalysts have similar reduction profiles. With the increase of copper amount there is

an increase of the intensity of the peaks. For Cu(2)-Al2O3 catalyst, the first peak around 130 °C

was attributed according to Yan et al., (1996) to the reduction of well dispersed CuO clusters on

the surface of the support. The second peak extending from 300 °C to 500 °C corresponds to the

reduction of highly dispersed Cu2+ cations in the structure of the alumina forming a surface spinel

CuAl2O4 type (Aguila et al., 2008; Il’chenko et al., 1976). On the other hand, when the copper

content was increased above 3 wt%, there are changes in the catalyst reduction profiles. Indeed,

Cu(3)-Al2O3,  Cu(5)-  Al2O3 and Cu(7.5)-  Al2O3 profiles  consist  only of  a  broad peak extending

from 140–380°C.This reduction peak can be attributed to the reduction of CuO. In fact, Fierro et

al., 1994 reported that the supported CuO particle reduction temperature range extends from

200 to 300°C depending on the type of support. The analysis of the deconvolution (not shown) of

the reduction profiles of Cu(3)-Al2O3, Cu(5)-Al2O3 and Cu(7.5)-Al2O3 was reported in Table 2.

For Cu(3)- Al2O3, for example, the central peak was deconvoluted into three peaks. The first is

located around 209°C with a relative surface area of around 11%, the second around 232°C

(15%) and the last around 274°C. The presence of these peaks could be due to CuO aggregates

with different sizes interacting differently with the support.
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Table 2: Results of H2-TPR profiles deconvolution of Cu(3)-Al2O3, Cu(5)-Al2O3 et Cu(7.5)-

Al2O3 catalysts

Catalysts Maximum reduction temperature Tm (°C)

Peak I Peak II Peak III

Cu(3)-Al2O3 209 (11%) 232 (15%) 274 (74%)

Cu(5)-Al2O3 _ 220 (46%) 282 (54%)

Cu(7.5)-Al2O3 179 (11%) 222 (41%) 268 (48%)

The nature and environment of copper species present in the prepared catalysts have been

studied by UV-vis spectroscopy. The UV-vis spectra of the carrier η-Al2O3 and the Cu(x)-Al2O3

catalysts  are  shown in  figure  7.  Generally,  alumina  is  transparent  in  the  UV-visible  range.
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3.2  Evaluation of the catalytic activity of Cu(x)-Al2O3 catalysts

3.2.1 Selective Catalytic Reduction of NO by NH3

The prepared catalysts were tested in the NH3-SCR of NO in the presence of an excess of

oxygen and of water vapor according to reaction (I):

4NO + 4NH3+ O2→ 4 N2 + 6H2O (I)

In figures 9 and 10 are reported the NO conversion and NH3 conversion of the prepared

Cu(x)-Al2O3 catalysts  in  the  NH3-SCR  of  NO.  The  NO  conversion  increased  initially  with

increasing  temperature,  then  reached  a  maximum  and  decreased.  The  evolution  of  the  NO

conversion passing  through a maximum reflects  the  existence  of  a  competition  between two
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reactions; the first concerning the reduction of NO and the second the oxidation of NH3  by the

oxygen present in the gas mixture. The competition between the two reactions is in favor of the

oxidation  of  NH3 at  high  temperatures  which  explains  the  decline  in  NO  conversion. The

decrease in the NO conversion is also accompanied with some formation of N2O according to the

two the following reaction:

2NH3+ 2O2 →   2N2O + 3H2O                  (II)

It  should  be  mentioned  that  Reaction  III  implied  ammonium  nitrate  intermediate  formed  at

temperature below 180°C and which starts to decompose above this temperature. 

       4NH3 + 4NO + 3O2→   4N2O +  6H2O                  (III)

Cu(1)-Al2O3 and Cu(2)-Al2O3 catalysts have similar NO and NH3 conversion profiles up to 475

°C. Beyond this temperature, the NO conversion decreases for the Cu(2)-Al2O3 catalyst, whereas

it continues to increase for Cu(1)-Al2O3 up to 500 °C where a maximum NO conversion is about

91%. If we look to the conversion of NO to N2, we notice that these two catalysts are almost

selective towards N2 (figure 11), due to the fact that the oxidation of NH3 is less favored due to

the better  dispersion of copper.  The others catalysts,  (Cu(3)-Al2O3, Cu(5)-Al2O3 and Cu(7.5)-

Al2O3, display  a volcano-shape  curve  of  NO  conversion as  temperature  increases  while  NH3

conversion continue to increase with the temperature. For example (Fig. 9), the catalyst Cu(7.5)-

Al2O3 has a maximum NO conversion of the order of 40% at 350 °C which is accompanied with

small N2O production. Therefore, the large drop in NO conversion on this catalyst above 350°C is

due to the NH3 oxidation into NO. Moreover, above 425°C, no NO reduction by ammonia occurs

since NO concentration in the outlet gas is superior at the NO concentration in the inlet gas. The

behavior of these catalysts  could be related  to the presence of large CuO particles.  One can

conclude  that  the  two  catalysts  Cu(1)-Al2O3 and  Cu  (2)-Al2O3 are  the  most  efficient  in  the

reduction of NO by NH3 in the presence of 3.5% of water vapor. Nevertheless, the Cu(1)-Al2O3

has a slightly better NO reduction behavior at high temperature. It has been found that the high
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NO conversion  of  these  two catalysts  can  be  related  to  the  presence  of  small  CuO clusters

deposited on the surface of η-Al2O3 alumina and to CuAl2O4 surface spinel. We believe that small

CuO clusters deposited on the surface and easily reduced at low temperatures are responsible for

high temperature N2 selectivity. In fact, according to the H2-TPR results, the quantity of these

copper species is greater in the case of Cu(2)-Al2O3 the and Cu(1)-Al2O3 catalysts.

 Kwak et al., 2012 investigated the NH3-SCR of NO reaction under lean conditions on CuO-γ-

Al2O3 catalysts  (350 ppm NO, 350 ppm NH3,  14% O2,  2% H2O, and the balance  N2).  They

showed that on 10 wt % CuO/γ-Al2O3, the NOx conversion is about 30% at 350°C and NH3 reacts

primarily with oxygen to produce NOx. However, on a 0.5 wt CuO/γAl2O3 catalyst, NH3 reacts

with NO to form N2 and the NOx conversion to N2 was almost 80% at 450 °C. Jeong et al., 1999;

carried out the NH3-SCR of NO over sulphated CuO/γ-Al2O3 in a fixed-bed reactor (400 ppm

NO, 400 ppm, 4% O2 and the balanced N2). They found that the optimum temperatures of the

fresh and sulphated CuO/γ-Al2O3 in the NH3-SCR of NO are 350 and 450 °C, respectively. Also,

NO conversion over the sulphated catalyst is somewhat higher than that over the fresh catalyst.

The amount of N2O formation in NO reduction over the fresh and the bulk sulphated catalysts is

below 10% of NO in the feed.
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Figure 10: NH3 conversion profiles of the prepared Cu(x)-Al2O3 catalysts in the NH3-SCR of

NO.
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4NH3+ 3O2 → 2N2+ 6H2O (IV)

For all catalysts, it is noted that ammonia oxidation increases with the increase in temperature.

For  the  Cu(3)-Al2O3,  Cu  (5)-Al2O3 and  Cu(7.5)-Al2O3 catalysts,  a  gradual  increase  in  NH3

oxidation  from 200  °C  to  400  °C  was  recorded.  But  above  400  °C,  the  oxidation  of  NH3

decreases slightly. On the other hand, for Cu(1)-Al2O3 and Cu(2)-Al2O3 a gradual slower increase

of the NH3 conversion was recorded from 250 ° C to 550 ° C. These two catalysts are much less

active towards ammonia oxidation as we have already seen previously in NH3-SCR of NO. The

catalytic activity of the catalyst Cu(1)-Al2O3 and Cu(2)-Al2O3 in the oxidation of NH3 could be

related to the highly dispersed CuO on the support which are reduced at low temperature T = 130

°C. According to (Gang et al.,  1999) complete  oxidation of NH3 was obtained at  350 °C on
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Cu(10%)-γAl2O3  catalyst with N2 selectivity of 90%. Liang et al., 2012 obtained similar results

for  Cu(10%)-γAl2O3 catalysts  prepared  by  different  copper  precursors  (nitrate,  acetate  and

sulphate) and calcined at 500 °C and 600 °C. They showed that a mixture of CuO and CuAl2O4

species is formed on the various Cu(10%)-γAl2O3 catalysts. On the other hand, the dispersion and

the nature of the copper species  have a significant  influence  on the activity  of the catalysts.

Indeed,  the  highly  dispersed  CuO nanoparticles  on  the  support  are  responsible  for  the  high

activity of Cu(10%)-γAl2O3 catalysts. Lenihan and Curtin (2009) using lower levels of copper

(Cu(3.4%)/γ-Al2O3) found conversions of the order of 100% in NH3.

The  nature  of  the  copper  precursor  and  the  method  of  preparation  were  found to  be

determinants in the formation of active copper species in the NH3-SCO. For example, a sulphate

precursor leads to the formation of CuAl2O4, whereas CuO of higher crystallinity is formed using

an acetate compared to a nitrate precursor (Jung et al., 2017). However, the nature of the active

species in NH3- SCO has not been fully verified yet. Gang et al., 2000 claimed that the surface

CuAl2O4 spinel phase is responsible for the higher catalytic activity relative to CuO. A study

conducted by Liang et al., 2012 has shown that a mixture of CuO and CuAl2O4 phases is formed

on the various Cu (10%) - γAl2O3 catalysts. On the other hand, the dispersion and the nature of

the copper  species  have a  significant  influence on the activity  of  the catalysts.  Indeed,  CuO

nanoparticles  highly  dispersed  on  the  support  and  easily  reduced  at  low  temperature  are

responsible for the high conversion of NH3.
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Figure 12: NH3 oxidation profiles of Cu(x)-Al2O3 catalyst.

Figures 13, 14  and figure 15 presents the selectivity profiles towards NO, N2O and N2

respectively obtained in the NH3-SCO reaction. N2 is the desired gas product, while NO and N2O

are undesired by-products. The Cu(1)-Al2O3 and Cu(2)-Al2O3 catalysts have N2 selectivity close

to 95% over the temperature range of 200-400 °C. Additionally, the transition metal oxides have

been widely studied in the scientific literature (Jablonska and Palkovits, 2016; Sazonova et al.,

1996). This type of catalysts showed higher selectivity to N2, however, they need significantly

higher operation temperatures as high as 300–500 °C than noble metal catalysts. For the three

others Cu(x)-Al2O3, selectivities towards N2 are much lower. At 550 °C (Figure 16), 48%, 40%,

30% of selectivity towards NO were measured for (Cu(7.5)-Al2O3, Cu(5)-Al2O3, Cu(3)-Al2O3)

respectively. 

The NH3-SCO method is  an effective  method for  oxidizing  NH3  into N2.  The overall

selectivity into N2 was close to 100% for Cu(1)-Al2O3 and above 95% for Cu(2)-Al2O3  over all

the temperature while for the other three catalysts, N2 selectivity remains as high as 95% only at
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temperature below 350°C, as reported by (Jabłońska et al.,2017; 2018). Highly dispersed CuOx

favor moderate activity but N2 selectivity up to 550 °C in NH3-SCO (Chmielarz et al., 2005). In a

similar work (Dong et al. 2013) showed that nitrogen gas was primarily formed by the direct

dissociation of the NO produced by the oxidation of the adsorbed NH3 (Dong et al., 2014).

Figure 13: NO selectivity profiles obtained for NH3-SCO performed over Cu(x)-Al2O3 catalysts. 
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Figure 14: N2O selectivity profiles obtained for NH3-SCO performed over Cu(x)-Al2O3 catalysts.

Figure 15: N2 selectivity profiles obtained for NH3-SCO performed over Cu(x)-Al2O3 catalysts.
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4 Conclusion

Copper-supported  η-Al2O3 catalysts  have  prepared  and  tested  in  the  selective  catalytic

reduction  of  NO  by  NH3 and  in  the  selective  catalytic  oxidation  of  NH3.The

impregnation/evaporation method has successfully dispersed the copper species on the surface of

the  alumina  for  the  low copper  contents;  Cu(1)-Al2O3 and  Cu(2)-Al2O3 catalysts.  The  XRD

showed that the introduction of an additional amount of copper leads to the destruction of the

alumina structure when copper content exceeded 3% wt.%.  The Cu(3)-Al2O3, Cu(5)-Al2O3 and

Cu (7.5)  -Al2O3 catalysts  contain  mainly  large  CuO  particles.  Cu(2)-Al2O3 and  Cu(1)-Al2O3

catalysts have interesting NO conversion to N2 in the NH3-SCR of NO. This activity could be

related  essentially  to  the  small  CuO clusters  deposited  on  the  alumina  surface  and CuAl2O4

species.  For  NH3-SCO,  the  catalyst  Cu(1)-Al2O3 and  Cu(2)-Al2O3 exhibit  similar behavior

resulting in the conversion of NH3 to N2 of about 100% at T > 500 ° C. This conversion could be

attributed  to  CuO  nanoparticles  highly  dispersed  on  the  support  and  easily  reduced  at  low

temperature.

Ethics approval and consent to participate “Not applicable.

Consent for publication “Not applicable”.

Competing  interests  The  authors  declare  that  they  have  no  known  competing  financial

interests or personal relationships that could have appeared to influence the work reported in this

paper.

Availability of data and materials “Not applicable”.

Funding “Not applicable”.

Authors' contributions 

     Nawel Jraba: analyzed the data and write the complete paper.

     HassibTounsi, Thabet Makhlouf and Gerard Delahay: gave this idea of work. 

    All authors read and approved the final manuscript.

28

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

55
56



REFERENCES

Águila G, Gracia F, Araya P (2008) CuO and CeO2 catalysts supported on Al2O3, ZrO2, and SiO2

in the oxidation of CO at low temperature. Appl Catal A 343(1-2) : 16-24. 

https://doi.org/10.1016/j.apcata.2008.03.015

 Boroń  P, Rutkowska M, Gil B, Marszałek B, Chmielarz L,  Dzwigaj S (2019) Experimental

Evidence  of  the  Mechanism  of  Selective  Catalytic  Reduction  of  NO  with  NH3 over  Fe-

Containing  BEA  Zeolites.  Chem  Sus  Chem  12(3):  692-705.

https://doi.org/10.1002/cssc.201801883  .  

Buvaneswari G, Aswathy V, Rajakumari R (2015) Comparison of color and optical absorbance

properties  of  divalent  ion  substituted  Cu  and  Zn  aluminate  spinel  oxides  synthesized  by

combustion  method  towards  pigment  application. Dyes  Pigm  123 : 413-419.

https://doi.org/10.1016/j.dyepig.2015.08.024  .  

Carre S, Tapin B, Gnep NS, Revel R  and Magnoux P (2010) Model reactions as probe of the

acid–base  properties  of  aluminas:  Nature  and  strength  of  active  sites.  Correlation  with

physicochemical  characterization. Appl  Catal  A 372 (1) : 26-33.

https://doi.org/10.1016/j.apcata.2009.10.005  .  

Chaudhary RG, Sonkusare VN, Bhusari GS, Mondal A, Shaik DP, Juneja HD (2018) Microwave-

mediated synthesis of spinel CuAl2O4 nanocomposites for enhanced electrochemical and catalytic

performance.  Res  Chem  Intermediat  44(3) : 2039-2060. https://doi.org/10.1007/s11164-017-

3213-z  .  

Chmielarz  L,  Kuśtrowski  P,  Rafalska-Łasocha A,  Dziembaj  R (2005)  Selective  oxidation  of

ammonia to nitrogen on transition metal containing mixed metal oxides. Appl Catal B Environ

58: 235–244.   https://doi.org/10.1016/j.apcatb.2004.12.009  .  

Cychosz KA, Thommes M (2018) Progress in the physisorption characterization of nanoporous

gas storage materials. Eng 4(4) : 559-566. https://doi.org/10.1016/j.eng.2018.06.001  .  

29

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

57
58



Damma D, Ettireddy PR, Reddy BM, Smirniotis PG (2019) A review of low temperature NH3-

SCR for removal of NOx. Catalysts 9(4) : 349. https://doi.org/10.3390/catal904034  9  . 

Dong CD, Chen CW, Hung CM (2014). Catalytic performance and characterization of copper-

based Rare earth composite materials  for selective catalytic oxidation reaction with simulated

synthetic ammonia stream. J Adv Oxid Technol 17(2) : 352-358.  https://doi.org/10.1515/jaots-

2014-022  0  . 

Fierro G, Lojacono M, Inversi M, Porta P, Lavecchia R, Cioci F  (1994) A study of anomalous

temperature-programmed  reduction  profiles  of  Cu2O,  CuO,  and  CuO-ZnO  catalysts. J  Catal

148(2) : 709-721. https://doi.org/10.1006/jcat.1994.125  7  . 

Forzatti P (2001) Present status and perspectives in de-NOx SCR Catalysis. Appl Catal A 222:

221-236. https://doi.org/10.1016/S0926-860X(01)00832-8  .  

Friedman RM, Freeman JJ, Lytle FW (1978) Characterization of CuAl2O3  catalysts.  J Catal 55

(1):  10-28. https://doi.org/10.1016/0021-9517(78)90181-1  .  

Gang L, Anderson BG, Van Grondelle J, Van Santen RA (2000) NH3 oxidation to nitrogen and

water at low temperatures using supported transition metal catalysts. Catal Today 61(1-4) : 179-

185. https://doi.org/10.1016/S0920-5861(00)00375-8  .  

Gang L, Van Grondelle J, Anderson BG, Van Santen RA (1999) Selective low temperature NH3

oxidation  to  N2 on  copper-based  catalysts. J  Catal  186(1) :  100-109.

https://doi.org/10.1006/jcat.1999.2524  .  

Gao F, Szanyi J (2018) On the hydrothermal stability of Cu/SSZ-13 SCR. Appl Catal A 560 185-

194. https://doi.org/10.1016/j.apcata.2018.04.040  .  

Goldbach  M,  Roppertz  A,  Langenfeld  P,  Wackerhagen  M,  Füger  S,  Kureti  S  (2017) Urea

decomposition  in  selective  catalytic  reduction  on  V2O5/WO3/TiO2 catalyst  in  diesel  exhaust.

Chem Eng Technol 40(11) : 2035-2043. https://doi.org/10.1002/ceat.201700261  .  

30

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

59
60



Hamoud HI, Valtchev V, Daturi M (2019) Selective catalytic reduction of NOx over Cu-and Fe-

exchanged  zeolites  and  their  mechanical  mixture. Appl  Catal  B  250 : 419-428.

https://doi.org/10.1016/j.apcatb.2019.02.022  .  

Hansen TK, Høj M, Hansen BB, Janssens TV, Jensen AD (2017) The Effect of Pt Particle Size

on the Oxidation of CO, C3H6, and NO Over Pt/Al2O3 for Diesel Exhaust Aftertreatment.  Top

Catal 60 (17-18) : 1333-1344. https://doi.org/10.1007/s11244-017-0818-9  .  

Hoyong J, Jung H,  Park  J,  and Jung KD.  (2017) Surface  Modification  of  η–Al2O3 by  SiO2

Impregnation to Enhance Methanol Dehydration Activity. Bull Korean Chem Soc  38(3) :  307-

312. https://doi.org/10.1002/bkcs.11081. 

Il'chenko,  Ivanovna  N (1976)  Catalytic  oxidation  of  ammonia.  Russ  Chem Rev  4512  1119.

https://doi.  10.1070/RC1976v045n12ABEH002765  .  

Jabłońska M (2020) Progress on Selective Catalytic Ammonia Oxidation (NH3-SCO) over Cu−

Containing  Zeolite-Based  Catalysts. Chem Cat Chem 12 (18) : 4490-4500.

https://doi.org/10.1002/cctc.202000649  .  

Jabłońska M, Beale AM, Nocuń M, Palkovits R (2018) Ag-Cu based catalysts for the selective

ammonia  oxidation  into  nitrogen  and  water  vapour. Appl  Catal  B  232:  275-287.

https://doi.org/10.1016/j.apcatb.2018.03.029.

Jabłońska M, Wolkenar B, Beale AM, Pischinger S, Palkovits R (2018). Comparison of Cu-Mg-

Al-Ox and Cu/Al2O3 in  selective  catalytic  oxidation  of ammonia  (NH3-SCO). Catal  Commun

110 : 5-9. https://doi.org/10.1016/j.catcom.2018.03.003  .  

Jabłońska M, Nocuń  M, Gołąbek K, Palkovits  R (2017) Effect  of preparation procedures on

catalytic activity and selectivity of copper-based mixed oxides in selective catalytic oxidation of

ammonia  into  nitrogen  and  water  vapour.  Appl  Surf  Sci  423:  498-508.

https://doi.org/10.1016/j.apsusc.2017.06.144  .  

31

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

61
62



 Jabłońska M, Palkovits R (2016) Copper based catalysts for the selective ammonia oxidation

into nitrogen and water vapour-recent trends and open challenges. Appl Catal B 18 :  332-351.

https://doi.org/10.1016/j.apcatb.2015.07.017  .  

Jabłońska M (2015) Selective catalytic oxidation of ammonia into nitrogen and water vapour

over  transition  metals  modified  Al2O3,  TiO2 and  ZrO2.  Chem  Pap  69 : 1141-1155.

https://doi.org/10.1515/chempap-2015-0120  .  

Jeong SM, Jung SH, Yoo KS, Kim SD (1999) Selective catalytic reduction of NO by NH3 over a

bulk  sulfated  CuO/γ-Al2O3 catalyst. Ind  Eng  Chem  Res 38 (6) : 2210-2215.

https://doi.org/10.1021/ie9807147  .  

Jo  H,  Jung  H,  Park  J  and  Jung  K  D  (2017)  Surface  Modification  of  η–Al2O3 by  SiO2

Impregnation to Enhance Methanol Dehydration Activity. Bull Korean Chem Soc 38 (3): 307-

312. https://doi.org/10.1002/bkcs.11081

Jones JM, Pourkashanian M, Williams A, Backreedy RI, Darvell LI, Simell P, Heiskanen K and

Kilpinen  P  (2005)  The  selective  oxidation  of  ammonia  over  alumina  supported  catalysts–

experiments  and  modelling.  Appl  Catal  B  60  (1-2):  139-146.

https://doi.org/10.1016/j.apcatb.2004.11.013

Jraba N, Tounsi H, Makhlouf T (2018)  Valorization of aluminum chips into γ-Al2O3 and η-Al2O3

with high surface  areas  via  the precipitation  route. Waste  Biomass  Valori  9 (6): 1003-1014.

https://doi.org/10.1007/s12649-016-9786-8. 

Jung Y, Shin YJ, Pyo YD, Cho CP, Jang J, Kim G (2017) NOx and N2O emissions over a Urea-

SCR system containing both V2O5-WO3/TiO2 and Cu-zeolite catalysts in a diesel engine.  Chem

Eng J 326 :  853-862. https://doi.org/10.1016/j.cej.2017.06.020.

Kong T, Jia Y, Zhang L, Shu H, Chang X, Kuang W, Luo M (2020) CuO–MoO2–CeO2 yolk–

albumen–shell catalyst supported on γ-Al2O3 for denitration with resistance to SO2.  J Mater Sci

55 (9):  3833-3844. https://doi.org/10.1007/s10853-019-04216-x.

32

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

63
64



Kröcher O (2018) Selective  catalytic  reduction  of  NOx.   Catalysts  8 : 459.

https://doi.org/10.3390/catal8100459.

Kwak JH, Tonkyn R, Tran D, Mei D, Cho SJ, Kovarik L, ... and Szanyi J (2012) Size-dependent

catalytic performance of CuO on γ-Al2O3 : NO reduction versus NH3 oxidation. ACS Catal 2 (7):

1432-1440. https://doi.org/10.1021/cs3002463  .  

Lai JK, Wachs IE  (2018) A perspective on the selective catalytic reduction (SCR) of NO with

NH3 by  supported  V2O5–WO3/TiO2 catalysts.  ACS  Catal 8 (7) : 6537-6551.

https://doi.org/10.1021/acscatal.8b01357  .  

Lambert CK (2019) Perspective on SCR NO x control for diesel vehicles. React Chem Eng 4 (6) :

969-974. https://doi.org/10.1016/j.apcata.2018.04.040  .  

Le TA, Kim TW, Lee  SH and Park ED (2017)  CO and CO2 methanation  over  Ni catalysts

supported on alumina with different crystalline phases. Korean J. Chem. Eng 34(12): 3085-3091.

https://doi.org/10.1007/s11814-017-0257-0

Lenihan S, Curtin T (2009) The selective oxidation of ammonia using copper-based catalysts:

The effects of water. Catal Today 145(1-2) : 85-89. https://doi.org/10.1016/j.cattod.2008.06.017.

Liang C, Li X, Qu Z, Tade M, Liu S (2012) The role of copper species on Cu/γ-Al2O3 catalysts

for  NH3–SCO  reaction. Appl  Surf  Sci  258 (8) : 3738-3743.

https://doi.org/10.1016/j.apsusc.2011.12.017  .  

Mayer RW, Melzer M., Hävecker M, Knop-Gericke A, Urban J, Freund HJ, Schlögl R, (2003)

Comparison of oxidized polycrystalline copper foil with small deposited copper clusters in their

behavior in ammonia oxidation: an investigation by means of in situ NEXAFS spectroscopy in

the soft X-ray range. Catal lett 86  (4):  245-260. https://doi.org/10.1023/A:1022624303979

Nikoofar K, Shahedi Y and Chenarboo FJ (2019) Nano alumina catalytic applications in organic

transformations. Mini  Rev  Org  Chem  16  (2):  102-110.

https://doi.org/10.2174/1570193X15666180529122805.

33

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

65
66



Nova I,  Tronconi  E (Eds.)  (2014) Urea-SCR technology for  deNOx after  treatment  of  diesel

exhausts. N Y Springer 5. https://doi.org/10.1007/978-1-4899-8071-7.

Osman AI and Abu-Dahrieh JK (2018) Kinetic investigation of  η-Al2O3 catalyst  for dimethyl

ether  production. Catal  Lett 148  (4):  1236-1245.  https://doi.org/10.1007/s10562-018-2319-2

Osman AI, Abu-Dahrieh JK, Abdelkader A, Hassan NM, Laffir F, McLaren M and Rooney D

(2017) Silver-modified  η-Al2O3 catalyst for DME production.  J Phy Chem C 121 (45): 25018-

25032. h$ps://doi.org/10.1021/acs.jpcc.7b04697.

Panahi PN, Delahay G (2017) Activity of γ–Al2O3-based Mn, Cu, and Co oxide nanocatalysts for

selective  catalytic  reduction  of  nitric  oxide  with  ammonia. Turk  J  Chem 41(2) : 272-281.

https://doi.org/10.3906/kim-1605-50  .  

Peintinger MF, Kratz M J andBredow T (2014) Quantum-chemical study of stable, meta-stable

and high-pressure alumina polymorphs and aluminum hydroxides. J Mater Chem A 2 : 13143-

13158. https://doi: 10.1039/C4TA02663B.

Petitto  C, Mutin HP, Delahay G  (2013)  Hydrothermal  activation of silver  supported alumina

catalysts prepared by sol–gel method: Application to the selective catalytic reduction (SCR) of

NOx by n-decane. Appl Catal B 134: 258-264. https://doi.org/10.1016/j.apcatb.2013.01.018  .  

Piumetti  M,  Bensaid  S,  Fino  D  and  Russo  N  (2015) Catalysis  in  Diesel  engine  NOx

aftertreatment:  a  review. Catal  Struct  React  1(4):  155-173.

https://doi.org/10.1080/2055074X.2015.1105615  .  

Sazonova NN, Simakov AV, Nikoro TA, Barannik GB, Lyakhova VF, Zheivot VI ... and Veringa

H (1996) Selective catalytic oxidation of ammonia to nitrogen. React Kinet Catal Lett 57(1) : 71-

79. https://doi.org/10.1007/BF02076122  .  

Shibata,  G., Eijima,  W.,  Koiwai,  R.,  Shimizu,  K. I.,  Nakasaka,  Y.,  Kobashi, Y.,  Kubota,  Y.,

Ogura, M., and Kusaka, J. (2019). NH3-SCR by monolithic Cu-ZSM-5 and Cu-AFX catalysts:

34

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

67
68



Kinetic  modeling  and  engine  bench  tests.  Catalysis  Today,  332:  59-63.

https://doi.org/10.1016/j.cattod.2018.06.023

Ström L, Carlsson PA, Skoglundh M, Härelind H (2018) Surface species and metal oxidation

state  during  H2-assisted  NH3-SCR  of  NOX  over  alumina-supported  silver  and

indium. Catalysts 8(1): 38. https://doi.org/10.3390/catal8010038  .  

Sun M, Liu J, Song C, Ogata Y, Rao H, Zhao X, Xu H, and Chen Y (2019) Different Reaction

Mechanisms  of  Ammonia  Oxidation  Reaction  on  Pt/Al2O3 and  Pt/CeZrO2 with  Various  Pt

States. ACS Appl  Mater  Interfaces 11(26) :  23102-23111.

https://doi.org/10.1021/acsami.9b02128  .  

Svintsitskiy DA, Kibis LS, Stadnichenko AI, Slavinskaya EM, Romanenko AV, Fedorova EA ...

and  Boronin AI  (2020) Insight into the nature of active species of Pt/Al2O3 catalysts  for low

temperature  NH3 oxidation. Chem  Cat  Chem  12 (3) : 867-880.

https://doi.org/10.1002/cctc.201901719  .  

Usberti N, Jablonska M, Di Blasi M, Forzatti P, Lietti L, Beretta A (2015) Design of a high-

efficiency NH3-SCR reactor for stationary applications. A kinetic study of NH3 oxidation and

NH3-SCR  over  V-based  catalysts. Appl  Catal  B  179 : 185-195.

https://doi.org/10.1016/j.apcatb.2015.05.017  .  

Villamaina R, Nova I, Tronconi E, Maunula T, Keenan M (2019) Effect of the NH4NO3 Addition

on  the  Low-T  NH3-SCR  Performances  of  Individual  and  Combined  Fe-and  Cu-Zeolite

Catalysts. Emiss Control Sci Technol 5(4) : 290-296. https://doi.org/10.1007/s40825-019-00140-

3  .  

Walker A  (2016)  Future challenges and incoming solutions in emission control for heavy duty

diesel vehicles. Top Catal 59 (8-9) : 695-707. https://doi.org/10.1007/s11244-016-0540-z  .  

Xie G, Liu Z, Zhu Z, Liu Q, Ge J, Huang Z (2004) Simultaneous removal of SO2 and NOx from

flue  gas  using  a  CuO/Al2O3 catalyst  sorbent:  II.  Promotion  of  SCR activity  by  SO2 at  high

temperatures. J Catal 224(1) : 42-49. https://doi.org/10.1016/j.jcat.2004.02.016  .  

35

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

69
70



Cu(3)-Al2O3

500 nm

100 nm

Xin Y, Li Q, Zhang Z (2018) Zeolitic materials for DeNOx selective catalytic reduction. Chem

Cat Chem 10(1): 29-41. https://doi.org/10.1002/cctc.201700854  .  

Yan JY, Lei GD, Sachtler WMH, Kung HH (1996) Deactivation of Cu/ZSM-5 catalysts for lean

NOx reduction: characterization of changes of Cu state and zeolite support. J Catal 161(1) : 43-

54. https://doi.org/10.1006/jcat.1996.0160  .  

Yuan  X,  Liu  H,  Gao Y (2015) Diesel  engine  SCR control:  current  development  and  future

challenges. Emiss Control Sci Technol 1(2) : 121-133. https://doi.org/10.1007/s40825-015-0013-

z  .  

36

691

692

693

694

695

696

697

698

699

700

701

702

703

71
72


