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We present results of theoretical modeling of macroscopic circulating flow induced in a cloud of 

ferrofluid by oscillating magnetic field. The cloud is placed in a cylindrical channel filled by a 

nonmagnetic liquid. The aim of this work is development of a scientific basis for a progressive method 

of address drug delivery to thrombus clots in blood vessels with the help of the magnetically induced 

circulation flow. Our results show that the oscillating field can induce, inside and near the cloud, specific 

circulating flows with the velocity amplitude about several millimeters per second. These flows can 

significantly increase the rate of transport of the molecular non-magnetic impurity in the channel. 

 

1. Introduction 

One of the major problems in treatment of brain strokes by injection of the thrombolytic drugs is related 

to very slow and inefficient transport of the drug to the blood clot because of the absence of the blood 

flow through the occluded vessel. The US company Pulse Therapeutics has patented the idea of using 

magnetic nanoparticles allowing significant acceleration of the drug transport [1, 2]. When a dilute 

suspension of biocompatible magnetic nanoparticles is injected in the blood vessel and alternating 

magnetic field is applied, the nanoparticles form elongated field-induced aggregates whose periodic 

translational or angular motion is expected to generate recirculatory flows in the occluded vessel allowing 

for convective transport of the thrombolytic drug towards the blood clot. Macroscopic experiments on 

mice suffered from the brain stroke have shown a much better survival rate when nanoparticle treatment 

was applied [1, 2]. A few recent experimental studies allowing visualization of the clot dissolution in 

microfluidic channels have recently been published [3, 4], while theoretical analysis of the phenomenon 

remains scarce [5] so that the fundamental understanding of this problem is still lacking. 

For the better understanding of the process of creation of recirculatory flows induced by 

alternating magnetic fields, we propose in this paper a numerical study of the flows of a magnetic 
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suspension generated in a long cylindrical channel (mimicking an occluded blood vessel) with the 

alternating magnetic field created by a pair of coils coaxial with the channel. In the beginning, a drop of 

the nanoparticle suspension is injected in the center of the channel and a Gaussian concentration profile 

is assumed at zero time. This study is continuation of our two previous works [6, 7] dealing with a flat 

channel and covering only short time scales (after setting on the field) when the nanoparticle 

concentration profile remains unchanged. These first studies demonstrated that efficient recirculatory 

flows can only be generated in heterogeneous alternating magnetic fields which in their turn induce 

heterogeneous nanoparticle concentration profiles. The present paper considers the spread of the 

concentration profile during time and is focused on evolution of the recirculation flows with time. This 

transient regime shows a decrease of the intensity of the recirculatory flows with time that can affect the 

efficiency of the brain stroke treatment. From the practical point of view, the characteristic time of this 

transient has to be compared to the typical time of the medical intervention. We believe that the obtained 

results will be important for further advancement of this innovative technology. 

 

2. Mathematical model 

We consider a cylindrical channel and with two opposite solenoids placed at the extremities along the 

horizontal axis z, as illustrated in Figure 1. 

 

Figure 1. Sketch of a cylindrical channel with a ferrofluid drop (gray rectangle) injected in the middle of the channel. It is 

supposed that L<<D.  

 

The distance 2L between the solenoids is supposed to be much larger than the diameter of the 

cylinder D. The channel is initially filled with a Newtonian liquid. A drop of the ferrofluid with the same 

liquid carrier as the liquid filling in the channel is introduced in the middle between the solenoids. For 
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simplicity, we suppose that inside the ferrofluid drop the viscosity η is homogeneous and is the same as 

outside the drop. This means that at any moment of time, the volume concentration φ of the particles 

inside the drop is relatively low, about a few volume percent. The initial volume concentration of the 

particles is supposed to be known and depends only on the coordinate z along the cylinder axis. From the 

symmetry considerations, we suppose that all physical events are independent of polar angle θ. Then, we 

consider the linear dependence of the ferrofluid magnetization M on the local magnetic field H. Note 

that this approximation is not principal and cannot affect qualitative effects revealed by the present model. 

The “non-linear” generalization, in principle, is possible, however makes the calculations much more 

cumbersome. 

We suppose that alternating nonuniform magnetic fields H1 and H2, created by the solenoids 1 

and 2, take the form: 

𝐻1𝑧 = ℎ1𝑧 cos 𝜔𝑡 , 𝐻1𝜌 = ℎ1𝜌 cos 𝜔𝑡, 

𝐻2𝑧 = ℎ2𝑧 sin 𝜔𝑡 , 𝐻2𝜌 = ℎ2𝜌 sin 𝜔𝑡. 
(2.1) 

where ω is the angular frequency of the alternating magnetic field, t is the time, ρ is the radial coordinate 

in the cylindrical coordinate system, illustrated in Figure 1. 

The components of the field amplitude h(z, ρ), created by the solenoid 1 in Figure 1, are 

determined the Biot-Savart law [8]: 

𝐡1 =
𝐼0𝑁

4𝜋𝑙
∫ 𝑑𝑧′ (∫

𝑑𝐬 × 𝐫′

|r′|3
)

−𝐿

−𝑙−𝐿

, (2.2) 

where I0 is the electrical current amplitude; N is the number of turns of the solenoid; L is the distance 

between middle of the ferrofluid drop (i.e., origin of the cylindrical coordinate system, shown in Figure 

1) and the nearest extremity of the solenoid; l is length of the solenoid; ds is the differential of the counter 

of the solenoid wire ring. 

In the cylindrical coordinate system, the field h1 components are: 

ℎ1𝑧 =
𝐼0𝑁𝑅

4𝜋𝑙
∫ 𝑑𝑧′

−𝐿

−𝑙−𝐿

∫
(𝑅 − 𝜌 cos 𝜃)𝑑𝜃

[(𝑧 − 𝑧′)2 + 𝑅2 + 𝜌2 − 2𝑅𝜌 cos 𝜃]3 2⁄

2𝜋

0

, 

ℎ1𝜌 =
𝐼0𝑁𝑅

4𝜋𝑙
∫ (𝑧 − 𝑧′)

−𝐿

−𝑙−𝐿

𝑑𝑧′ ∫
cos 𝜃 𝑑𝜃

[(𝑧 − 𝑧′)2 + 𝑅2 + 𝜌2 − 2𝑅𝜌 cos 𝜃]3 2⁄

2𝜋

0

, 

(2.3) 

where R is radius of the solenoid. 
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Taking into account that the ρ coordinate is small as compared with L, expanding the integrands 

in (2.3) in the power series with respect to ρ/z, we get the following approximate analytical expressions 

for the components h1z and h1ρ: 

ℎ1𝑧 = 𝑎1𝑧 +
𝑏1𝑧𝜌2

2
, ℎ1𝜌 = 𝑎1𝜌𝜌, 

𝑎1𝑧 =
𝐼0𝑁

2𝑙
[

𝐿 + 𝑙 + 𝑧

√(𝐿 + 𝑙 + 𝑧)2 + 𝑅2
−

𝐿 + 𝑧

√(𝐿 + 𝑧)2 + 𝑅2
], 

𝑏1𝑧 =
3𝐼0𝑁𝑅2

4𝑙
{

𝐿 + 𝑙 + 𝑧

[(𝐿 + 𝑙 + 𝑧)2 + 𝑅2]5 2⁄ −
𝐿 + 𝑧

[(𝐿 + 𝑧)2 + 𝑅2]5 2⁄
}, 

𝑎1𝜌 =
𝐼0𝑁𝑅2

4𝑙
{

1

[(𝐿 + 𝑧)2 + 𝑅2]3 2⁄ −
1

[(𝐿 + 𝑙 + 𝑧)2 + 𝑅2]3 2⁄
}. 

(2.4) 

For the second solenoid we get similarly: 

ℎ2𝑧 = 𝑎2𝑧 +
𝑏2𝑧𝜌2

2
, ℎ2𝜌 = 𝑎2𝜌𝜌, 

𝑎2𝑧 =
𝐼0𝑁

2𝑙
[

𝐿 + 𝑙 − 𝑧

√(𝐿 + 𝑙 − 𝑧)2 + 𝑅2
−

𝐿 − 𝑧

√(𝐿 − 𝑧)2 + 𝑅2
], 

𝑏2𝑧 =
3𝐼0𝑁𝑅2

4𝑙
{

𝐿 + 𝑙 − 𝑧

[(𝐿 + 𝑙 − 𝑧)2 + 𝑅2]5 2⁄ −
𝐿 − 𝑧

[(𝐿 − 𝑧)2 + 𝑅2]5 2⁄
}, 

𝑎2𝜌 =
𝐼0𝑁𝑅2

4𝑙
{

1

[(𝐿 + 𝑙 − 𝑧)2 + 𝑅2]3 2⁄ −
1

[(𝐿 − 𝑧)2 + 𝑅2]3 2⁄
}. 

(2.5) 

We suppose that the ferrofluid consists of the highly elongated magnetizable particles (mimicking 

field-induced aggregates composed of spherical ferrofluid nanoparticles). For simplicity we suppose that 

these elongated particles are always oriented along the local magnetic field H. This means that i) the time 

of the particles reorientation under the alternation field is much less than the field period 2/ω and ii) the 

angle of the particles deviation from the field under the induced shear flow is very small. Estimates, 

based on the equations of the particles rotation under the field and flow demonstrate that for realistic 

situations both of these conditions are fulfilled. The experimental studies on the magnetic colloids 

designed for the further use in this application show that the field-induced aggregates grow on the 

timescale of a few seconds up to sizes about 100 µm [9]. For these aggregates the translational or 

rotational Brownian motion can be safely neglected. 

Under these approximations, equations of the fluid flow and continuity of the particles 

concentration have the forms [10]: 
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−∇𝑝 + 𝜂Δ𝐮 + 𝜑𝐅𝑚 = 0, div𝐮 = 0,
𝜕𝜑

𝜕𝑡
+ div𝐣 = 0, 𝐣 = 𝜑𝛃 ∙ 𝐅𝑚𝑣𝑝 + 𝜑𝐮. (2.6) 

Here, u is the suspension flow velocity; p is the pressure; φ is volume concentration of the particles; j is 

the flux density of the concentration φ; Fm is the magnetic force per unit volume of the particle by the 

magnetic field gradient; vp is the particle volume; β is the hydrodynamic mobility tensor of the elongated 

particle along the force Fm. Note that the inertia term with du/dt is not included in the first equation of 

(2.6), since, as estimates show, in the realistic situations this term is small as compared with the other 

terms of this equation. 

In the frames of the linear magnetization approximation, the magnetic force acting by a unit 

volume of the elongated particle, can be estimated as follows [11]: 

𝐅𝑚 = −𝛻𝑈, 𝑈 = −
𝜇0𝜒𝑝𝐻2

2(1 + 𝜒𝑝𝑛)
. (2.7) 

Here U is the potential energy of elongated particles oriented at each point along the local the field 

H(z, ρ, t) and evaluated under realistic approximation of high length-to-diameter ratio of particles; χp is 

magnetic susceptibility of these particle; μ0 = 4π × 10-7 H/m is magnetic permeability of vacuum; n is the 

particle demagnetizing factor. For elongated particles, the following formula can be used: 

𝑛 =
1

𝑟2 − 1
[
𝑟ln(𝑟 + √𝑟2 − 1)

√𝑟2 − 1
− 1] ≈

ln(2𝑟) − 1

𝑟2
. (2.8) 

Here r is the particle aspect ratio (ratio of the major to the minor axis) of the particle. For r = 10 the 

strong inequality n << 1 is held. 

Analyses shows that sign of the radial component 𝐹𝑚𝜌of the magtnetophoretic force 𝐅𝑚  oscillates 

with time. However the average, over time, component acts towards the channel axis  (see below eq. 

(2.14)). Thus it provokes appearance of the cylindrical zone of the densely packed particles around the 

axis (see Figure 2). Equation of the layer thickness h growth reads: 

𝑗𝜌 = (𝜑* − 𝜑)
𝑑ℎ

𝑑𝑡
,  at  𝜌 = 0. (2.9) 

Here φ* is the dense packing volume concentration. For the long cylindrical rods it can be estimated as  

φ* ≈ 0.785  and φ* ≈ 0.907 at the ideal dense quadratic and ideal and hexagonal packing respectively. Of 

course, with respect to the real suspensions, these estimates can be considered only as the first 

approximation.  
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Figure 2. Sketch of the layer thickness h. 

 

Applying the rot operator to both parts of the first equation in (2.6), one gets: 

rotΔ𝐮 =
1

𝜂
rot(𝜑∇𝑈). (2.10) 

Let us introduce the standard stream function ψ: 

𝑢𝑧 =
1

𝜌

𝜕(𝜌𝜓)

𝜕𝜌
, 𝑢𝜌 = −

𝜕𝜓

𝜕𝑧
. (2.11) 

which satisfies the incompressibility equation divu = 0. By using (2.10), (2.11) in (2.7), we come to the 

following relation: 

𝜕4𝜓

𝜕𝑧4
+ 2

𝜕2

𝜕𝑧2
(

𝜕2𝜓

𝜕𝜌2
+

1

𝜌

𝜕𝜓

𝜕𝜌
−

𝜓

𝜌2
) +

𝜕

𝜕𝜌
{
1

𝜌

𝜕

𝜕𝜌
{𝜌

𝜕

𝜕𝜌
[
1

𝜌

𝜕(𝜌𝜓)

𝜕𝜌
]}} = 

=
1

𝜂
(

𝜕𝜑

𝜕𝜌

𝜕𝑈

𝜕𝑧
−

𝜕𝜑

𝜕𝑧

𝜕𝑈

𝜕𝜌
). 

(2.12) 

Since the inequality D << L is held, all derivatives of ψ over ρ are much larger than the derivatives 

over z. 

Taking it into account, the equation (2.12) is reduced as: 

𝜕

𝜕𝜌
{
1

𝜌

𝜕

𝜕𝜌
{𝜌

𝜕

𝜕𝜌
[
1

𝜌

𝜕(𝜌𝜓)

𝜕𝜌
]}} =

1

𝜂
(

𝜕𝜑

𝜕𝜌

𝜕𝑈

𝜕𝑧
−

𝜕𝜑

𝜕𝑧

𝜕𝑈

𝜕𝜌
) ,  at  h <𝜌 <. 

 

(2.13) 

By using the relations (2.1), (2.4) (2.5) and (2.7), keeping only the linear term with respect to ρ/L 

coordinate, one gets: 
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𝜕𝑈

𝜕𝜌
= −𝑎𝑈𝜌, 

𝑎𝑈 = 𝜇0𝜒𝑎 [(𝑎1𝑧𝑏1𝑧 + 𝑎1𝜌
2 )cos2𝜔𝑡 + (

𝑎1𝑧𝑏2𝑧 + 𝑎2𝑧𝑏1𝑧

2
+ 𝑎1𝜌𝑎2𝜌) sin(2𝜔𝑡) + 

+(𝑎2𝑧𝑏2𝑧 + 𝑎2𝜌
2 )sin2𝜔𝑡], 

𝜕𝑈

𝜕𝑧
= −

𝜇0𝜒𝑝(𝑎1𝑧 cos 𝜔𝑡 + 𝑎2𝑧 sin 𝜔𝑡)

1 + 𝜒𝑝𝑛
(

𝜕𝑎1𝑧

𝜕𝑧
cos 𝜔𝑡 +

𝜕𝑎2𝑧

𝜕𝑧
sin 𝜔𝑡), 

𝜕𝑎1𝑧

𝜕𝑧
=

𝐼0𝑅2

2𝑙
{

1

[(𝐿 + 𝑙 + 𝑧)2 + 𝑅2]3 2⁄ −
1

[(𝐿 + 𝑧)2 + 𝑅2]3 2⁄
}, 

𝜕𝑎2𝑧

𝜕𝑧
=

𝐼0𝑅2

2𝑙
{

1

[(𝐿 − 𝑧)2 + 𝑅2]3 2⁄ −
1

[(𝐿 + 𝑙 − 𝑧)2 + 𝑅2]3 2⁄
}. 

(2.14) 

 

Estimates, based on (2.6) a and (2.9) indicate that for all times interval, presenting interest, the 

thickness h of the central bulk zone remains negligible as compared with the channel radius D/2. 

Therefore, it can be safely put equal to zero in all simulations. In this approximation the boundary 

conditions for the function ψ are: 

𝜕𝜓

𝜕𝑧
= 0,

1

𝜌

𝜕(𝜌𝜓)

𝜕𝜌
= 0,  at  𝜌 =

𝐷

2
− ℎ. 

|𝜓| < ∞, |
1

𝜌

𝜕(𝜌𝜓)

𝜕𝜌
| < ∞, |

𝜕

𝜕𝜌

1

𝜌

𝜕(𝜌𝜓)

𝜕𝜌
| < ∞,  at  𝜌 = 0, 

𝜓 → 0, 𝑧 → ±∞. 

(2.15) 

Taking into account that at the infinitely long distance from the ferrofluid drop the fluid must be 

motionless, i.e., the condition u → 0 at z → ±∞ is fulfilled, we can put ψ ≡ const at the infinity from the 

drop. The concrete magnitude of this const does not have a physical meaning. Thus, we put const = 0. 

The first boundary condition in (2.15) shows that on the channel boundary (at ρ = D/2 – h) the stream 

function ψ does not depend on z. Therefore, for this problem the condition ∂ψ/∂z = 0 is identical with the 

ψ = 0 at ρ = D/2. The last is simpler for the calculations. Note, that because the fluid incompressibility, 

the condition ψ → 0 at z → ±∞ is identical with the condition of zero flow rate across the channel at any 

coordinate z. 

The components of the mobility tensor β in eq. (2.6) can be presented as (see, for example, [12]): 
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𝛽∥ =
𝛾(𝑟) + 𝑟2𝛼1(𝑟)

8𝜋𝜂𝑑𝑝
, 𝛽⊥ =

𝛾(𝑟) + 𝛼2(𝑟)

8𝜋𝜂𝑑𝑝
, 

𝛾(𝑟) = ∫
𝑑𝑥

(1 + 𝑥)√𝑟2 + 𝑥

∞

0

≈
2ln(2𝑟)

𝑟
, 

𝛼1(𝑟) = ∫
𝑑𝑥

(1 + 𝑥)(𝑟2 + 𝑥)3 2⁄

∞

0

≈
2[ln(2𝑟) − 1]

𝑟3
, 

𝛼2(𝑟) = ∫
𝑑𝑥

(1 + 𝑥)2√𝑟2 + 𝑥

∞

0

≈
1

𝑟
. 

(2.16) 

Here r is the particle aspect ratio (ratio of the major to the minor axis) of the particle, β∥ and β⊥ are the 

mobilities in the directions along and perpendicular to the particle axes, dp is the particle diameter (minor 

axis). For r = 1 (spherical particle) β∥ = β⊥ = 1/(3πηdp), as it should be according to the classical Stokes 

formula. In the range of the aspect ratio 10 < r < 100, presented interest from the point of view of the 

application   the values of β∥ and β⊥ differ non significantly (see Figure 3). 

 

Figure 3. The ratio β∥/β⊥ vs. the aspect parameter r. 

 

That is why below we will use the scalar value β(r) = [β∥(r) + β⊥(r)] / 2. 

The partial differential nonlinear equation for the concentration φ taking into account the 

continuity equation has the form: 

𝜕𝜑

𝜕𝑡
+ 𝑢𝜌

𝜕𝜑

𝜕𝜌
+ 𝑢𝑧

𝜕𝜑

𝜕𝑧
−

𝛽𝑣𝑝

𝜌

𝜕

𝜕𝜌
(𝜌𝜑

𝜕𝑈

𝜕𝜌
) − 𝛽𝑣𝑝

𝜕

𝜕𝑧
(𝜑

𝜕𝑈

𝜕𝑧
) = 0,  at  𝜌 <

𝐷

2
. (2.17) 

Solution of this equation depends on the initial conditions. To be specific, we choose here the 

condition in the form: 
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𝜑 = 𝜑0𝑒
−

𝑧2

𝜎2 , 𝑡 = 0, (2.18) 

where σ the typical length of the ferroparticles cloud. Note that the initial condition like (2.18) 

corresponds namely to some cloud of the particles, injected into the channel being suspended in some 

soluble liquid, not to a drop ofan  insoluble ferrofluid, which can form a new thrombus in the blood 

channel. 

Differential equation (2.6), (2.13) and (2.17) can be solved numerically using an implicit 

difference scheme. 

 

3. Results 

Figure 4 demonstrates evolution of the concentration profile with time. It is clearly seen that 

concentration profile of the ferrofluids is blurred. Physically it takes place because of the 

magnetophoretic and convective motion of the particles. Our estimates show that, for the studied system, 

the convective motion dominates over the magnetophoretic one. 

 

Figure 4. The distribution of concentration φ along the axis coordinate z. The solenoid parameters are: radius R = 10cm; 

length l = 5cm; the product I0N = 18kA; the current angular frequency ω = 15 rad/s; the distance between the solenoids 

2L = 20cm; the diameter of the cylinder D = 5mm; magnetic susceptibility of elongated particles χa = 25; the viscosity of 

water η = 1mPa·s; φ0 = 0.05; the typical length of a cloud of ferroparticles σ = 1cm; the amplitude of the magnetic field 

H = 32 kA/m. Black solid line – distribution of concentration at t = 0; dash line – distribution of concentration at time t = 20 

sec; dash-dotted line – distribution of concentration at time t = 1 min. 

 

Some results of calculations of the longitudinal component of the velocity uz at the axis of the 

cylinder (ρ = 0) are shown in Figure 5. The results demonstrate that, for the chosen parameters of the 
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system, at the onset of the process, the longitudinal velocity uz, can achieve several millimeters per 

second near points of maximum of the particles concentration gradient; with time uz decreases. This 

velocity decrease is explained by the concentration profile blurring. 

(a) (b) 

(c) (d) 

Figure 5. The longitudinal velocity uz at the axis of the cylinder vs. coordinate z for several moments of time: (a) t = t0; 

(b) t = t0 + T/8; (c) t = t0 + T/4; (d) t = t0 + 3T/8; T = 2π/ω. The other parameters of the system are the same as in Figure 4. 

Black solid line t0 =0; dash-dotted line – t0 =1 min. 

 

The illustration of the vector velocity field (see Figure 6) shows that the strong inequality 

uρ << uz holds very well. 
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Figure 6. The illustration of the direction and rate of the fluid velocity in the channel. 

 

4. Conclusion 

In the present paper, we simulated recirculating flows inside a heterogeneous suspension of elongated 

magnetic particles (or field-induced nanoparticle aggregates) inside a cylindrical channel placed in a 

nonuniform alternating magnetic field. The model is based on equation of fluid motion coupled with an 

equation for the convective transport of particles. The generation of recirculating flow is possible thanks 

to the magnetic particle migration induced by the field gradient while the periodic change of the velocity 

direction is ensured by the variation of the field with time. Our results show that the running oscillating 

field with a quite realistic amplitude can induce circulating flows with the velocity amplitude about 

several millimeters per second during initial moments after the field application. However, on the 

timescale of about one minute, the suspension flow velocity becomes much less than at the initial time 

𝜌. The reason for this decrease is the spreading of the concentration profile. We believe this work to be 

useful for the understanding of the process of blood clot dissolution assisted by continuous drug delivery 

with the help of field-induced recirculating flows. Note, that at this stage we consider the model situation, 

which can be experimentally checked and studied the in-vitro conditions.   The study of the situation 

close to in-vivo situation will be the next stage of our work in this field 
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