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Abstract. We propose a logic for temporal properties of higher-order
programs that handle infinite objects like streams or infinite trees, rep-
resented via coinductive types. Specifications of programs use safety and
liveness properties. Programs can then be proven to satisfy their specifi-
cation in a compositional way, our logic being based on a type system.
The logic is presented as a refinement type system over the guarded
λ-calculus, a λ-calculus with guarded recursive types. The refinements
are formulae of a modal μ-calculus which embeds usual temporal modal
logics such as LTL and CTL. The semantics of our system is given within
a rich structure, the topos of trees, in which we build a realizability model
of the temporal refinement type system.

Keywords: coinductive types, guarded recursive types, μ-calculus, re-
finement types, topos of trees.

1 Introduction

Functional programming is by now well established to handle infinite data,
thanks to declarative definitions and equational reasoning on high-level abstrac-
tions, in particular when infinite objects are represented with coinductive types.
In such settings, programs in general do not terminate, but are expected to com-
pute a part of their output in finite time. For example, a program expected to
generate a stream should produce the next element in finite time: it is productive.

Our goal is to prove input-output temporal properties of higher-order pro-
grams that handle coinductive types. Logics like LTL, CTL or the modal μ-
calculus are widely used to formulate, on infinite objects, safety and liveness
properties. Safety properties state that some “bad” event will not occur, while
liveness properties specify that “something good” will happen (see e.g. [9]). Typ-
ically, modalities like � (always) or � (eventually) are used to write properties
of streams or infinite trees and specifications of programs over such data.

We consider temporal refinement types {A | ϕ}, where A is a standard type
of our programming language, and ϕ is a formula of the modal μ-calculus. Using
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refinement types [22], temporal connectives are not reflected in the programming
language, and programs are formally independent from the shape of their tem-
poral specifications. One can thus give different refinement types to the same
program. For example, the following two types can be given to the same map
function on streams:

map : ({B | ψ} → {A | ϕ}) −→ {StrB | ��[hd]ψ} −→ {StrA | ��[hd]ϕ}
map : ({B | ψ} → {A | ϕ}) −→ {StrB | ��[hd]ψ} −→ {StrA | ��[hd]ϕ} (�)

These types mean that given f : B → A s.t. f(b) satisfies ϕ if b satisfies ψ,
the function (map f) takes a stream with infinitely many (resp. ultimately all)
elements satisfying ψ to one with infinitely many (resp. ultimately all) elements
satisfying ϕ. For ϕ a formula over A, [hd]ϕ is a formula over streams of A’s which
holds on a given stream if ϕ holds on its head element.

It is undecidable whether a given higher-order program satisfies a given input-
output temporal property written with formulae of the modal μ-calculus [41].
Having a type system is a partial workaround to this obstacle, which moreover
enables to reason compositionally on programs, by decomposing a specification
to the various components of a program in order to prove its global specification.

Our system is built on top of the guarded λ-calculus [18], a higher-order pro-
gramming language with guarded recursion [52]. Guarded recursion is a simple
device to control and reason about unfoldings of fixpoints. It can represent coin-
ductive types [50] and provides a syntactic compositional productivity check [5].

Safety properties (e.g. �[hd]ϕ) can be correctly represented with guarded fix-
points, but not liveness properties (e.g. �[hd]ϕ, ��[hd]ϕ, ��[hd]ϕ). Combining
liveness with guarded recursion is a challenging problem since guarded fixpoints
tend to have unique solutions. Existing approaches to handle temporal types in
presence of guarded recursion face similar difficulties. Functional reactive pro-
gramming (FRP) [21] provides a Curry-Howard correspondence for temporal
logics [32,33,17] in which logical connectives are reflected as programming con-
structs. When combining FRP with guarded recursion [44,7], and in particular
to handle liveness properties [8], uniqueness of guarded fixpoints is tempered by
specific recursors for temporal types.

Our approach is different from [8], as we wish as much as possible the logi-
cal level not to impact the program level. We propose a two level system, with
the lower or internal level, which interacts with guarded recursion and at which
only safety properties are correctly represented, and the higher or external one,
at which liveness properties are correctly handled, but without direct access to
guarded recursion. By restricting to the alternation-free modal μ-calculus, in
which fixpoints can always be computed in ω-steps, one can syntactically reason
on finite unfoldings of liveness properties, thus allowing for crossing down the
safety barrier. Soundness is proved by a realizability interpretation based on the
semantics of guarded recursion in the topos of trees [13], which correctly repre-
sents the usual set-theoretic final coalgebras of polynomial coinductive types [50].

We provide example programs involving linear structures (colists, streams,
fair streams [17,8]) and branching structures (resumptions à la [44]), for which
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Consg := λx.λs. fold(〈x, s〉) : A → � Strg A → Strg A
hdg := λs.π0(unfold s) : Strg A → A
tlg := λs.π1(unfold s) : Strg A → � Strg A

mapg := λf.fix(g).λs.Consg (f(hdg s)) (g � (tlg s)) : (B → A) → Strg B → Strg A

Fig. 1. Constructor, Destructors and Map on Guarded Streams.

we prove liveness properties similar to (�) above. Our system also handles safety
properties on breadth-first (infinite) tree traversals à la [35] and [10].

Organization of the paper. We give an overview of our approach in §2.
Then §3 presents the syntax of the guarded λ-calculus. Our base temporal logic
(without liveness) is introduced in §4, and is used to define our refinement type
system in §5. Liveness properties are handled in §6. The semantics is given in §7,
and §8 presents examples. Finally, we discuss related work in §9 and future work
in §10. Table 4 (§8) gathers the main refinement types we can give to example
functions, most of them defined in Table 3. Omitted material is available in [28].

2 Outline

Overview of the Guarded λ-Calculus. Guarded recursion enforces produc-
tivity of programs using a type system equipped with a type modality �, in
order to indicate that one has access to a value not right now but only “later”.
One can define guarded streams Strg A over a type A via the guarded recursive
definition Strg A = A×� Strg A. Streams that inhabit this type have their head
available now, but their tail only one step in the future. The type modality � is
reflected in programs with the next operation. One also has a fixpoint constructor
on terms fix(x).M for guarded recursive definitions. They are typed with

E � M : A

E � next(M) : �A

E , x : �A � M : A

E � fix(x).M : A

This allows for the constructor and basic destructors on guarded streams to
be defined as in Fig. 1, where fold(−) and unfold(−) are explicit operations
for folding and unfolding guarded recursive types. In the following, we use the
infix notation a ::g s for Consg a s. Using the fact that the type modality �
is an applicative functor [49], we can distribute � over the arrow type. This is
represented in the programming language by the infix applicative operator �.
With it, one can define the usual map function on guarded streams as in Fig. 1.

Compositional Safety Reasoning on Streams. Given a property ϕ on a
type A, we would like to consider a subtype of Strg A that selects those streams
whose elements all satisfy ϕ. To do so, we use a temporal modal formula �[hd]ϕ,
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Typed Formulae Provability Refinement Types Subtyping Typing

Σ � ϕ : A �A ϕ {A | ϕ} T ≤ U E � M : T
(§4) (where � ϕ : A, §4) (where � ϕ : A, §5) (T , U refinement types, §5)

Table 1. Syntactic Classes and Judgments.

and consider the refinement type {Strg A | �[hd]ϕ}. Suppose for now that we
can give the following refinement types to the basic stream operations:

hdg : {Strg A | �[hd]ϕ} −→ {A | ϕ}
tlg : {Strg A | �[hd]ϕ} −→ � {Strg A | �[hd]ϕ}

Consg : {A | ϕ} −→ � {Strg A | �[hd]ϕ} −→ {Strg A | �[hd]ϕ}

By using the standard typing rules for λ-abstraction and application, together
with the rules to type fix(x).M and �, we can type the function mapg as

mapg : ({B | ψ} → {A | ϕ}) −→ {Strg B | �[hd]ψ} −→ {Strg A | �[hd]ϕ}

A Manysorted Temporal Logic. Our logical language, taken with minor
adaptations from [30], is manysorted : for each type A we have formulae of type
A (notation � ϕ : A), where ϕ selects inhabitants of A.

We use atomic modalities ([πi], [fold], [next], . . . ) in refinements to navigate
between types (see Fig. 5, §4). For instance, a formula ϕ of type A0, specifying
a property over the inhabitants of A0, can be lifted to the formula [π0]ϕ of type
A0 × A1, which intuitively describes those inhabitants of A0 × A1 whose first
component satisfy ϕ. Given a formula ϕ of type A, one can define its “head
lift” [hd]ϕ of type Strg A, that enforces ϕ to be satisfied on the head of the
provided stream. Also, one can define a modality © such that given a formula
ψ : Strg A, the formula ©ψ : Strg A enforces ψ to be satisfied on the tail of
the provided stream. These modalities are obtained resp. as [hd]ϕ := [fold][π0]ϕ
and ©ϕ := [fold][π1][next]ϕ. We similarly have atomic modalities [in0], [in1] on
sum types. For instance, on the type of guarded colists defined as CoListg A :=
Fix(X). 1+ A×�X, we can express the fact that a colist is empty (resp. non-
empty) with the formula [nil] := [fold][in0]� (resp. [¬nil] := [fold][in1]�).

We also provide a deduction system �A ϕ on temporal modal formulae.
This deduction system is used to define a subtyping relation T ≤ U between
refinement types, with {A | ϕ} ≤ {A | ψ} when �A ϕ ⇒ ψ. The subtyping
relation thus incorporates logical reasoning in the type system.

In addition, we have greatest fixpoints formulae ναϕ (so that formulae can
have free typed propositional variables), equipped with Kozen’s reasoning prin-
ciples [43]. In particular, we can form an always modality as �ϕ := να. ϕ∧©α,
with �ϕ : Strg A if ϕ : Strg A. The formula �ϕ holds on a stream s = (si | i ≥ 0),
iff ϕ holds on every substream (si | i ≥ n) for n ≥ 0. If we rather start with
ψ : A, one first need to lift it to [hd]ψ : Strg A. Then �[hd]ψ means that all the
elements of the stream satisfies ψ, since all its suffixes satisfy [hd]ψ.

Table 1 summarizes the different judgments used in this paper.
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Beyond Safety. In order to handle liveness properties, we also need to have
least fixpoints formulae μαϕ. For example, this would give the eventually modal-
ity �ϕ := μα. ϕ∨©α. With Kozen-style rules, one could then give the following
two types to the guarded stream constructor:

Consg : {A | ϕ} −→ � Strg A −→ {Strg A | �[hd]ϕ}
Consg : A −→ � {Strg A | �[hd]ϕ} −→ {Strg A | �[hd]ϕ}

But consider a finite base type B with two distinguished elements a, b, and sup-
pose that we have access to a modality [b] on B so that terms inhabiting {B | [b]}
must be equal to b. Using the above types for Consg, we could type the stream
with constant value a, defined as fix(s).a ::g s, with the type {Strg B | �[hd][b]}
that is supposed to enforce the existence of an occurrence of b in the stream. Sim-
ilarly, on colists we would have fix(s).a ::g s of type {CoListg B | �[nil]}, while
�[nil] expresses that a colist will eventually contain a nil, and is thus finite.
Hence, liveness properties may interact quite badly with guarded recursion. Let
us look at this in a semantic model of guarded recursion.

Internal Semantics in the Topos of Trees. The types of the guarded λ-
calculus can be interpreted as sequences of sets (X(n))n>0 whereX(n) represents
the values available “at time n”. In order to interpret guarded recursion, one also
needs to have access to functions rXn : X(n+ 1) → X(n), which tell how values
“at n+1” can be restricted (actually most often truncated) to values “at n”. This
means that the objects used to represent types are in fact presheaves over the
poset (N \ {0},≤). The category S of such presheaves is the topos of trees [13].
For instance, the type Strg B of guarded streams over a finite base type B is
interpreted in S as (Bn)n>0 , with restriction maps taking (b0, . . . , bn−1, bn) to
(b0, . . . , bn−1). We write �A� for the interpretation of a type A in S.

The Necessity of an External Semantics. The topos of trees cannot cor-
rectly handle liveness properties. For instance, the formula �[hd][b] cannot de-
scribe in S the set of streams that contain at least one occurrence of b. Indeed,
the interpretation of �[hd][b] in S is a sequence (C(n))n>0 with C(n) ⊆ Bn. But
any element of Bn can be extended to a stream which contains an occurrence
of b. Hence C(n) should be equal to Bn, and the interpretation of �[hd][b] is
the whole �Strg B�. More generally, guarded fixpoints have unique solutions in
the topos of trees [13], and �ϕ = μα. ϕ ∨©ϕ gets the same interpretation as
να. ϕ ∨©α.

We thus have a formal system with least and greatest fixpoints, that has a
semantics inside the topos of trees, but which does not correctly handle least
fixpoints. On the other hand, it was shown by [50] that the interpretation of
guarded polynomial (i.e. first-order) recursive types in S induces final coalgebras
for the corresponding polynomial functors on the category Set of usual sets and
functions. This applies e.g. to streams and colists. Hence, it makes sense to think
of interpreting least fixpoint formulae over such types externally, in Set.
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S Set

�ϕ� subobject of �A� {|ϕ|} subset of Γ �A�

Internal External
Γ

Δ

�ν ν, μ

��A� := ΔΓ �A�
�[box]ϕ� := Δ {|ϕ|} (ϕ : A, [box]ϕ : �A)

{|ϕ|} = Γ �ϕ� (if ϕ is safe)

Fig. 2. Internal and External Semantics

The Constant Type Modality. Figure 2 represents adjoint functors Γ : S →
Set and Δ : Set → S. To correctly handle least fixpoints μαϕ : A, we would like
to see them as subsets of Γ �A� in Set rather than subobjects of �A� in S. On
the other hand, the internal semantics in S is still necessary to handle definitions
by guarded recursion. We navigate between the internal semantics in S and the
external semantics in Set via the adjunction Δ . Γ . This adjunction induces a
comonad ΔΓ on S, which is represented in the guarded λ-calculus of [18] by the
constant type modality �. This gives coinductive versions of guarded recursive
types, e.g. StrA := � Strg A for streams and CoListA := �CoListg A for colists,
which allow for productive but not causal programs [18, Ex. 1.10.(3)].

Each formula gets two interpretations: �ϕ� in S and {|ϕ|} in Set. The external
semantics {|ϕ|} handles least fixpoints in the standard set-theoretic way, thus the
two interpretations differ in general. But we do have {|ϕ|} = Γ �ϕ� when ϕ is safe
(Def. 6.5), that is, when ϕ describes a safety property. We have a modality [box]ϕ
which lifts ϕ : A to �A. By defining �[box]ϕ� := Δ {|ϕ|}, we correctly handle
the least fixpoints which are guarded by a [box] modality. When ϕ is safe, we
can navigate between {�A | [box]ϕ} and � {A | ϕ}, thus making available the
comonad structure of � on [box]ϕ. Note that [box] is unrelated to �.

Approximating Least Fixpoints. For proving liveness properties on func-
tions defined by guarded recursion, one needs to navigate between e.g. [box]�ϕ
and �ϕ, while �ϕ is in general unsafe. The fixpoint �ϕ = μα.ϕ ∨ ©α is
alternation-free (see e.g. [16, §4.1]). This implies that �ϕ can be seen as the
supremum of the ©mϕ for m ∈ N, where each ©mϕ is safe when ϕ is safe. More
generally, we can approximate alternation-free μαϕ by their finite unfoldings
ϕm(⊥), à la Kleene. We extend the logic with finite iterations μkαϕ, where k is
an iteration variable, and where μkαϕ is seen as ϕk(⊥). Let �kϕ := μkα. ϕ∨©α.
If ϕ is safe then so is �kϕ. For safe ϕ, ψ, we have the following refinement typings
for the guarded recursive mapg and its coinductive lift map:

mapg : ({B | ψ} → {A | ϕ}) →
{
Strg B

∣∣ �k[hd]ψ
}

→
{
Strg A

∣∣ �k[hd]ϕ
}

map : ({B | ψ} → {A | ϕ}) → {StrB | [box]�[hd]ψ} → {StrA | [box]�[hd]ϕ}

3 The Pure Calculus

Our system lies on top of the guarded λ-calculus of [18]. We briefly review it
here. We consider values and terms from the grammar given in Fig. 3 (left). In
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v ::= M,N ::= v | x E ::= •
| λx.M | MN | EM
| 〈M0,M1〉 | π0(M) | π0(E)
| 〈〉 | π1(M) | π1(E)
| in0(M) | caseM of | caseE of
| in1(M) (x.M0|x.M1) (x.M0|x.M1)
| fold(M) | unfold(M) | unfold(E)
| boxσ(M) | unbox(M) | unbox(E)
| next(M) | prevσ(M) | prev[](E)

| M �N | E �M
| fix(x).M | v � E

(λx.M)N � M [N/x]
πi(〈M0,M1〉) � Mi

case ini(M) of (x.N0|x.N1) � Ni[M/x]
unfold(fold(M)) � M

fix(x).M � M [next(fix(x).M)/x]
next(M)� next(N) � next(MN)

unbox(boxσ(M)) � Mσ
prev[](next(M)) � M

prevσ(M) � prev[](Mσ) (σ �= [])

M � N

E[M ] � E[N ]

Fig. 3. Syntax and Operational Semantics of the Pure Calculus.

both boxσ(M) and prevσ(M), σ is a delayed substitution of the form σ = [x1 �→
M1, . . . , xk �→ Mk] and such that boxσ(M) and prevσ(M) bind x1, . . . , xk in M .
We use the following conventions of [18]: box(M) and prev(M) (without indicated
substitution) stand resp. for box[](M) and prev[](M) i.e. bind no variable of M .
Moreover, boxι(M) stands for box[x1 "→x1,...,xk "→xk](M) where x1, . . . , xk is a list
of all free variables of M , and similarly for prevι(M). We consider the weak
call-by-name reduction of [18], recalled in Fig. 3 (right).

Pure types (notation A,B, etc.) are the closed types over the grammar

A ::= 1 | A+A | A×A | A → A | �A | X | Fix(X).A | �A

where, (1) in the case Fix(X).A, each occurrence of X in A must be guarded by a
�, and (2) in the case of �A, the type A is closed (i.e. has no free type variable).
Guarded recursive types are built with the fixpoint constructor Fix(X).A, which
allows for X to appear in A both at positive and negative positions, but only
under a �. In this paper we shall only consider positive types.

Example 3.1. We can code a finite base type B = {b1, . . . , bn} as a sum of
unit types

∑n
i=1 1 = 1 + (· · · + 1), where the ith component of the sum is

intended to represent the element bi of B. At the term level, the elements of B
are represented as compositions of injections inj1(inj2(. . . inji〈〉)). For instance,
Booleans are represented by Bool := 1+ 1, with tt := in0(〈〉) and ff := in1(〈〉).

Example 3.2. Besides streams (Strg A), colists (CoListg A), conatural numbers
(CoNatg) and infinite binary trees (Treeg A), we consider a type Resg A of re-
sumptions (parametrized by I, O) adapted from [44], and a higher-order recursive
type Roug A, used in Martin Hofmann’s breadth-first tree traversal (see e.g. [10]):

Treeg A := Fix(X). A× (�X ×�X) CoNatg := Fix(X). 1+�X
Resg A := Fix(X). A+ (I → (O×�X)) Roug A := Fix(X). 1+ ((�X → �A) → A)

Some typing rules of the pure calculus are given in Fig. 4, where a pure type A
is constant if each occurrence of � in A is guarded by a �. The omitted rules
are the standard ones for simple types with finite sums and products [28, §A].
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E � M : A[Fix(X).A/X]

E � fold(M) : Fix(X).A

E � M : Fix(X).A

E � unfold(M) : A[Fix(X).A/X]

E � M : �(B → A) E � N : �B

E � M �N : �A

E � M : A

E � next(M) : �A

x1 : A1, . . . , xk : Ak � M : �A E � Mi : Ai with Ai constant for 1 ≤ i ≤ k

E � prev[x1 →M1,...,xk →Mk]
(M) : A

x1 : A1, . . . , xk : Ak � M : A E � Mi : Ai with Ai constant for 1 ≤ i ≤ k

E � box[x1 →M1,...,xk →Mk](M) : �A

E � M : �A

E � unbox(M) : A

Fig. 4. Typing Rules of the Pure Calculus (excerpt).

Example 3.3. Figure 1 defines some operations on guarded streams. On other
types of Ex. 3.2, we have e.g. the constructors of colists Nilg := fold(in0〈〉) :
CoListg A and Consg := λx.λxs.fold(in1〈x, xs〉) : A → �CoListg A → CoListg A.
Infinite binary trees Treeg A have operations songd : Treeg A → �Treeg A for d ∈
{�, r}, Nodeg : A → �Treeg A → �Treeg A → Treeg A and labelg : Treeg A → A.

Example 3.4. Coinductive types are guarded recursive types under a �. For
instance StrA := � Strg A, CoListA := �CoListg A, CoNat := �CoNatg and
ResA := �Resg A, with A, I, O constant. Basic operations on guarded types lift
to coinductive ones. For instance

Cons := λx.λs.boxι
(
Consg x next(unbox s)

)
: A → StrA → StrA

hd := λs.hdg (unbox s) : StrA → A
tl := λs.boxι

(
prevι(tl

g (unbox s))
)

: StrA → StrA

These definitions follow a general pattern to lift a function over a guarded re-
cursive type into one over its coinductive version, by performing an η-expansion
with some box and unbox inserted in the right places. For example, one can define
the map function on coinductive streams as:

map := λf.λs.boxι
(
mapg f (unbox s)

)
: (B → A) −→ StrB −→ StrA

4 A Temporal Modal Logic

We present here a logic of (modal) temporal specifications. We focus on syntactic
aspects. The semantics is discussed in §7. For the moment the logic has only one
form of fixpoints (ναϕ). It is extended with least fixpoints (μαϕ) in §6.

Manysorted Modal Temporal Formulae. The main ingredient of this pa-
per is the logical language we use to annotate pure types when forming re-
finement types. This language, that we took with minor adaptations from [30],
is manysorted : for each pure type A we have formulae ϕ of type A (notation
� ϕ : A). The formulation rules of formulae are given in Fig. 5.

Example 4.1. Given a finite base type B = {b1, . . . , bn} as in Ex. 3.1, with ele-
ment bi represented by inj1(inj2(. . . inji〈〉)), the formula [inj1 ][inj2 ] . . . [inji ]� rep-
resents the singleton subset {bk} of B. On Bool, we have the formulae [tt] :=
[in0]� and [ff] := [in1]� representing resp. tt and ff.
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(α : A) ∈ Σ

Σ � α : A Σ � ⊥ : A Σ � � : A

Σ � ϕ : A

Σ,α : B � ϕ : A

Σ � ϕ : A Σ � ψ : A

Σ � ϕ ⇒ ψ : A

Σ � ϕ : A Σ � ψ : A

Σ � ϕ ∧ ψ : A

Σ � ϕ : A Σ � ψ : A

Σ � ϕ ∨ ψ : A

Σ � ϕ : Ai

Σ � [πi]ϕ : A0 ×A1

Σ � ϕ : Ai

Σ � [ini]ϕ : A0 +A1

Σ � ψ : B Σ � ϕ : A

Σ � [ev(ψ)]ϕ : B → A

Σ � ϕ : A[Fix(X).A/X]

Σ � [fold]ϕ : Fix(X).A

Σ � ϕ : A

Σ � [next]ϕ : �A

� ϕ : A

� [box]ϕ : �A

(ν-F)
Σ,α : A � ϕ : A α Pos ϕ

Σ � ναϕ : A
(α guarded in ϕ)

Fig. 5. Formation Rules of Formulae (where A, B are pure types).

Example 4.2. (a) The formula [hd][a] ⇒ ©[hd][b] means that if the head of a
stream is a, then its second element (the head of its tail) should be b.

(b) On colists, we let [hd]ϕ := [fold][in1][π0]ϕ and ©ψ := [fold][in1][π1][next]ψ.
(c) On (guarded) infinite binary trees over A, we also have a modality [lbl]ϕ :=

[fold][π0]ϕ : Treeg A (provided ϕ : A). Moreover, we have modalities ©� and
©r defined on formulae ϕ : Treeg A as ©�ϕ := [fold][π1][π0][next]ϕ and
©rϕ := [fold][π1][π1][next]ϕ. Intuitively, [lbl]ϕ should hold on a tree t over
A iff the root label of t satisfies ϕ, and ©�ϕ (resp. ©rϕ) should hold on t
iff ϕ holds on the left (resp. right) immediate subtree of t.

Formulae have fixpoints ναϕ. The rules of Fig. 5 thus allow for the formation
of formulae with free typed propositional variables (ranged over by α, β, . . . ),
and involve contexts Σ of the form α1 : A1, . . . , αn : An. In the formation of a
fixpoint, the side condition “α guarded in ϕ” asks that each occurrence of α is
beneath a [next] modality. Because we are ultimately interested in the external
set-theoretic semantics of formulae, we assume a usual positivity condition of α
in ϕ. It is defined with relations α Pos ϕ and α Neg ϕ (see [28, §B]). We just
mention here that [ev(−)](−) is contravariant in its first argument. Note that
[box]ϕ can only be formed for closed ϕ.

Example 4.3. (a) The modality � makes it possible to express a range of safety
properties. For instance, assuming ϕ,ψ : Strg A, the formula �(ψ ⇒ © ϕ)
is intended to hold on a stream s = (si | i ≥ 0) iff, for all n ∈ N, if (si | i ≥ n)
satisfies ψ, then (si | i ≥ n+ 1) satisfies ϕ.

(b) The modality � has its two CTL-like variants on Treeg A, namely ∀�ϕ :=
να. ϕ ∧ (©�α ∧©rα) and ∃�ϕ := να. ϕ ∧ (©�α ∨©rα). Assuming ψ : A,
∀�[lbl]ψ is intended to hold on a tree t : Treeg A iff all node-labels of t satisfy
ψ, while ∃�[lbl]ψ holds on t iff ψ holds on all nodes of some infinite path
from the root of t.
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Name Formulation [πi] [fold] [next] [ini] [ev(ψ)] [box] [hd] ©

(RM)
� ψ ⇒ ϕ

� [+]ψ ⇒ [+]ϕ
� � � � � � � �

(C) [+]ϕ ∧ [+]ψ =⇒ [+](ϕ ∧ ψ) � � � � � � � �

(N) [+]� � � � � � � �
(P) [+]⊥ =⇒ ⊥ � � (C) � � � (C)

(C∨) [+](ϕ ∨ ψ) =⇒ [+]ϕ ∨ [+]ψ � � � � � � �
(C⇒) ([+]ψ ⇒ [+]ϕ) ⇒ [+](ψ ⇒ ϕ) � � (C) � � (C)

Table 2. Modal Axioms and Rules. Types are omitted in � and (C) marks axioms
assumed for �c but not for �. Properties of the non-atomic [hd] and © are derived.

Modal Theories. Formulae are equipped with a modal deduction system which
enters the type system via a subtyping relation (§5). For each pure type A, we
have an intuitionistic theory �A (the general case) and a classical theory �A

c

(which is only assumed under �/[box]), summarized in Fig. 6 and Table 2 (where
we also give properties of the derived modalities [hd], ©). In any case, �A

(c) ϕ is

only defined when � ϕ : A (and so when ϕ has no free propositional variable).

Fixpoints ναϕ are equipped with their usual Kozen axioms [43]. The atomic
modalities [πi], [fold], [next], [ini] and [box] have deterministic branching (see
Fig. 12, §7). We can get the axioms of the intuitionistic (normal) modal logic
IK [56] (see also e.g. [60,48]) for [πi], [fold] and [box] but not for [ini] nor for the
intuitionistic [next]. For [next], in the intuitionistic case this is due to semantic
issues with step indexing (discussed in §7) which are absent from the classical
case. As for [ini], we have a logical theory allowing for a coding of finite base
types as finite sum types, which allows to derive, for a finite base type B:

�B
∨

a∈B

(
[a] ∧

∧
b∈B
b�=a

¬[b]
)

Definition 4.4 (Modal Theories). For each pure type A, the intuitionistic
and classical modal theories �A ϕ and �A

c ϕ (where � ϕ : A) are defined by
mutual induction:

– The theory �A is deduction for intuitionistic propositional logic augmented
with the check-marked (�) axioms and rules of Table 2 and the axioms and
rules of Fig. 6 (for �A).

– The theory �A
c is �A augmented with the axioms (P) and (C⇒) for [next] and

with the axiom (CL) (Fig. 6).

For example, we have �Strg A �ψ ⇒ (ψ ∧©�ψ) and �Strg A (ψ ∧©�ψ) ⇒ �ψ.
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�B ψ ⇒ φ � ϕ : A

�B→A [ev(φ)]ϕ ⇒ [ev(ψ)]ϕ �B→A ([ev(ψ0)]ϕ ∧ [ev(ψ1)]ϕ) ⇒ [ev(ψ0 ∨ ψ1)]ϕ

�A
c ((ϕ ⇒ ψ) ⇒ ϕ) ⇒ ϕ

(CL)
�A
c ϕ

��A [box]ϕ �A0+A1
(
[in0]� ∨ [in1]�

)
∧ ¬

(
[in0]� ∧ [in1]�

)
�A0+A1 ([ini]�) ⇒ (¬[ini]ϕ ⇔ [ini]¬ϕ) �A ναϕ ⇒ ϕ[ναϕ/α]

�A ψ ⇒ ϕ[ψ/α]

�A ψ ⇒ ναϕ

Fig. 6. Modal Axioms and Rules.

T ≤ |T | A ≤ {A | �}
�A ϕ ⇒ ψ

{A | ϕ} ≤ {A | ψ}
�A
c ϕ ⇒ ψ

{�A | [box]ϕ} ≤ {�A | [box]ψ}

{�A | [next]ϕ} ≡ � {A | ϕ} {B → A | [ev(ψ)]ϕ} ≡ {B | ψ} → {A | ϕ}

Fig. 7. Subtyping Rules (excerpt).

5 A Temporally Refined Type System

Temporal refinement types (or types), notation T, U, V, etc., are defined by:

T, U ::= A | {A | ϕ} | T + T | T × T | T → T | �T | �T

where � ϕ : A and, in the case of �T , the type T has no free type variable. So
types are built from (closed) pure types A and temporal refinements {A | ϕ}.
They allow for all the type constructors of pure types.

As a refinement type {A | ϕ} intuitively represents a subset of the inhabitants
of A, it is natural to equip our system with a notion of subtyping. In addition
to the usual rules for product, arrow and sum types, our subtyping relation is
made of two more ingredients. The first follows the principle that our refinement
type system is meant to prove properties of programs, and not to type more
programs, so that (say) a type of the form {A | ϕ} → {B | ψ} is a subtype of
A → B. We formalize this with the notion of underlying pure type |T | of a type
T . The second ingredient is the modal theory �A ϕ of §4. The subtyping rules
concerning refinements are given in Fig. 7, where T ≡ U enforces both T ≤ U
and U ≤ T . The full set of rules is given in [28, §C]. Notice that subtyping does
not incorporate (un)folding of guarded recursive types.

Typing for refinement types is given by the rules of Fig. 8, together with the
rules of §3 extended to refinement types, where T is constant if |T | is constant.
Modalities [πi], [ini], [fold] and [ev(−)] (but not [next]) have introduction rules
extending those of the corresponding term formers.
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(Pii-I)
E � Mi : {Ai | ϕ} E � M1−i : A1−i

E � 〈M0,M1〉 : {A0 ×A1 | [πi]ϕ}
(Pii-E)

E � M : {A0 ×A1 | [πi]ϕ}
E � πi(M) : {Ai | ϕ}

(Ev-I)
E , x : {B | ψ} � M : {A | ϕ}

E � λx.M : {B → A | [ev(ψ)]ϕ} (Ev-E)
E � M : {B → A | [ev(ψ)]ϕ} E � N : {B | ψ}

E � MN : {A | ϕ}

(Fd-I)
E � M : {A[Fix(X).A/X] | ϕ}

E � fold(M) : {Fix(X).A | [fold]ϕ} (Fd-E)
E � M : {Fix(X).A | [fold]ϕ}

E � unfold(M) : {A[Fix(X).A/X] | ϕ}

(Inji-E)
E � M : {A0 +A1 | [ini]ϕ} E , x : {Ai | ϕ} � Ni : U E , x : A1−i � N1−i : U

E � caseM of (x.N0|x.N1) : U

(∨-E)

for i ∈ {0, 1},
E � M : {A | ϕ0 ∨ ϕ1} E , x : {A | ϕi} � N : U

E � N [M/x] : U
(Inji-I)

E � M : {Ai | ϕ}
E � ini(M) : {A0 +A1 | [ini]ϕ}

(MP)
E � M : {A | ψ ⇒ ϕ} E � M : {A | ψ}

E � M : {A | ϕ} (ExF)
E � M : {A | ⊥} E � N : |U |

E � N : U

(Sub)
E � M : T T ≤ U

E � M : U

Fig. 8. Typing Rules for Refined Modal Types.

Example 5.1. Since ϕ ⇒ ψ ⇒ (ϕ ∧ ψ) and using two times the rule (MP), we
get the first derived rule below, from which we can deduce the second one:

E � M : {A | ϕ} E � M : {A | ψ}
E � M : {A | ϕ ∧ ψ}

E � M : {A | ϕ} E � N : {B | ψ}
E � 〈M,N〉 : {A×B | [π0]ϕ ∧ [π1]ψ}

Example 5.2. We have the following derived rules:

E � M : {Strg A | �ϕ}
E � M : {Strg A | ϕ ∧©�ϕ} and

E � M : {Strg A | ϕ ∧©�ϕ}
E � M : {Strg A | �ϕ}

Example 5.3. We have Consg : A → � {Strg A | ϕ} → {Strg A | ©ϕ} as well as
tlg : {Strg A | ©ϕ} → � {Strg A | ϕ}.
Example 5.4 (“Always” (�) on Guarded Streams). The refined types of Consg,
hdg, tlg and mapg mentioned in §2 are easy to derive. We also have the type

{Strg A | �[hd]ϕ0} −→ {Strg A | �[hd]ϕ1} −→ {Strg A | �([hd]ϕ0 ∨ [hd]ϕ1)}

for the mergeg function which takes two guarded streams and interleaves them:

mergeg : Strg A −→ Strg A −→ Strg A
:= fix(g).λs0.λs1. (hd

g s0) ::
g next

(
(hdg s1) ::

g (g � (tlg s0)� (tlg s1))
)

6 The Full System

The system presented so far has only one form of fixpoints in formulae (ναϕ).
We now present our full system, which also handles least fixpoints (μαϕ) and
thus liveness properties. A key role is played by polynomial guarded recursive
types, that we discuss first.
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(μ-F)
Σ,α : A � ϕ : A

Σ � μαϕ : A

Σ,α : A � ϕ : A

Σ � μtαϕ : A

Σ,α : A � ϕ : A

Σ � νtαϕ : A

Fig. 9. Extended Formation Rules of Formulae (with α Pos ϕ and α guarded in ϕ).

�A ϕ[μαϕ/α] ⇒ μαϕ

�A ϕ[ψ/α] ⇒ ψ

�A μαϕ ⇒ ψ

�A θt+1αϕ ⇔ ϕ[θtαϕ/α] �A μ0αϕ ⇔ ⊥ �A ν0αϕ ⇔ �

�t� ≤ �u�
�A μtαϕ ⇒ μuαϕ �A μtαϕ ⇒ μαϕ

�t� ≥ �u�
�A νtαϕ ⇒ νuαϕ �A ναϕ ⇒ νtαϕ

Fig. 10. Extended Modal Axioms and Rules (with A a pure type and θ either μ or ν ).

Strictly Positive and Polynomial Types. Strictly positive types (notation
P+, Q+, etc.) are given by

P+ ::= A | X | �P+ | P+ + P+ | P+ × P+ | Fix(X).P+ | B → P+

where A, B are (closed) constant pure types. Strictly positive types are a conve-
nient generalization of polynomial types. A guarded recursive type Fix(X).P (X)
is polynomial if P (X) is induced by

P (X) ::= A | �X | P (X) + P (X) | P (X)× P (X) | B → P (X)

where A, B are (closed) constant pure types. Note that if Fix(X).P (X) is poly-
nomial, X cannot occur on the left of an arrow (→) in P (X). We say that
Fix(X).P (X) (resp. P+) is finitary polynomial (resp. finitary strictly positive)
if B is a finite base type (see Ex. 3.1) in the above grammars. The set-theoretic
counterpart of our polynomial recursive types are the exponent polynomial func-
tors of [31], which all have final Set-coalgebras (see e.g. [31, Cor. 4.6.3]).

Example 6.1. For A a constant pure type, e.g. Strg A, CoListg A and Treeg A as
well as Strg(StrA), CoListg(StrA) and Resg A (with I, O constant) are polyno-
mial. More generally, polynomial types include all recursive types Fix(X).P (X)
where P (X) is of the form

∑n
i=0 Ai × (�X)Bi with Ai, Bi constant. The non-

strictly positive recursive type Roug A of Ex. 3.2, used in Hofmann’s breadth-first
traversal (see e.g. [10]), is not polynomial.

The Full Temporal Modal Logic. We assume given a first-order signature
of iteration terms (notation t, u, etc.), with iteration variables k, �, etc., and for
each iteration term t(k1, . . . , km) with variables as shown, a given primitive
recursive function �t� : Nm → N. We assume a term 0 for 0 ∈ N and a term k+1
for the successor function n ∈ N �→ n+ 1 ∈ N.
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The formulae of the full temporal modal logic extend those of Fig. 5 with least
fixpoints μαϕ and with approximated fixpoints μtαϕ and νtαϕ where t is an
iteration term. The additional formation rule for formulae are given in Fig. 9. We
use θ as a generic notation for μ and ν. Least fixpoints μαϕ are equipped with
their usual Kozen axioms. In addition, iteration formulae νtαϕ(α) and μtαϕ(α)
have axioms expressing that they are indeed iterations of ϕ(α) from resp. � and
⊥. A fixpoint logic with iteration variables was already considered in [63].

Definition 6.2 (Full Modal Theories). The full intuitionistic and classical
modal theories (still denoted �A and �A

c ) are defined by extending Def. 4.4 with
the axioms and rules of Fig. 10.

Example 6.3. Least fixpoints allow us to define liveness properties. On streams
and colists, we have �ϕ := μα. ϕ ∨ ©α and ϕ U ψ := μα. ψ ∨ (ϕ ∧ ©α).
On trees, we have the CTL-like ∃�ϕ := μα. ϕ ∨ (©�α ∨ ©rα) and ∀�ϕ :=
μα. ϕ ∨ (©�α ∧©rα). The formula ∃�ϕ is intended to hold on a tree if there
is a finite path which leads to a subtree satisfying ϕ, while ∀�ϕ is intended to
hold if every infinite path crosses a subtree satisfying ϕ.

Remark 6.4. On finitary trees (as in Ex. 6.1 but with Ai, Bi finite base types),
we have all formulae of the modal μ-calculus. For this fragment, satisfiability is
decidable (see e.g. [16]), as well as the classical theory �c by completeness of
Kozen’s axiomatization [68] (see [58] for completeness results on fragments of
the μ-calculus).

The Safe and Smooth Fragments. We now discuss two related but dis-
tinct fragments of the temporal modal logic. Both fragments directly impact the
refinement type system by allowing for more typing rules.

The safe fragment plays a crucial role, because it reconciles the internal and
external semantics of our system (see §7). It gives subtyping rules for � (Fig. 11),
which makes available the comonad structure of � on [box]ϕ when ϕ is safe.

Definition 6.5 (Safe Formula). Say α1 : A1, . . . , αn : An � ϕ : A is safe if

(i) the types A1, . . . , An, A are strictly positive, and
(ii) for each occurrence in ϕ of a modality [ev(ψ)], the formula ψ is closed, and
(iii) each occurrence in ϕ of a least fixpoint (μα(−)) and of an implication (⇒)

is guarded by a [box].

Note that the safe restriction imposes no condition on approximated fixpoints
θtα. Recalling that the theory under a [box] is �A

c , the only propositional connec-
tives accessible to �A in safe formulae are those on which �A and �A

c coincide.
The formula [¬nil] = [fold][in1]� is safe. Moreover:

Example 6.6. Any formula without fixpoint nor [ev(−)] is equivalent in �c to a
safe one. It ϕ is safe, then so are [hd]ϕ, [lbl]ϕ, as well as<ϕ (for< ∈ {�, ∀�, ∃�})
and [box]<ϕ (for < ∈ {�, ∃�, ∀�}).
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Definition 6.7 (Smooth Formula). A formula α1 : A1, . . . , αn : An � ϕ : A
is smooth if

(i) the types A1, . . . , An, A are finitary strictly positive, and
(ii) for each occurrence in ϕ of a modality [ev(ψ)], the formula ψ is closed, and
(iii) ϕ is alternation-free: for θ, θ′ ∈ {μ, ν}, (1) if θβ0ψ0 is a subformula of ϕ,

and θ′β1ψ1 is a subformula of ψ0 s.t. β0 occurs free in ψ1, then θ = θ′, (2)
if some αi occurs in two subformulae θβ0ψ0 and θ′β1ψ1 of ϕ, then θ = θ′,
and (3) if some αi occurs in a subformula θ′βψ of ϕ, then αi Pos ψ.

Our notion of alternation freedom is adapted from [16], in which propositional
(fixpoint) variables are always positive. Note that the smooth restriction imposes
no further conditions on approximated fixpoints θtα. In the smooth fragment,
greatest and least fixpoints can be thought about resp. as∧

m∈N
ϕm(�) and

∨
m∈N

ϕm(⊥)

Iteration terms allow for formal reasoning about such unfoldings. Assuming �t� =
m ∈ N, the formula νtαϕ(α) (resp. μtαϕ(α)) can be read as ϕm(�) (resp.
ϕm(⊥)). This gives the rules (ν-I) and (μ-E) (Fig. 11), which allow for reductions
to the safe case (see examples in §8).

Remark 6.8. It is well-known (see e.g. [16, §4.1]) that on finitary trees (see
Rem. 6.4) the alternation-free fragment is equivalent to Weak MSO (MSO with
second-order variables restricted to finite sets). In the case of streams Str B (for a
finite base type B), Weak MSO is in turn equivalent to the full modal μ-calculus.
In particular, the alternation-free fragment contains all the flat fixpoints of [58]
and thus LTL on Str B and CTL on Tree B and on Res B with I, O, B finite base
types. A typical property on Tree B which cannot be expressed with alternation-
free formulae is “there is an infinite path with infinitely many occurrences of b”
for a fixed b : B (see e.g. [16, §2.2]).

Example 6.9. Any formula without fixpoint nor [ev(−)] is smooth. It ϕ is smooth,
then so are [hd]ϕ, [lbl]ϕ and <ϕ for < ∈ {�, ∀�, ∃�,�, ∃�, ∀�}.

The Full System. We extend the types of §5 with universal quantification over
iteration variables (∀k · T ). The type system of §5 is extended with the rules of
Fig. 11.

Example 6.10. The logical rules of Fig. 10 give the following derived typing rules
(where β Pos γ):

(μ-I)
E � M : {�A | [box]γ[μtαϕ/β]}
E � M : {�A | [box]γ[μαϕ/β]} (ν-E)

E � M : {�A | [box]γ[ναϕ/β]}
E � M : {�A | [box]γ[νtαϕ/β]}
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ϕ safe

{�A | [box]ϕ} ≡ � {A | ϕ} ∀k ·�T ≡ �∀k · T

(∀-I) E � M : T

E � M : ∀k · T (∀-CI)
E � M : T [0/k] E � M : T [k+1/k]

E � M : ∀k · T

(ν-I)
E � M :

{
�A

∣∣ [box]γ[ν�αψ/β]
}

E � M : {�A | [box]γ[ναψ/β]} (∀-E) E � M : ∀k · T
E � M : T [t/k]

(μ-E)
E � M : {�A | [box]γ[μαψ/β]} E , x :

{
�A

∣∣ [box]γ[μ�αψ/β]
}
� N : U

E � N [M/x] : U

Fig. 11. Extended (Sub)Typing Rules for Refinement Types (where k is not free in E
in (∀-I) & (∀-CI), � is fresh in (ν-I) & (μ-E), θαψ and γ are smooth, and β Pos γ).

7 Semantics

We present the main ingredients of the semantics of our type system. We take
as base the denotational semantics of guarded recursion in the topos of trees.

Denotational Semantics in the Topos of Trees. The topos of trees S pro-
vides a natural model of guarded recursion [13]. Formally, S is the category
of presheaves over (N \ {0},≤). In words, the objects of S are indexed sets
X = (X(n))n>0 equipped with restriction maps rXn : X(n + 1) → X(n). Ex-
cluding 0 from the indexes is a customary notational convenience ([13]). The
morphisms from X to Y are families of functions f = (fn : X(n) → Y (n))n>0

which commute with restriction, that is fn◦rXn = rYn ◦fn+1. As any presheaf cat-
egory, S has (pointwise) limits and colimits, and is Cartesian closed (see e.g. [47,
§I.6]). We write Γ : S → Set for the global section functor, which takes X to
S[1, X], the set of morphisms 1 → X in S, where 1 = ({•})n>0 is terminal in S.

A typed term E � M : T is to be interpreted in S as a morphism

�M� : �|E|� −→ �|T |�

where �|E|� = �|T1|� × · · · × �|Tn|� for E = x1 : T1, . . . , xn : Tn. In particular, a
closed term M : T is to be interpreted as a global section �M� ∈ Γ �|T |�. The
×/+ / → fragment of the calculus is interpreted by the corresponding structure
in S. The�modality is interpreted by the functor � : S → S of [13]. This functor
shifts indexes by 1 and inserts a singleton set 1 at index 1. The term constructor
next is interpreted by the natural map with component nextX : X → �X as in

X

nextX

��

X1

1

��

X2

rX1��

rX1
��

Xn

rXn−1

��

�� Xn+1

rXn��

rXn
��

��

�X 1 X1
1

�� Xn−1
�� Xn

rXn−1

�� ��
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{|[πi]ϕ|} := {x ∈ Γ �A0 ×A1� | πi ◦ x ∈ {|ϕ|}} {|[next]ϕ|} := {next ◦ x ∈ Γ ��A� | x ∈ {|ϕ|}}
{|[fold]ϕ|} := {x ∈ Γ �Fix(X).A� | unfold ◦ x ∈ {|ϕ|}} {|[box]ϕ|} := {x ∈ Γ ��A� | x1(•) ∈ {|ϕ|}}
{|[ini]ϕ|} :=

{
x ∈ Γ �A0 +A1�

∣∣ ∃y ∈ Γ �Ai�
(
x = ini ◦ y and y ∈ {|ϕ|}

)}
{|[ev(ψ)]ϕ|} :=

{
x ∈ Γ �B → A�

∣∣ ∀y ∈ Γ �B�
(
y ∈ {|ψ|} =⇒ ev ◦ 〈x, y〉 ∈ {|ϕ|}

)}
Fig. 12. External Semantics (for closed formulae).

The guarded fixpoint combinator fix is interpreted by the morphism fixX :
X�X → X of [13, Thm. 2.4].

The constant type modality � is interpreted as the comonad ΔΓ : S → S,
where the left adjoint Δ : Set → S is the constant object functor, which takes a
set S to the constant family (S)n>0. In words, all components ��A�(n) are equal
to Γ �A�, and the restriction maps of ��A� are identities. In particular, a global
section x ∈ Γ ��A� is a constant family (xn)n describing a unique global section
xn+1(•) = xn(•) ∈ Γ �A�. We refer to [18] and [28, §D] for the interpretation of
prev, box and unbox. Just note that the unit η : IdSet → ΓΔ is an iso.

Together with an interpretation of guarded recursive types, this gives a deno-
tational semantics of the pure calculus of §3. See [13,18] for details. We write fold :
�A[Fix(X).A/X]� → �Fix(X).A� and unfold : �Fix(X).A� → �A[Fix(X).A/X]� for
the two components of the iso �Fix(X).A� = �A[Fix(X).A/X]�.

External Semantics. Møgelberg [50] has shown that for polynomial types
such as Strg B with B a constant type, the set of global sections Γ �Strg B� is
equipped with the usual final coalgebra structure of streams over B in Set. To
each polynomial recursive type Fix(X).P (X), we associate a polynomial functor
PSet : Set → Set in the obvious way.

Theorem 7.1 ([50] (see also [18])). If Fix(X).P (X) is polynomial, then the
set Γ �Fix(X).P (X)� carries a final Set-coalgebra structure for PSet.

We devise a Set interpretation {|ϕ|} ∈ P(Γ �A�) of formulae ϕ : A. We
rely on the (complete) Boolean algebra structure of powersets for propositional
connectives and on Knaster-Tarski Fixpoint Theorem for fixpoints μ and ν.
The interpretations of νtαϕ(α) and μtαϕ(α) (for t closed) are defined to be
the interpretations resp. of ϕ�t�(�) and ϕ�t�(⊥), where e.g. ϕ0(�) := � and
ϕn+1(�) := ϕ(ϕn(�)). We give the cases of the atomic modalities in Fig. 12
(where for simplicity we assume formulae to be closed). It can be checked that,
when restricting to polynomial types, one gets the coalgebraic semantics of [30]
(with sums as in [31]) extended to fixpoints.

Internal Semantics of Formulae. We would like to have adequacy w.r.t. the
external semantics of formulae, namely that given M : {A | ϕ}, the global section
�M� ∈ Γ �A� satisfies {|ϕ|} ∈ P(Γ �A�) in the sense that �M� ∈ {|ϕ|}. But in
general we can only have adequacy w.r.t. an internal semantics �ϕ� ∈ Sub(�A�)
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of formulae ϕ : A. We sketch it here. First, Sub(X) is the (complete) Heyting
algebra of subobjects of an object X of S. Explicitly, we have S = (S(n))n ∈
Sub(X) iff for all n > 0, S(n) ⊆ X(n) and rXn (t) ∈ S(n) whenever t ∈ S(n+ 1).
For propositional connectives and fixpoints, the internal �−� is defined similarly
as the external {|−|}, but using (complete) Heyting algebras of subobjects rather
than (complete) Boolean algebras of subsets.

As for modalities, let [<] be of the form [πi], [ini], [next] or [fold], and assume
[<]ϕ : B whenever ϕ : A. Standard topos theoretic constructions give posets
morphisms �[<]� : Sub(�A�) → Sub(�B�) such that �[πi]�, �[fold]� are maps
of Heyting algebras, �[ini]� preserves ∨,⊥ and ∧, while �[next]� preserves ∧,�
and ∨. With �[<]ϕ� := �[<]�(�ϕ�), all the axioms and rules of Table 2 are
validated for these modalities. To handle guarded recursion, it is crucial to have
�[next]ϕ� := �(�ϕ�), with �[next]ϕ� true at time 1, independently from ϕ. As a
consequence, [next] and © do not validate axiom (P) (Table 2), and �[hd]ϕ can
“lie” about the next time step. We let �[box]ϕ� := Δ({|ϕ|}).

The modality [ev(ψ)] is a bit more complex. For ψ : B and ϕ : A, the formula
[ev(ψ)]ϕ is interpreted as a logical predicate in the sense of [29, §9.2 & Prop.
9.2.4]. The idea is that for a term M : {B → A | [ev(ψ)]ϕ}, the global section
ev ◦ 〈�M�, x〉 ∈ Γ �A� should satisfy ϕ whenever x ∈ Γ �B� satisfies ψ. We refer
to [28, §D] for details.

Our semantics are both correct w.r.t. the full modal theories of Def. 6.2.

Lemma 7.2. If �A
c ϕ then {|ϕ|} = {|�|}. If �A ϕ then �ϕ� = ���.

The Safe Fragment. For α (positive and) guarded in ϕ, the internal semantics
of θαϕ is somewhat meaningless because S has unique guarded fixpoints [13,
§2.5]. In particular, the typing fix(s).Consg a s : {Strg A | �[ϕ]} for arbitrary
a : A and ϕ : Strg A (extending §2) is indeed verified by the S semantics �−�.
This prevents us from adequacy w.r.t. the external semantics in general. But
this is possible for safe formulae since in this case we have:

Proposition 7.3. If ϕ : A is safe then {|ϕ|} = Γ �ϕ�.

Proposition 7.3 gives the subtyping rule {�A | [box]ϕ} ≡ � {A | ϕ} (Fig. 11),
which makes available the comonad structure of � on [box]ϕ when ϕ is safe.
Recall that in safe formulae, implications can only occur under a [box] modality
and thus in closed subformulae. It is crucial for Prop. 7.3 that infs and sups are
pointwise in the subobject lattices of S, so that conjunctions and disjunctions
are interpreted as with the usual classical Kripke semantics (see e.g. [47, §VI.7]).
This does not hold for implications!

The second key to Prop. 7.3 is the following. For L a complete lattice, a
Scott cocontinuous function L → L is a Scott continuous function Lop → Lop,
i.e. which preserves codirected infs. For a safe α : A � ϕ : A, the poset maps �ϕ� :
Sub(�A�) → Sub(�A�) and {|ϕ|} : P(Γ �A�) → P(Γ �A�) are Scott cocontinuous.
The greatest fixpoint ναϕ(α) can thus be interpreted, both in Set and S, using
Kleene’s Fixpoint Theorem, as the infs of the interpretations of ϕm(�) form ∈ N.
This leads to the expected coincidence of the two semantics for safe formulae.
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x �n {A | ϕ} iff xn(•) ∈ �ϕ�A(n) x �n Fix(X).A iff unfold ◦ x �n A[Fix(X).A/X]
x �n T0 + T1 iff ∃i ∈ {0, 1}, ∃y ∈ Γ �|Ti|�, x = ini ◦ y and y �n Ti

x �n T0 × T1 iff π0 ◦ x �n T0 and π1 ◦ x �n T1 x �n 1
x �n U → T iff ∀k ≤ n, ∀y ∈ Γ �|U |�, y �k U =⇒ ev ◦ 〈x, y〉 �k T
x �n+1 �T iff ∃y ∈ Γ �|T |�, x = next ◦ y and y �n T x �1 �T
x �n �T iff ∀m > 0, xn(•) �m T (where x ∈ Γ �|�T |�)
x �n ∀k · T iff x �n T [t/k] for all closed iteration terms t

Fig. 13. The Realizability Semantics.

The Smooth Fragment. The smooth restriction allows for continuity proper-
ties needed to compute fixpoints iteratively, following Kleene’s Fixpoint Theo-
rem. This implies the correctness of the typing rules (ν-I) and (μ-E) of Fig. 11.

Lemma 7.4. Given a closed smooth ναϕ(α) : A (resp. μαϕ(α) : A), the func-
tion {|ϕ|} : P(Γ �A�) → P(Γ �A�) is Scott-cocontinuous (resp. Scott-continuous).
We have {|ναϕ(α)|} =

⋂
m∈N {|ϕm(�)|} (resp. {|μαϕ(α)|} =

⋃
m∈N {|ϕm(⊥)|}).

The Realizability Semantics. The correctness of the type system w.r.t. its
semantics in S is proved with a realizability relation.

Definition 7.5 (Realizability). Given a type T without free iteration variable,
a global section x ∈ Γ �|T |� and n > 0, we define the realizability relation x �n T
by induction on lexicographicaly ordered pairs (n, T ) in Fig. 13.

Lemma 7.6. Given types T, U without free iteration variable, if x �n U and
U ≤ T then x �n T .

Theorem 7.7 (Adequacy). If � M : T , where T has no free iteration variable,
then �M� �n T for all n > 0.

By Thm. 7.7, a program M : B → A induces a set-theoretic function Γ �M� :
Γ �B� → Γ �A�, x �→ �M�◦x. When B and A are polynomial (e.g. streams Strg B,
Strg A with B, A constant), Møgelberg’s Thm. 7.1 says that Γ �M� is a function
on the usual final coalgebra for B, A in Set (e.g. the set of usual streams over
B and A). Moreover, if e.g. M : {Str B | [box]ψ} → {Str A | [box]ϕ}, then (modulo
ΓΔ = IdSet) given a stream x that satisfies ψ (i.e. x ∈ {|ψ|}) the stream
Γ �M�(x) satisfies ϕ (i.e. Γ �M�(x) ∈ {|ϕ|}). See §8 for examples.

8 Examples

We exemplified basic manipulations of our system over §3-6. We give further
examples here. The functions used in our main examples are gathered in Table 3,
with the following conventions. We use the infix notation a ::g s for Consg a s
and write []g for the empty colist Nilg. Moreover, we use some syntactic sugar for
pattern matching, e.g. assuming s : CoListg A we write case s of ([]g �→ N |x ::g

xs �→ M) for case(unfold s) of (y.N [〈〉/y]|y.M [π0(y)/x , π1(y)/xs]). Most of the
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append : CoListA −→ CoListA −→ CoListA
:= λs.λt.

boxι(append
g (unbox s) (unbox t))

appendg : CoListg A → CoListg A → CoListg A
:= fix(g).λs.λt.case s of

| []g �→ t
| x ::g xs �→ x ::g (g � xs� (next t))

sched : ResA −→ ResA −→ ResA
:= λp.λq.

boxι(sched
g (unbox p) (unbox q))

schedg : Resg A −→ Resg A −→ Resg A
:= fix(g).λp.λq. case p of

| Retg a �→ Retg a
| Contg k �→
let h = λi. let 〈o, t〉 = ki

in 〈o, g � (next q)� t〉
in Contg h

diag := λs.boxι
(
diagg (unbox s)

)
: Str(StrA) −→ StrA

diagg := diagauxg (λx.x) : Strg(StrA) −→ Strg A

diagauxg : (StrA → StrA) −→ Strg(StrA) −→ Strg A
:= fix(g).λt.λs. Consg

(
(hd ◦ t)(hdg s)

) (
g � next(t ◦ tl)� (tlg s)

)
fb : CoNat −→ CoNat −→ Str Bool

:= λc.λm. boxι(fb
g (unbox c) (unbox m))

fbg : CoNatg −→ CoNatg −→ Strg Bool
:= fix(g).λc.λm. case c of

| Zg �→ ff ::g g � (next m)� next(Sg (next m))
| Sgn �→ tt ::g g � n� (next m)

extract : Roug(CoListg A) −→ CoListg A
:= fix(g).λc. case c of

| Overg �→ Nilg

| Contgf �→ fg�

unfold : Roug A −→ (�Roug A → �A) −→ �A
:= λc. case c of

| Overg �→ λk. k (next Overg)
| Contgf �→ λk. next(fk)

bftg := λt. extract (bftaux t Overg) : Treeg A −→ CoListg A

bftaux : Treeg A −→ Roug(CoListg A) −→ Roug(CoListg A)
:= fix(g).λt.λc. Cont

(
λk. (labelg t) ::g unfold c

(
k ◦ (g � (song�t))

� ◦ (g � (songrt))
�
))

Table 3. Code of the Examples.

functions of Table 3 are obtained from usual recursive definitions by inserting �
and next at the right places. We often write ψ ‖→ ϕ for [ev(ψ)]ϕ. Table 4 recaps
our main examples of refinement typings, all of which (for A, B, O, I constant, I
finite and ϕ, ψ safe and smooth) can be derived syntactically for the functions of
Table 3. We use intermediate typings requiring iteration terms whenever a � is
involved. Below, “Γ �M� satisfies ϕ” means Γ �M� ∈ {|ϕ|} (modulo ΓΔ = IdSet,
see §7). We refer to [28, §E] for details.
Example 8.1 (The Append Function on CoLists). Our system can derive that
Γ �append� returns a non-empty colist if one of its argument is non-empty. Using
�[nil] (which says that a colist is finite), we can derive that Γ �append� returns a
finite colist if its arguments are both finite. This involves the intermediate typing

∀k·∀�·
({

CoListg A
∣∣ �k[nil]

}
→
{
CoListg A

∣∣ ��[nil]
}
→
{
CoListg A

∣∣ �k+�[nil]
})

In addition, if the first argument of Γ �append� has an element which satisfies
ϕ, then the result has an element which satisfies ϕ. The same holds if the first
argument is finite while the second one has an element which satisfies ϕ [28,
§E.6]. "	
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Map over coinductive streams (with + either �, �, �� or ��)
map : ({B | ψ} → {A | ϕ}) −→ {StrB | [box]+[hd]ψ} −→ {StrA | [box]+[hd]ϕ}

Diagonal of coinductive streams of streams (with + either � or ��)
diag : {Str(StrA) | [box]+[hd][box]�[hd]ϕ} −→ {StrA | [box]+[hd]ϕ}

A fair stream of Booleans (adapted from [17,8])
fb : CoNat −→ CoNat −→ Str Bool
fb 0 1 : {Str Bool | [box]��[hd][tt] ∧ [box]��[hd][ff]}

Append on guarded recursive colists
appendg : {CoListg A | [¬nil]} −→ CoListg A −→ {CoListg A | [¬nil]}
appendg : CoListg A −→ {CoListg A | [¬nil]} −→ {CoListg A | [¬nil]}

Append on coinductive colists
append : {CoListA | [box]�[hd]ϕ} −→ CoListA −→ {CoListA | [box]�[hd]ϕ}
append : {CoListA | [box]�[nil]} −→ {CoListA | [box]�[hd]ϕ} −→ {CoListA | [box]�[hd]ϕ}
append : {CoListA | [box]�[nil]} −→ {CoListA | [box]�[nil]} −→ {CoListA | [box]�[nil]}
Breadth-first tree traversal

bftg : {Treeg C | ∀�[lbl]ϑ} −→ {CoListg C | �[hd]ϑ}
(à la [35] or with Hofmann’s algorithm (see e.g. [10]))

A scheduler of resumptions (adapted from [44])
sched : {ResA | [box]�[Ret]} −→ {ResA | [box]�[Ret]} −→ {ResA | [box]�[Ret]}
sched : {ResA | [box]�[now]ψ} −→ {ResA | [box]�[now]ψ} −→ {ResA | [box]�[now]ψ}
sched : {ResA | [box]��[Ret]} −→ {ResA | [box]��[Ret]} −→ {ResA | [box]��[Ret]}
sched : {ResA | [box]��[out]ϑ} −→ {ResA | [box]��[out]ϑ} −→ {ResA | [box]��[out]ϑ}

(where � is either ∀� or ∃�, � is either ∀� or ∃�, and [out] is either [∧out] or [∨out])

Table 4. Some Refinement Typings (functions defined in Table 3).

Example 8.2 (The Map Function on Streams). The composite modalities ��

and �� over streams are read resp. as “infinitely often” and “eventually always”.
Provided with a function f : Γ �B� → Γ �A� taking b ∈ Γ �B� satisfying ψ to
f(b) ∈ Γ �B� satisfying ϕ, the function Γ �map� on set-theoretic streams returns
a stream which infinitely often (resp. eventually always) satisfies ϕ if its stream
argument infinitely often (resp. eventually always) satisfies ψ [28, §E.3]. "	

Example 8.3 (The Diagonal Function). Consider a stream of streams s. We have
s = (si | i ≥ 0) where each si is itself a stream si = (si,j | j ≥ 0). The diagonal
of s is then the stream (si,i | i ≥ 0). Note that si,i = hd(tli(hd(tli(s))). Indeed,
tli(s) is the stream of streams (sk | k ≥ i), so that hd(tli(s)) is the stream si and
tli(hd(tli(s))) is the stream (si,k | k ≥ i). Taking its head thus gives si,i. In the
diag function of Table 3, the auxiliary higher-order function diagauxg iterates the
coinductive tl over the head of the stream of streams s. We write ◦ for function
composition, so that assuming s : Strg(StrA) and t : StrA → StrA, we have (on
the coinductive type StrA), (hdg s) : StrA and

(hd ◦ t) : StrA → A (hd ◦ t)(hdg s) : A (t ◦ tl) : StrA → StrA

The expected refinement types for diag (Table 4) say that if its argument is a
stream whose component streams all satisfy �ϕ, then Γ �diag� returns a stream
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whose elements all satisfy ϕ. Also, if the argument of Γ �diag� is a stream such
that eventually all its component streams satisfy �ϕ, then it returns a stream
which eventually always satisfies ϕ. See [28, §E.4] for details. "	

Example 8.4 (A Fair Stream of Booleans). The non-regular stream (fb 0 1),
adapted from [17,8], is of the form ff ·tt ·ff ·tt2 ·ff · · ·ff ·ttm ·ff ·ttm+1 ·ff · · ·. It thus
contains infinitely many tt’s and infinitely many ff’s. We indeed have (see [28,
§E.5] for details) (fb 0 1) : {Str Bool | [box]��[hd][tt] ∧ [box]��[hd][ff]}. "	

Example 8.5 (Resumptions). The type of resumptions Resg A (see Ex. 3.2) is
adapted from [44]. Its guarded constructors are

Retg := λa. fold(in0 a) : A −→ Resg A
Contg := λk. fold(in1 k) : (I → (O×�Resg A)) −→ Resg A

Retg(a) represents a computation which returns the value a : A, while Contg〈f, k〉
(with 〈f, k〉 : I → (O × �Resg A)) represents a computation which on input
i : I outputs fi : O and continues with ki : �Resg A. Given p, q : Resg A, the
scheduler (schedg p q), adapted from [44], first evaluates p. If p returns, then
the whole computation returns, with the same value. Otherwise, p evaluates to
say Contg〈f, k〉. Then (schedg p q) produces a computation which on input i : I
outputs fi and continues with (schedg q (ki)), thus switching arguments.

Let I be a finite base type (so that Resg A is finitary polynomial). Let ψ : A,
ϑ : O and ϕ : Resg A. We have the following formulae (where i : I):

[Ret] := [fold][in0]� [outi]ϑ := [fold][in1] ([i] ‖→ [π0]ϑ)
[now]ψ := [fold][in0]ψ ©iϕ := [fold][in1] ([i] ‖→ [π1][next]ϕ)

The formula [Ret] (resp. [now]ψ) holds on a resumption which immediately re-
turns (resp. with a value satisfying ψ) and we have Retg : A → {Resg A | [Ret]},
Retg : {A | ψ} → {Resg A | [now]ψ}. Moreover, the typings

Contg : {I → (O×�Resg A) | [i] ‖→ [π0]ϑ} −→ {Resg A | [outi]ϑ}
Contg : {I → (O×�Resg A) | [i] ‖→ [π1][next]ϕ} −→ {Resg A | ©iϕ}

express that [outi]ϑ : Resg A is satisfied by Contg〈f, k〉 if fi satisfies ϑ, and that
©iϕ : Resg A is satisfied by Contg〈f, k〉 if ki satisfies [next]ϕ. Since I is a finite
base type, it is possible to quantify over its inhabitants. We thus obtain CTL-like
variants of � and � (Ex. 4.3.(b) and Ex. 6.3). Namely:

[∧out]ϑ := ∧i∈I[outi]ϑ : Resg A � ϕ := ∧i∈I ©i ϕ : Resg A
[∨out]ϑ := ∨i∈I[outi]ϑ : Resg A � ϕ := ∨i∈I ©i ϕ : Resg ϕ

∀�ϕ := να. ϕ∧ � α : Resg A ∀�ϕ := μα. ϕ∨ � α : Resg A
∃�ϕ := να. ϕ∧ � α : Resg A ∃�ϕ := μα. ϕ∨ � α : Resg A

Our system can prove that Γ �sched� returns in finite time when so do its argu-
ments, either along some or along any sequence of inputs. We moreover have
expected �� properties for all possible (consistent) combinations of ∃/∀ and
[Ret]/[∨out]/[∧out] (Table 4, with ψ : A, ϑ : O safe and smooth) [28, §E.7]. "	
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Example 8.6 (Breadth-First Traversal). The function bftg of Table 3 (where g�

stands for λx.g � x) implements Martin Hofmann’s algorithm for breadth-first
tree traversal. This algorithm involves the higher-order type Roug A (see Ex. 3.2)
with constructors Overg := fold(in0〈〉) : Roug A and

Contg := λf.fold(in1f) :
(
(�Roug A → �A) → A

)
→ Roug A

We refer to [10] for explanations. Consider a formula ϕ : A. We can lift ϕ to

[Rou]ϕ := να. [fold][in1](([next]α ‖→ [next]ϕ) ‖→ ϕ) : Roug A

We then easily derive the expected refinement type of bftg (Table 4, where ϑ : C).
Assume that ϑ is safe. On the one hand it is not clear what the meaning of [Rou]ϑ
is, because it is an unsafe formula over a non-polynomial type. On the other
hand, the type of bftg in Tab. 4 has its standard expected meaning (namely: if
all nodes of a tree satisfy ϑ then so do all elements of its traversal) because the
types Treeg C, CoListg C are polynomial and the formulae ∀�[lbl]ϑ, �[hd]ϑ are
safe. Hence, our system can prove standard statements via detours through non-
standard ones, which illustrates its compositionality. We have the same typing
for a usual breadth-first tree traversal with forests (à la [35]). See [28, §E.8]. "	

9 Related Work

Type systems based on guarded recursion have been designed to enforce prop-
erties of programs handling coinductive types, like causality [45], productiv-
ity [5,50,18,6,25,24], or termination [62]. These properties are captured by the
type systems, meaning that all well-typed programs satisfy these properties.

In an initially different line of work, temporal logics have been used as type
systems for functional reactive programming (FRP), starting from LTL [32,33] to
the intuitionistic modal μ-calculus [17]. These works follow the Curry-Howard
“proof-as-programs” paradigm, and reflect in the programming languages the
constructions of the temporal logic.

The FRP approach has been adapted to guarded recursion, e.g. for the ab-
sence of space leaks [44], or the absence of time leaks, with the Fitch-style system
of [7]. This more recently lead [8] to consider liveness properties with an FRP ap-
proach based on guarded recursion. In this system, the guarded λ-calculus (pre-
sented in a Fitch-style type system) is extended with a delay modality (written
©) together with a “until type” A Until B. Following the Curry-Howard corre-
spondence, A Until B is eliminated with a specific recursor, based on the usual
unfolding of Until in LTL, and distinct from the guarded fixpoint operator.

In these Curry-Howard approaches, temporal operators are wired into the
structure of types. This means that there is no separation between the program
and the proof that it satisfies a given temporal property. Different type formers
having different program constructs, different temporal specifications for the
same program may lead to different actual code.

We have chosen a different approach, based on refinement types, with which
the structure of formulae is not reflected in the structure of types. This allows
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for our examples to be mostly written in a usual guarded recursive fashion (see
Table 3). Of course, we indeed use the modality � at the type level as a separation
between safety and liveness properties. But different liveness properties (e.g. �,
��, ��) are uniformly handled with the same �-type, which is moreover the
expected one in the guarded λ-calculus [18].

Higher-order model checking (HOMC) [54,39] has been introduced to check
automatically that higher-order recursion schemes, a simple form of higher-order
programs with finite data-types, satisfy a μ-calculus formula. Automatic verifi-
cation of higher-order programs with infinite data-types (integers) has been ex-
plored for safety [40], termination [46], and more generally ω-regular [51] prop-
erties. In presence of infinite datatypes, semi-automatic extensions of HOMC
have recently been proposed [69]. In contrast with this paper, most HOMC ap-
proaches do not consider input-output behaviors on coalgebraic data. A notable
exception is [41,23], but it does not handle higher-order functions (such as map),
nor polynomial types such as Str(StrA) (Ex. 8.3) or non-positive types such as
RouA (Ex. 8.6) and imposes a strong linearity constraint on pattern matching.

Event-driven approaches consider effects generating streams of events [61],
which can be checked for temporal properties with algorithms based on (HO)MC
[26,27], or, in presence of infinite datatypes, with refinement type systems [42,53].
Our iteration terms can be seen as oracles, as required by [42] to handle liveness
properties, but we do not know if they allow for the non-regular specifications
of [53]. While such approaches can handle infinite data types with good levels of
automation, they do not have coinductive types nor branching time properties,
such as the temporal specification of sched on resumptions (Ex. 8.5)

Along similar lines, branching was approached via non-determinism in [64],
which also handles universal and existential properties on traces. This frame-
work can handle CTL-like properties of the form ∃/∀-�/� (with our notation
of Ex. 8.5), but not nested combinations of these (as e.g. ∃�∀� for sched in
Ex. 8.5). It moreover does not handle coinductive types.

10 Conclusion and Future Work

We have presented a refinement type system for the guarded λ-calculus, with re-
finements expressing temporal properties stated as (alternation-free) μ-calculus
formulae. As we have seen, the system is general enough to prove precise behav-
ioral input/output properties of coinductively-typed programs. Our main con-
tribution is to handle liveness properties in presence of guarded recursive types.
As seen in §2, this comes with inherent difficulties. In general, once guarded
recursive functions are packed into coinductive ones using �, the logical reason-
ing is made in our system directly on top of programs, following their shape,
but requiring no further modification. We thus believe to have achieved some
separation between programs and proofs.

We provided several examples. While they demonstrate the flexibility of our
system, they also show that more abstraction would be welcomed when proving
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liveness properties. In addition, our system lacks expressiveness to prove e.g.
liveness properties on breadth-first tree traversals.

We believe that our approach could be generalized to other programming
languages with inductive or coinductive types. The key requirement are: (1)
modalities in the temporal logic to navigate through the types of the languages,
(2) a semantics to indicate when a program satisfies a formula of the temporal
logic, which is sufficiently closed to the set-theoretic one for liveness proper-
ties to get their expected meaning, and (3) inference rules to reason over this
realizability semantics.

Extensions of the guarded λ-calculus with dependent types have been ex-
plored [14,11,6,24]. It may be possible to extend our work to these systems. This
would require to work in a Fitch-style presentation of the �modality, as in [7,12],
since it is not known how to extend delayed substitutions to dependent types
while retaining decidability of type-checking [15]. Also, it is appealing to inves-
tigate the generalization of our approach to sized types [1], in which guarded
recursive types are representable [67].

We plan to investigate type checking. For instance, in a decidable frag-
ment like the μ-calculus on streams, one can check that a function of type
{Strg C | ��[hd]ϑ} → {Strg B | ��[hd]ψ} can be postcomposed with one of
type {Strg B | ��[hd]ψ} → {Strg A | ��[hd]ϕ} (since ��[hd]ψ ⇒ ��[hd]ψ).
Hence, we expect that some automation is possible for fragments of our logic. In
presence of iteration terms, arithmetic extensions of the μ-calculus [37,38] may
provide interesting backends. An other direction is the interaction with HOMC.
If (say) a stream over A is representable in a suitable format, one may use HOMC
to check whether it can be argument of a function expecting e.g. a stream of
type {Strg A | ��[hd]ϕ}. This might provide automation for fragments of the
guarded λ-calculus. Besides, the combination of refinement types with automatic
techniques like predicate abstraction [57], abstract interpretation [34], or SMT
solvers [66,65] has been particularly successful. More recently, the combination
of refinement types inference with HOMC has been investigated [59].

We would like to explore temporal specification of general, effectful programs.
To do so, we wish to develop the treatment of the coinductive resumptions
monad [55], that provides a general framework to reason on effectful computa-
tions, as shown by interaction trees [70]. It would be interesting to study tem-
poral specifications we could give to effectful programs encoded in this setting.
To formalize reasoning on such examples, we would like to design an embedding
of our system in a proof assistant like Coq.

Following [3], guarded recursion has been used to abstract the reasoning on
step-indexing [4] that has been used to design Kripke Logical Relations [2] for
typed higher-order effectful programming languages. Program logics for reason-
ing on such logical relations [19,20] uses this representation of step-indexing via
guarded recursion. It is also found in Iris [36], a framework for higher-order con-
current separation logic. It would be interesting to explore the incorporation of
temporal reasoning, especially liveness properties, in such logics.
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