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Generalizing treatment effects with incomplete covariates
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Abstract

We focus on the problem of generalizing a causal effect estimated on a randomized con-
trolled trial (RCT) to a target population described by a set of covariates from observational
data. Available methods such as inverse propensity weighting are not designed to handle
missing values, which are however common in both data sources. In addition to coupling
the assumptions for causal effect identifiability and for the missing values mechanism and to
defining appropriate estimation strategies, one difficulty is to consider the specific structure
of the data with two sources and treatment and outcome only available in the RCT. We
propose and compare three multiple imputation strategies (separate imputation, joint impu-
tation with fixed effect, joint imputation without source information), as well as a technique
that uses estimators that can handle missing values directly without imputing them. These
methods are assessed in an extensive simulation study, showing the empirical superiority of
fixed effect multiple imputation followed with any complete data generalizing estimators.
This work is motivated by the analysis of a large registry of over 20,000 major trauma pa-
tients and a RCT studying the effect of tranexamic acid administration on mortality. The
analysis illustrates how the missing values handling can impact the conclusion about the
effect generalized from the RCT to the target population.
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1 Introduction

Observational and clinical trial data can provide different perspectives when evaluating an in-
tervention or a medical treatment. Combining the information gathered from experimental and
observational data is a promising avenue for medical research, because the knowledge that can be
acquired from integrative analyses would not be possible from any single-source analysis alone.
Such integrative analyses can be used for example to predict a treatment effect on a specific
target population using the one estimated from the RCT, to validate methods, especially ap-
plied to observational data by emulating a trial, to better estimate heterogeneous effects (which
generally cannot be estimated from experimental data due to underpowered studies). Here, we
are interested in the former case, where the experimental data or randomized controlled trial
(RCT) is considered as a biased sample of a target population and we would like to estimate the
treatment effect on the target population represented by an observational study. More precisely,
the effect is estimated on a RCT composed of covariates, treatment and outcome while the obser-
vational study is composed only of covariates. There exists a multitude of methods to generalize
a treatment effect, for detailed reviews we refer to Colnet et al. (2020) and Degtiar and Rose
(2021). But all these methods do not consider the problem of missing data which is ubiquitous in
data analysis practice (Josse and Reiter, 2018). We emphasize here that we focus on incomplete
covariates in both studies, while the outcome and treatment (available in the RCT) are assumed
to be fully observed.
In certain cases, naive approaches such as complete-case analysis can yield unbiased treatment
effect estimates (Bartlett et al., 2015); however, in many settings, especially for observational
data, the estimations are known to be biased since the complete-case observations are generally
not a representative subsample of the population of interest (Little and Rubin, 2014). Fur-
thermore, this approach is sometimes not even possible since in high-dimensional settings the
probability of having complete observations decreases rapidly Zhu et al. (2019). There exists
a multitude of methods to handle missing values (Little and Rubin, 2014; van Buuren, 2018;
Mayer et al., 2019), such as maximum likelihood estimation or multiple imputations with the
aim of estimating as well as possible a parameter and its variance. These methods make assump-
tions on the mechanism that generated the missing values. More recent works also consider the
question of supervised learning with missing values which is a different problem from statistical
inference of model parameters (Josse et al., 2019; Le Morvan et al., 2020). In the context of
causal inference there exist several recent works that address missing data (Mattei and Mealli,
2009; Seaman and White, 2014; Yang et al., 2019; Kallus et al., 2018; Mayer et al., 2020). One
difficulty in the context of causal inference, is that one has to couple identifiability assumptions
for the causal parameter with assumptions on the missing values mechanisms to define an ap-
propriate strategy. According to Mayer et al. (2020), identifiability of the causal effect with
missing values is ensured by adapting the causal inference assumptions to the missing values
setting with an unconfoundedness despite missing values (UDM) assumption (Rosenbaum and
Rubin, 1984). However, these works only consider the case of a single dataset—or potentially
multiple datasets with the same data distribution, i.e., sampled from the same population of
interest—and do not treat the case of transporting or generalizing a treatment effect from an
RCT to a target distribution defined through an observational dataset; the RCT representing a
“distorted” population due to sampling or selection bias (generally defined via eligibility criteria).
In practice, the observed distributions between the observational data and the RCT do not only
differ due to the selection bias but may also differ in terms of missing values patterns. Another
field that explicitly studies data integration and missing values therein is meta-analysis. Burgess
et al. (2013) study a multiple imputation approach in the context of meta-analysis where missing
values can occur in different data sources.
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In this paper we propose to revisit the standard identifiability assumptions and estimators for
generalizing a treatment effect from one to the other under the perspective of identifying the
impact of missing values and suggesting appropriate strategies to handle missing values according
to the different assumptions, such as the missing values mechanisms. Indeed, to the best of our
knowledge, there exists no directly applicable method for this setting nor guidelines for a correct
handling of missing values in either of or both data sources. Our main contributions are:

• we define several multiple imputation strategies adapted for the aforementioned data inte-
gration problem in Section 3;

• we propose alternative identifiability assumptions which can be seen as an an extension of
the unconfoundedness despite missingness (UDM) assumption from the observational data
case (Mayer et al., 2020) and suggest adapted estimators in Section 4;

• we assess the performance of the proposed estimators and naive complete case estimators
in an extensive simulation study in Section 5;

• we present the results of the real-world data analysis which has motivated this work in
Section 6.

For simplicity, we will assume that the relevant covariates that allow for adjustment of the
sampling bias are observed both in the RCT and the observational dataset, and we focus on the
case of different missing values mechanisms for these covariates.
Before diving into the statistical aspects of the problem of treatment effect generalization, we
briefly introduce a medical question about major trauma patients that has motivated this work.
Major trauma denotes injuries that endanger the life or the functional integrity of a person.
The World Health Organization (WHO) has recently shown that major trauma including road-
traffic accidents, interpersonal violence, falls, etc. remains a world-wide public health challenge
and major source of mortality and handicap (Leigh et al., 2018). We focus on trauma patients
suffering from a traumatic brain injury (TBI). TBI is a sudden damage to the brain caused by a
blow or jolt to the head and can lead to intracranial bleeding that can be observed on a computed
tomography (CT) scan. Ongoing intracranial bleeding can lead to raised intracranial pressure,
brain herniation, and death. Over 10 million people pass away or are hospitalized worldwide
because of TBI each year (Dewan et al., 2012). Tranexamic acid (TXA) is an antifibrinolytic
agent that limits excessive bleeding, commonly given to surgical patients. Previous clinical trials
showed that TXA decreases mortality in patients with traumatic extracranial bleeding (Shakur-
Still et al., 2009). Such a result raises the possibility that it might also be effective in TBI,
because intracranial hemorrhage is common in TBI patients. Therefore the question here is to
assess the potential decrease of mortality in patients with intracranial bleeding when using TXA.
To answer this question, we have at disposal two data sources:“CRASH-2”, a multi-center inter-
national RCT, and “Traumabase”, an observational national registry. The details about these
data are provided in Section 6, as well as the analysis results for generalizing the treatment effect
from the CRASH-2 study to the Traumabase registry.

2 Background and notations

We first introduce the notations, standard assumptions and estimators in the complete case,
following the line of Colnet et al. (2020).
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2.1 Notations

The general case consists in assuming that each patient from the two populations is fully char-
acterized by a random tuple (X,Y (0), Y (1), A, S), where X ∈ X is a p-dimensional vector of
covariates, A denotes the binary treatment assignment, Y (a) is the potential outcome for treat-
ment level a, a ∈ {0, 1} and S indicates RCT participation1. The data considered is composed
of n + m independent random tuples: (Xi, Yi(0), Yi(1), Ai, Si)i=1,...,n+m. For simplicity of ex-
position, we introduce an additional indicator variable Q that allows to distinguish between
observations from the RCT (indexed by the set SetR , {1, . . . , n}) and from the observational

cohort (indexed by SetO , {n+ 1, . . . , n+m}). Thus Qi ,

{
R if i ∈ SetR
O if i ∈ SetO

. Note that (i)

P (Q = R|S = 1) = 1, and we assume that conditionally on S = 0, Q is independent of all other
variables considered in this setting. In this paper, we consider the case where for each RCT
sample i such that Qi = R, we observe (Xi, Ai, Yi, Si = 1), while for observational data i such
that Qi = O, we consider that we only observe the covariates Xi, more precisely:

• the RCT samples i = 1, . . . , n are identically distributed according to P(X,Y (0), Y (1), A, S |
S = 1),

• and the observational data samples i = n+1, . . . , n+m are identically distributed following
P(X,S).

An illustration of the data we consider in this work is provided in Figure 1.

Q
Covariates Treatment

Outcome
under A=0

Outcome
under A=1

X1 X2 X3 A Y (0) Y (1)
1 R 1.1 20 5.4 1 23.4 24.1
. . . R . . . . . . . . . . . .
n− 1 R -6 45 8.3 0 26.3 27.6
n R 0 15 6.2 1 28.1 23.5

n+ 1 O -2 52 7.1 NA NA NA
n+ 2 O -1 35 2.4 NA NA NA
. . . O . . . NA NA NA

n+m O -2 22 3.4 NA NA NA

Q
Covariates Treatment

Outcome
under A

X1 X2 X3 A Y
1 R 1.1 20 5.4 1 24.1
. . . R . . . . . . . . .
n− 1 R -6 45 8.3 0 26.3
n R 0 15 6.2 1 23.5

n+ 1 O -2 52 7.1 NA NA
n+ 2 O -1 35 2.4 NA NA
. . . O . . . NA NA

n+m O -2 22 3.4 NA NA

Figure 1: Example of data structure in the full data problem setting. Left: complete underlying
data with potential outcomes in the RCT. Right: observed data with factual outcomes.

We define the conditional average treatment effect (CATE):

∀x ∈ X , τ(x) = E[Y (1)− Y (0) | X = x] , (1)

and the population average treatment effect (ATE):

τ = E[Y (1)− Y (0)] = E[τ(X)] ,

while we define the RCT (or sample) average treatment effect as

τ1 = E[Y (1)− Y (0) | S = 1].

We denote by µa(x) and µa,1(x) the conditional response surfaces under treatment a ∈ {0, 1} in
the general and in the RCT population, respectively:

µa(x) = E [Y (a) | X = x] , µa,1(x) = E [Y (a) | X = x, S = 1] ,

1This indicator S comprises several components: eligibility, selection into the trial and willingness to partici-
pate.
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and by πS(x) the selection score:

πS(x) = P (S = 1 | X = x) .

Note that πS(x) is the probability of being eligible for selection in the RCT and of being willing
to participate given covariate values x. It is different from the probability that an individual
with covariates x, known to be in the study (RCT or observational population), is selected in
the RCT:

πS(x) 6= πR(x), πR(x) = P (∃i, Qi = R, Xi = x | ∃i ∈ SetR ∪ SetO, Xi = x) .

We similarly note

πO(x) = P (∃i, Qi = O, Xi = x | ∃i ∈ SetR ∪ SetO, Xi = x) = 1− πR(x) .

Finally, we denote by α(x) the conditional odds that an individual with covariates x is in the
RCT or in the observational cohort:2

α(x) =
P (i ∈ R | ∃i ∈ SetR ∪ SetO, Xi = x)

P (i ∈ O | ∃i ∈ SetR ∪ SetO, Xi = x)
=
πR(x)

πO(x)
=

πR(x)

1− πR(x)
.

This quantity arises in several approaches that have been proposed to generalize a treatment
effect from an RCT to a target population, see for example Westreich et al. (2017). As we will
see in the following, this conditional odds is identifiable under certain assumptions and can be
used instead of the selection score πS to generalize a treatment effect. Indeed the latter is only
identifiable in the case of a nested trial design (Dahabreh et al., 2021) which we do not cover in
this work.

2.2 Assumptions for identifiability of the ATE on the target population
in the full data case

The main identifiability assumptions that allow for generalizing an ATE from the RCT onto a
target population are as follows:

• Internal validity of the RCT:

– Consistency of potential outcomes Y = AY (1) + (1−A)Y (0)

– Treatment randomization Y (a) ⊥⊥ (A,X) | S = 1 for all X and a = 0, 1.

• Generalizability of the RCT to the target population:

– Ignorability on trial participation

{Y (0), Y (1)} ⊥⊥ S | X. (2)

– Positivity of trial participation

∃ c such that for all x, P (πS(x) ≥ c > 0) = 1,

and 0 < P (A = a | X = x, S = 1) < 1 for all a and for all x such that P (S = 1 | X = x) > 0.

(3)
2In the statistical and econometric literature, this term is sometimes also referred to as conditional odds ratio

even though, by definition, it is an odds and not a ratio of odds.
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Assumption (2) implies that we have measured all variables related to the trial eligibility indicator
S that are treatment effect modifiers. In other words, participation in the RCT is randomized
within levels of X. This is analogous to the ignorability assumption on treatment assignment in
causal inference with observational data. With Assumption (3) we require adequate overlap of
the covariate distribution between the trial sample and the target population, as well as between
the treatment groups in the trial.

2.3 Estimators in the full data case

The covariate distribution of the RCT sample is generally different from that of the target popu-
lation; therefore, τ1 is different from τ , and an estimator based solely on the RCT is biased for the
ATE of interest τ . Under the previous identifiability assumptions, different estimators are avail-
able to estimate the ATE τ : one proposes to reweight the RCT sample so that it “resembles” the
target population with respect to the observed shifted covariates and treatment effect modifiers.
Another proposes to model the conditional outcomes with and without treatment in the RCT,
and then to apply the model to the target population of interest. Doubly robust approaches
are combinations of the former two, improving the robustness and efficacy. For simplicity, we
assume a standard RCT with a constant propensity score of 0.5 for all individuals.

Inverse probability of sampling weighting (IPSW). This estimator is defined as the
weighted difference of average outcomes between the treated and control groups in the trial. The
observations are weighted by the inverse odds 1/α(x) = πO(x)/πR(x) to account for the shift of
the covariate distribution from the RCT sample to the target population. The IPSW estimator
can be written as follows:

τ̂ IPSW =
2

m

n∑
i=1

Yi (2Ai − 1)

α̂(Xi)
, (4)

where α̂ is an estimate of α. The IPSW estimator is consistent as soon as α is consistently
estimated by α̂.

Conditional outcome-based estimation. It fits models of the conditional response surfaces
among trial participants. Applying these models to the covariates of the observational data, gives
the corresponding expected outcome (Robins, 1986). This outcome-model-based estimator, also
called g-formula estimator, is then defined as:

τ̂CO =
1

m

n+m∑
i=n+1

(µ̂1,1(Xi)− µ̂0,1(Xi)) , (5)

where µ̂a,1(Xi) is an estimator of µa,1(Xi). If the model is correctly specified, then the estimator
is consistent.

Doubly robust estimators The selection score and outcome models used in the first two
estimators can be combined to form an augmented IPSW estimator (AIPSW):

τ̂AIPSW =
2

m

n∑
i=1

1

α̂(Xi)
[Ai {Yi − µ̂1,1(Xi)} − (1−Ai) {Yi − µ̂0,1(Xi)}]

+
1

m

m+n∑
i=n+1

{µ̂1,1(Xi)− µ̂0,1(Xi)} .
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It is doubly robust, i.e., consistent and asymptotically normal when either one of the two models
for π̂R and µ̂a,1(X) (a = 0, 1) is consistent.

Calibration weighting. It is well known that IPSW is likely to be unstable as soon as some
of the estimated odds are very small. To resolve the instability of IPSW calibration weighting
(Dong et al., 2020) have been proposed. They calibrate, i.e. weight subjects in the RCT sample in
such a way that afterwards, the covariates are balanced between the RCT sample and the target
population: usually the balance is enforced on the first and second moments of the covariates
X1, . . . , Xp such that the weighting mean and variance for each variable in the RCT match the
ones in the observational data. More precisely, in order to calibrate, they assign an entropy-
balancing weight ωi to each subject i in the RCT sample obtained by solving an optimization
problem:

min
ω1,...,ωn

n∑
i=1

ωi logωi, (6)

subject to ωi ≥ 0, for all i,
n∑
i=1

ωi = 1,

n∑
i=1

ωi g(Xi) = g̃, (the balancing constraint)

where g̃ = m−1
∑m+n
i=n+1 g(Xi) is a consistent estimator of E[g(X)] from the observational sam-

ple. The balancing constraint calibrates the covariate distribution of the RCT sample to the
target population in terms of g(X). The objective function in (6) is the negative entropy of the
calibration weights; thus, minimizing this criterion ensures that the empirical distribution of cal-
ibration weights are not too far away from the uniform, such that it minimizes the variability due
to heterogeneous weights. Based on the calibration weights, the CW estimator is then defined
as

τ̂CW = 2

n∑
i=1

ω̂iYi(2Ai − 1). (7)

This estimator is doubly robust in that it is a consistent estimator for τ if either the selection
score follows a log-linear model, or if the CATE (1) is linear in the calibration constraint.

2.4 Missing values mechanisms

In the taxonomy proposed by Rubin (1976), an ignorable missingness mechanism is either miss-
ing completely at random (MCAR) or missing at random (MAR). The former means that the
missingness mechanism is independent of the data, whereas the latter states that the missingness
only depends on the observed values. In a nutshell, ignorable missingness means that the missing
data mechanism can be “ignored” when doing inference for the parameter in the data likelihood
function since the two are separable in the full data likelihood function, whereas non-ignorable
missingness complicates analyses more significantly.
More formally, we denote the response pattern of the i-th sample as Ri ∈ {0, 1}p such that
Rij = 1 if Xij is observed and Rij = 0 otherwise. We model 1 − Ri as a random vector and
its (conditional) distribution is known as the missing values mechanism. Additionally, for our
problem, for all response patterns r and X = (Xobs(r), Xmis(r)) the partition of the data in
realized observed and missing values given a specific realization of the pattern,

(MCAR) ∀ r, P (R = r|X,S,Q,A, Y ) = P (R = r) (8)

(MAR) ∀ r, P (R = r|X,S,Q,A, Y ) = P (R = r|Xobs(r), S,Q,A, Y ) (9)
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If the missingness mechanism is non-ignorable, it is qualified as missing not at random (MNAR)
and it formally states that the mechanism does not satisfy (8) or (9), in other words the miss-
ingness is allowed to depend on the missing values themselves.
In Figure 2 we provide an example of observed incomplete data and recall the underlying data
for our problem.

Q
Covariates Treatment

Outcome
under A=0

Outcome
under A=1

X1 X2 X3 A Y (0) Y (1)
1 R 1.1 20 5.4 1 23.4 24.1
. . . R . . . . . . . . . . . .
n− 1 R -6 45 8.3 0 26.3 27.6
n R 0 15 6.2 1 28.1 23.5

n+ 1 O -2 52 7.1 NA NA NA
n+ 2 O -1 35 2.4 NA NA NA
. . . O . . . NA NA NA

n+m O -2 22 3.4 NA NA NA

Q
Covariates Treatment

Outcome
under A

X∗1 X∗2 X∗3 A Y
1 R 1.1 20 NA 1 24.1
. . . R . . . . . . . . .
n− 1 R -6 NA 8.3 0 26.3
n R 0 15 6.2 1 23.5

n+ 1 O -2 52 NA NA NA
n+ 2 O -1 NA 2.4 NA NA
. . . O . . . NA NA

n+m O NA NA 3.4 NA NA

Figure 2: Example of data structure in the incomplete data problem setting. Left: complete
underlying data with potential outcomes in the RCT. Right: observed incomplete data with
factual outcomes.

3 Multiple imputation

3.1 General concept

Multiple imputation (MI) is one of the most powerful approaches to estimate parameters and
their variance from incomplete data (Little and Rubin, 2014; Kim and Shao, 2013; Schafer, 2010).
In a nutshell, for a single dataset, it consists in generating M plausible values for each missing
entry, which leads to M completed datasets. Then, an analysis is performed on each imputed
data set m = 1, . . . , M , to get an estimate for the parameter of interest, say θ as θ̂m and an
estimate of its variance V̂ m(θ̂m) and the results are combined using Rubin (1987)’s rules to get
correct inference with missing values, namely confidence intervals with the appropriate coverage.

3.2 Adapted multiple imputation for multiple data sources with dif-
ferent data design

For our problem, there are multiple possibilities to derive a multiple imputation strategy to
generalize a treatment effect. This is due to the multi-source structure of the data and the fact
that there is an additional complication due to the number of variables are not the same in the
RCT and in the observational study. Indeed, we assume that the observational study does not
include treatment and outcome but only covariates. We stress again that we assume missing
values only occur in the covariates of both data. We suggest and describe three strategies to
tackle this problem:

1. Within-study multiple imputation, see also Figure 3a:

(a) Multiple imputation of the RCT: Impute M times the covariates of the RCT using
(Xi, Ai, Yi)i:Qi=R.

(b) Multiple imputation of the observational data: Impute M times the covariates of the
observational data using only the covariates (Xi)i:Qi=O.
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(c) Create M×M complete tables by concatenating all possible combinations of imputed
RCT and observational data. Estimate the treatment effect on every combination
using any complete case estimator as in Section 2 and aggregate these estimations
using Rubin’s rules.

2. Ad-hoc joint covariates multiple imputation, ignoring the group variable, see also Figure 3b:

(a) Impute M times the joint datasets (the concatenation of the covariates from the RCT
and the ones from the observational study) with covariates X and ignore the “source”
indicator variable Q during the imputation.

(b) Concatenate the outcome Y and treatment A for each imputed RCT.

(c) Compute the M treatment effect estimators using any complete case estimator as in
Section 2 and aggregate them using Rubin’s rules.

3. Joint covariates multiple imputation, modeling the group variable as a fixed effect, i.e.
keep the indicator variable Q indicating the corresponding “group”/“source” during the
imputation, see also Figure 3c:

(a) Impute M times the joint datasets with covariates X and model the source indicator
variable Q as a fixed effect during the imputation.

(b) Concatenate the outcome Y and treatment A for each imputed RCT.

(c) Compute the M treatment effect estimators using any complete case estimator as in
Section 2 and aggregate them using Rubin’s rules.

The first strategy has the advantage that it takes into account the outcome Y and treatment
A which are dependent variables of the covariates X, when imputing the covariates of the RCT
as suggested by Leyrat et al. (2019); Seaman and White (2014); Mattei and Mealli (2009) as it
models the entire joint distribution. The other strategies only consider the covariates X. The
second strategy solely relies on the relationships between the covariates X and the assumption
that these are stable across the data sources, i.e., Cov(X) = Cov(X|S = 1). The third strategy
allows to additionally take into differences between both sources when imputing by modeling the
source as a fixed effect. Strategy 3 can thus be seen as a fixed effect method, where the variable Q
is included as a variable in the imputation model which allows, e.g., in case of multiple imputation
with conditional regression models, to impute according to an analysis of covariance model. A
drawback of this approach is that it generally inflates the between-group variability (Andridge,
2011).
In the case of several observational data sources, a fourth strategy could be considered, namely
a multilevel multiple imputation approach, adding random effects into the model for each (ob-
servational) data source. Indeed, multilevel multiple imputation is specifically designed for cases
of hierarchical or clustered observations, allows for a random intercept between groups (or, in
our case, data sources) (van Buuren, 2018; Burgess et al., 2013; Audigier et al., 2018). It could
be also appropriate when the observational data consists of patient records coming from differ-
ent hospitals. It is indeed useful to encode the clustered structure of these records to account
for between-hospital variability in terms of patient population and treatment practices. For a
broader overview of multilevel imputation, we refer to Audigier et al. (2018); van Buuren (2018).
All three strategies can be implemented easily using the R package mice (van Buuren, 2018) which
uses conditional models such as linear and logistic regressions to perform multiple imputation.
The sketched fourth strategy could be implemented using the micemd R package (Audigier et al.,
2018).
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Figure 3: Schematic illustrations of different multiple imputation strategies.
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Multiple imputation is suited if the missing values are ignorable as described in Section 2.4 and
if the identifiability assumptions of the ATE τ in the full data case are met, namely Assumptions
(2) and (3).
Note that for the considered imputation strategies, increasing the number of imputations does not
improve (significantly) the final result. There exists no clear rule about the number of multiple
imputations to achieve good performances, however an accepted rule of thumb is to choose the
number of imputations to be similar to the percentage of incomplete cases (Hippel, 2009) or to
the average percentage of missing data (van Buuren, 2018).

4 Missing incorporated in attributes under adapted ignor-
ability assumption

Multiple imputation makes classical identifiability assumptions of the causal effect and ignor-
ability assumptions of the missing values mechanism (Seaman and White, 2014; Leyrat et al.,
2019). An alternative to handle missing covariates values consists in modifying the identifiability
assumptions so that they directly handle missing values but do not necessarily require assump-
tions on the missing values mechanism. This can be seen as an advantage as it possibly allows for
MNAR data, but the new identifiability assumptions may be more difficult to satisfy than in the
full data case. More precisely, we extend the work of Mayer et al. (2020) who adapt the uncon-
foundedness assumption to the incomplete covariates in order to identify the (average) treatment
effect in the observational data case. In the following we lay out the modified assumptions for
generalizability of the RCT to the target population we make to achieve a similar identifiability
in the case of missing values in the RCT and the observational data.3 We then explain how
to generalize treatment effects under these assumptions. First, we introduce an additional no-
tation, required for the following approach: The matrix of observed covariates can be written
with X∗i , Xi � Ri + NA � (1 − Ri), with � the element-wise multiplication and 1 the matrix
filled with 1, so that X∗i takes its value in the half discrete space X ∗ , ×

1≤j≤|X|
{Xj ∪ {NA}}.

And, similar to D’Agostino and Rubin (2000); Mayer et al. (2020), we define the generalized
conditional response surfaces µ∗a and µ∗a,1 as follows:

µ∗a(x∗) = E(Y (a) | X∗ = x∗),

µ∗a,1(x∗) = E(Y (a) | X∗ = x∗, S = 1),
(10)

The possibility to infer causal effects and to generalize the effect(s) from the RCT to another
(broader) target population in the presence of missing data, i.e., using observations (X∗i , Ai, Yi, Si = 1)i=1, ..., n

and (X∗i )i=n+1, ..., n+m, depends on the following additional assumptions on the joint law of
(Xi, Ai, Yi(0), Yi(1), Si = 1, Ri)i=1, ..., n and (Xi, Ri)i=n+1, ..., n+m.

• Ignorability on trial participation, conditionally independent selection (CIS)

Assumption (2) and {Y (0), Y (1)} ⊥⊥ S | X∗. (11)

• Positivity of trial participation

Assumption (3) and ∃ c∗ such that for all x∗, P (πS(x∗) ≥ c > 0) = 1,

and 0 < P (A = a | X∗ = x∗, S = 1) < 1 for all a and for all x∗ such that P (S = 1 | X∗ = x∗) > 0.

(12)
3Note that the assumptions for internal validity of the RCT are the same as in the full data case.
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Assumption (11) means that being eligible to the RCT does not affect the potential outcomes
conditionally on the covariates X∗.
The intuition behind these additions is to assume that instead of requiring conditional indepen-
dence of potential outcomes and trial eligibility conditionally on all covariates, we only require
conditional independence conditionally on the observed information, meaning the observed val-
ues and the pattern of missing values. Taking the example given in Figure 2, for observation
1, only X1 and X2 and the fact that X3 is unobserved are decisive for trial eligibility, while for
observation 2, only X1 and X3 and the fact that X2 is missing decide upon trial eligibility, etc.
A possible scenario could be the existence of a list of sufficient but not necessary trial eligibility
criteria. In other words, one could imagine a “check list” of L conditions and it is necessary to
fulfill at least l < L of these to be eligible.
Similar to the UDM assumption in Mayer et al. (2020), Assumption (11) can be replaced by two
sufficient assumptions: Assumption (2) and S ⊥⊥ X | X∗, thus the term conditionally independent
selection.

4.1 Generalized parameters and estimators

Since the conditional response surfaces µ∗a and µ∗a,1 now depend on X∗ rather than X and thus
depends on the pattern of missing values, the estimators that involve an estimation of these
quantities require an adaptation. Analogously to the generalized response surfaces, on can also
define the generalized conditional odds α∗, following the same logic.

µ∗a(x∗) = E [Y (a) | X∗ = x∗] , µ∗a,1(x∗) = E [Y (a) | X∗ = x∗, S = 1] . (13)

The resulting estimators are then formed analogously to the estimators in the full data case,
by substituting the corresponding nuisance or intermediary parameters with their generalized
counterparts. More explicitly, the outcome-model-based estimator defined by (5) becomes

τ̂CO,∗ =
1

m

n+m∑
i=n+1

(
µ̂∗1,1(X∗i )− µ̂∗0,1(X∗i )

)
. (14)

Fitting the new nuisance or intermediary parameters (13) is not straightforward, since these
require to fit a separate regression model for each possible pattern r of missing values. For
example, if we have three incomplete covariates X1, X2, X3, this means we need to fit a separate
regression on {X1, X2, X3}, on {X1, X2}, on {X2, X3}, on {X1}, etc. We can see from this
example that this is not possible in moderate and high dimensions with classical regression
methods. This is why we propose to use random forests with a splitting criterion adapted to
missing data. Indeed, as noted already by Athey et al. (2019); Mayer et al. (2020), many modern
machine learning methods, including tree ensembles and neural networks, can be adapted to this
context and thus readily handle missing data and enable direct fitting of the generalized models
above (Josse et al., 2019).

Nonparametric estimation. As an example of such a modern nonparametric estimation
approach, we propose to estimate the generalized parameters via random forests (Breiman, 2001;
Athey et al., 2019), with missing data handled using the missing incorporated in attributes (MIA)
method of Twala et al. (2008). The resulting IPSW, CO and AIPSW estimators will be denoted
by τ̂ IPSWMIA , τ̂COMIA, and τ̂AIPSWMIA respectively.
In random trees, the MIA approach extends the classical splitting rules such that missing values
are incorporated in the splitting criterion. More specifically, consider splitting on the j-th at-
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tribute and assume that for some individuals, the value of Xj is missing, MIA treats the missing
values as a separate category or code and considers the following splits:

• {i : Xij ≤ t or Xij is missing} vs. {i : Xij > t}

• {i : Xij ≤ t} vs. {i : Xij > t or Xij is missing}

• {Xij is missing} vs. {Xij is observed},

for some threshold t. The MIA approach does not seek to model why some features are unob-
served; instead, it simply tries to use information about missingness to make the best possible
splits for modeling the desired outcome. Thus the MIA strategy works with arbitrary missing-
ness mechanisms and does not require the missing data to follow a specific mechanism. This
MIA approach for (generalized) random forests is implemented in the R package grf (Tibshirani
et al., 2020) which is also used in the simulation part of this work presented in Section 5.

Parametric alternative. Parametric estimation is however possible in the case of logistic and
linear regression models. This is based on work by Jiang et al. (2020) and Schafer (2010) for
logistic and linear regressions with missing covariates. The functions µ∗ and α∗ that take in
incomplete covariates x∗ are estimated via EM (Dempster et al., 1977). The resulting IPSW,
CO and AIPSW estimators will be denoted by τ̂ IPSWEM , τ̂COEM , and τ̂AIPSWEM respectively.
The details of this approach are given in the Appendix A.
However, a major limitation of this approach is that, in addition to the modified identifiability
assumptions (11) and (12), in order to justify the use of the EM algorithm, one typically needs to
make further assumptions on the missing value mechanism; in particular, this approach assumes
the MAR mechanism (9). In other words, although we did not require the missing at random
assumption to identify τ , this assumption is used for consistent parametric estimation of the
generalized conditional models α∗ and µ∗a,1.

5 Simulations

We conduct a detailed simulation study to assess the performance of the previously introduced
estimators to handle missing values. This controlled study allows to quantify the impact of
different missing values mechanisms and identifiability assumptions on the final estimate for the
ATE τ .

5.1 Data generation

5.1.1 Classical assumptions for identifiability in treatment effect generalization and
on missing values mechanisms

We consider the selection model generated as a logistic model as follows

logit {πS(X)} = −2.5− 0.5X1 − 0.3X2 − 0.5X3 − 0.4X4, (15)

where every X is drawn from a multivariate normal distribution with mean 1 and covariance

matrix Σ such that Σij =

{
1 if i = j
0.6 if i 6= j

to have correlated covariates. The outcome is

generated according to the linear model below such that X1 is a treatment effect modifier and
the true ATE τ is set to 27.4.
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Y (a) = −100 + 27.4aX1 + 13.7X2 + 13.7X3 + 13.7X4 + ε with ε ∼ N (0, 1). (16)

We do not modify the treatment assignment mechanism since by assumption it is independent
of the rest and in standard RCT design it is constant for all individuals. Missing values in the
covariates are generated as follows, defining different models for the response indicator R (see
Section 2.4):

• Missing values can occur in all four covariates.

• Proportion of missing values in each incomplete covariate: 20%.

• The missing values mechanism can be one out of the following and is implemented in the
produce NA function proposed by Mayer et al. (2019):

– MCAR where the probability to have missing values does not depend on any variable:

P (Ri· = r|Xi, Si, Qi, Yi, Ai) = P (Ri· = r) (17)

We choose P (Rij = 0) = 0.2 for all i ∈ {1, . . . , n+m}, and j ∈ {1, 2, 3, 4}.
– MAR:

P (Ri· = r|Xi, Si, Qi, Yi, Ai) = f(Xobs(r)), (18)

for some function f : X → [0, 1], for all i ∈ {1, . . . , n + m}. For example, missing
values in X1 are introduced for observation i using a logistic model on X2, X3, X4,
assuming these three variables are observed for observation i.

– MNAR:
P (Rij = 0|Xi, Si, Qi, Yi, Ai) = g(Xij), (19)

for some function g : Xj → [0, 1], for all j and i ∈ {1, . . . , n + m}. In this study,
we use a self-masking MNAR mechanism, i.e., the missingness of a variable depends
on its value alone. More precisely, we use an upper quantile censorship approach.
The quantile level q is chosen such that when missing values are generated on the q-
quantile at random, the requested proportion of missing values is achieved. For more
details about this chosen approach, we refer to the documentation of the produce NA

function4.

We assume that the trial selection, randomization and potential outcomes are completely inde-
pendent from the missing values. The simulation design is summarized by Algorithm 1.

Algorithm 1: Steps for simulation design under the standard assumption

Result: Joint data table X∗ of RCT and observational data and additional variables
A, Y for the RCT.

1 Sample N >> n observations X1, . . . , XN from the target population P(X);
2 Sample S according to the logistic model (15) on X;
3 Keep the {S = 1} indexed observations XR ← X{i:Si=1} as the RCT;
4 Sample A according to a Bernoulli distribution B(0.5) (coin flip);
5 Sample Y according to the linear model (16) on XR;
6 Sample m observations XO from the target population P(X) as the observational data;

7 Concatenate the datasets: X ← [XT
R , X

T
O]T and append the indicator Q to the data

(X ← [X , Q]);
8 Sample missing values for the n+m observations according to either (17), (18) or (19);

4https://rmisstastic.netlify.app/how-to/generate/missSimul.pdf
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For ease of comparison with the alternative simulation scenario, we provide the expression of the
joint distribution over (X,R,A, Y, S,Q) factorized according to the underlying generative model:

p(X,R,A, Y, S,Q) ∝ p(R|S,Q,X,A, Y )p(S,Q, Y |X,A)p(A|X)p(X)

∝ p(R|S,Q,X,A, Y )p(Q|S)p(S|X,A)p(Y |X,A)p(A|X)p(X)
(20)

In the MCAR case (8), this factorization simplifies as follows:

p(X,R,A, Y, S,Q) ∝ p(R)p(Q|S)p(S, Y |X,A)p(A|X)p(X).

5.1.2 Modified assumptions on treatment effect generalization

We also generate data according where the CIS assumption (11) is met. In such scenarios, we
expect that the methods described in section 4 will work best.
The main difference with the previous setting of simulation, lies in the definition of the selec-
tion model, the outcome model remaining unchanged. To relate this setting to the previous
one, we begin by giving the expression of the factorization of the joint distribution under these
assumptions on the data generating process.

p(X,R,A, Y, S,Q) ∝ p(S,Q|X,R,A, Y )p(R|X,A, Y )p(Y |X,A)p(A|X)p(X)

∝ p(Q|S)p(S|X,R,A, Y )p(R|X)p(Y |X,A)p(A|X)p(X)
(21)

Note that we can see from this factorization, the difference w.r.t. the previous case induced by
the modified transportability assumptions, and in particular the modified ignorability (11) which
induces a (conditional) dependence between R and {S,Q} by assumption.
In order to simulate data under the CIS assumption (11), we need to modify the definition of πS
such that it becomes pattern-dependent.

logit {πS(X)} = −2.5− 0.5X1 �R1 − 0.3X2 �R2 − 0.5X3 �R3 − 0.4X4 �R4, (22)

The simulation design and the adapted CIS ignorability assumption is summarized in Algorithm
2 and is different from the one described in Algorithm 1.

Algorithm 2: Steps for simulation design under the CIS assumption.

Result: Joint data table X of RCT and observational data and additional variables
A, Y for the RCT.

1 Sample N >> n observations X1, . . . , XN from the target population P(X);
2 Sample missing values for the N observations according to either (17), (18) or (19);
3 Sample S according to pattern-dependent logistic model on X;
4 Keep the {S = 1} indexed observations XR ← X{i:Si=1} as the RCT;
5 Sample A according to a Bernoulli distribution B(0.5) (coin flip);
6 Sample Y according to the linear model (16) on XR;
7 Sample m observations XO from the target population as the observational data;
8 Sample missing values for the m observations XO using the same mechanism as before

but possibly with different proportions;

9 Concatenate XR and XO (X ← [XT
R , X

T
O]T ), and append the indicator Q to the data

(X ← [X , Q]);
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5.2 Estimation methods

We consider different scenarios of data generating processes by varying the type of missing values
(MCAR, MAR, MNAR), ignorability assumption (standard or CIS), as well as the number of
observations.
We compare the following methods to handle missing values (the following acronyms are identical
to the method labels used in Figures 4 –5:

• Full data: we apply the standard full data estimators from Section 2 on the full data before
introducing missing values (this would serve as a reference).

• Complete cases (CC): we apply the standard full data estimators from Section 2 on the
complete observations extracted from the incomplete data (by deleting observations with
missing values).5

• EM (see Section 4.1): we use EM to fit logistic and linear regression models of α∗ and µ∗a,1
on the incomplete data using the R package misaem (Jiang et al., 2020).

• MIA (see Section 4.1): we use generalized random forests with MIA splitting criterion to
estimate the generalized models α∗ and µ∗a,1 on the incomplete data, using the R package
grf (Athey et al., 2019).

• Multiple imputation (MI, Section 3): we apply the standard full data estimators from
Section 2 on the imputed data (5-10 imputations obtained using the R package mice)
where we use either

– within-study multiple imputation (WI-MI), or

– ad-hoc multiple imputation (AH-MI), or

– fixed effect multiple imputation (FE-MI).

We do not assess the random effect multiple imputation (i.e., the joint covariates multiple impu-
tation with a 2-level model accounting for the multiple data sources, sketched Strategy 4 from
Section 3) in this simulation study because this does not correspond to our motivating data
example from the introduction.
Note that for the EM and MIA approach, we only compute the IPSW, CO and AIPSW estimators
(see Section 2.3) since the calibration weighting estimator in its current form is not applicable
on incomplete data and future work is required to adapt this estimator to incomplete data.

5.3 Results

Due to the large number of different scenarios we consider in this simulation study, we first
provide a summary of the expected behaviors of the different estimators in various cases before
we report results of our experiments.

5.3.1 Summary of expected and empirical results

In Table 1 we summarize the expected results in terms of consistency of the different approaches,
depending on the mechanisms that generate the data. For example, the MIA approach being
suited for the modified ignorability assumption CIS (11), we expect it to perform well under CIS,
independently of the missingness mechanism. In contrast, we do not expect it to be consistent

5Note that this approach is the most common default option in many implementations.
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under the standard ignorability assumption (2), whereas multiple imputation should be consistent
under this standard assumption, provided the missingness is either MCAR or MAR.

Table 1: Expected behavior under different assumptions about the data generating process and
used estimation approach. Color code: blue=no bias; red=bias.

Full data Complete cases EM MIA
Multiple

imputation

MCAR

CIS
(Assmpt. 11)

I
(Assmpt. 2)

MAR

CIS
(Assmpt. 11))

I
(Assmpt. 2)

MNAR

CIS
(Assmpt. 11)

I
(Assmpt. 2)

This Table 1 is based on the Table 2 that summarizes the required assumptions for each method.

Table 2: Methods for handling incomplete observations in treatment effect generalization and
their assumptions on the underlying data generating process. (3indicates cases that can be
handled by a method, whereas 7 marks cases where a method is not applicable in theory; (7)
indicates cases without theoretical guarantees but with good empirical performance.)

Covariates Missingness
Identifiability of

generalized τ
Models

for (S, Y )
multiva-
riate

normal
other MCAR MAR MNAR

I
(≡ (2) & (3))

CIS
(≡ (11) & (12))

Generalized
linear
models

Non-
parametric
models

CC 3 3 3 7 7 3 7 3 3

EM 3 7 3 3 7 7 3 3 7

MIA 3 3 3 3 3 7 3 3 3

MI 3 3 3 3 7 3 3 3 (7)

Some simulations results are in agreement with what is expected but there are also some gaps
between the expected and empirical behavior in the chosen simulation settings. Indeed, in
Figures 4 and 5 we report the empirical bias with at 95% Monte Carlo confidence interval (based
on a Monte Carlo standard error) of the estimated generalized ATE τ̂ relative to the true value
τ = 27.4, using nsim = 100 repetitions of each scenario. We define the empirical bias and its
Monte Carlo standard error respectively by

B̂τ̂ = B̂ias(τ̂) =
1

nsim

nsim∑
i=1

τ̂i − τ

ŜE(B̂τ̂ ) =

√√√√ 1

nsim(nsim − 1)

nsim∑
i=1

(τ̂i − τ)2,

where τ =
∑nsim

i=1 τ̂i, following Morris et al. (2019).

• As expected, in Figure 4 we note that the full-data estimations are unbiased in all scenarios
under the standard ignorability assumption (2). Under the CIS assumption, only the full-
data estimators that (partly) rely on the outcome model, namely CO, AIPSW, and CW
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are unbiased, whereas the parametric IPSW estimator fails under CIS. Surprisingly, the
nonparametric full-data IPSW estimator recovers the true value in the MAR and MNAR
case (see Figure 5).

• The complete case estimations are, unsurprisingly, unbiased only in the MCAR case.

• The behavior of the EM estimations is as expected: all estimators are unbiased under CIS
under MCAR and MAR. However the AIPSW estimator performs better than the IPSW
and the CO. In the MNAR case, the algorithm fails to converge.

• The MIA estimations overall have either small or no bias under CIS, especially the AIPSW
estimator. Furthermore, under the CIS assumption, the AIPSW estimator always performs
at least as well as the simple estimators (IPSW and CO). Under the standard ignorability
assumption, the behavior is heterogeneous and tends toward biased results for all missing-
ness mechanisms.

• Surprisingly, the within-study MI IPSW estimator is biased in all cases except the CIS+MCAR,
and CIS+MNAR cases. This behavior is not expected and it remains to be investigated
whether this is due to the simulation design.

• The joint fixed effect MI estimator (FE-MI) comes closer to the expected behavior of the
multiple imputation approach than the ad-hoc MI (AH-MI) and the within-study MI (WI-
MI) estimator as it has small or no bias under the standard ignorability and ignorable
missingness (I+MCAR and I+MAR), but all three fail in the MNAR case (as expected).

Note that for the full data case, the choice of the estimator, namely parametric (in our case,
generalized linear models) or non-parametric (here generalized random forests), has an impact
on the bias, especially for the single-model estimators IPSW and CO. This is not surprising given
the linear specification of the conditional odds and outcome models from (15) and (16) and the
rather slow convergence of the chosen non-parametric method, random forest (grf), for linear
models.6

In view of the results, if one has to recommend a method, it is preferable, from the present em-
pirical evidence, to choose the MIA-AIPSW estimator or the joint multiple imputation coupled
with the CW estimator. The MIA approach is simple to use in R thanks to the grf package
which directly handles incomplete variables with the MIA splitting criterion for random forests.
However, in terms of computational costs, this approach can be more expensive due to (auto-
matic) parameter tuning. The joint multiple imputation approaches are easy to implement (with
the mice package) but the relative computational running time is of similar magnitude as the
MIA approach.

6The random forest approach would require a lot of data to estimate linear regression functions; random forests
are however known for their good performance in the presence of non-linearities and high order interaction terms
(Breiman, 2001).
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MCAR MAR MNAR
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grf
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CW AIPSW CO IPSW RCT

Full
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EM

MIA

WI−MI

FE−MI

AH−MI

Figure 4: Empirical bias of generalizing ATE estimators under the standard ignorability assump-
tion, 95% Monte Carlo confidence intervals, n = 1000.
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MCAR MAR MNAR
glm

grf
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CW AIPSW CO IPSW RCT

Full

CC

EM

MIA

WI−MI

FE−MI

AH−MI

Figure 5: Empirical bias of generalizing ATE estimators under the conditionally independent
ignorability (CIS) assumption, 95% Monte Carlo confidence intervals, n = 1000.

5.3.2 Impact of different proportions of missing values in the RCT and observa-
tional data

It is common that the RCT presents significantly less missing values than the observational study
due to a more systematic monitoring of the data collection process. This invokes the question of
how the above studied methods behave in the case of unbalanced proportions of missing values
or different missing values mechanisms in the different data sources.
Extending the previous simulation study by such a case, we summarize in Figure 6 the per-
formance of the different estimators under different scenarios of varying proportions of missing
values in the RCT and the observational data when the data is MAR given S (or equivalently,
we say it is MCAR in each data set). Note that this implies a slightly different factorization of
the joint distribution over all variables than the one in the standard MCAR case (8):

p(X,R,A, Y, S) ∝ p(R|S,X,A, Y )p(S, Y |X,A)p(A|X)p(X)

∝ p(R|S,X,A, Y )p(S|X,A)p(Y |X,A)p(A|X)p(X)

∝ p(R|S)p(S|X,A)p(Y |X,A)p(A|X)p(X)

As expected, the complete case estimators are unbiased in this special case since conditionally
on S, the data is MCAR. The doubly robust multiple imputation estimators can cope with
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very different proportions of missing values, either 10%, 50% in RCT and observational data
respectively, or 5% and 22% respectively.
These results are supporting our claim that the previous results and methods apply as well to
the likely case of different proportions of missing values in the two studies. Indeed the following
data analysis in Section 6 is an example of this case.

A B

−30 −20 −10 0 10 −30 −20 −10 0 10

CW AIPSW CO IPSW RCT

CC WI−MI FE−MI AH−MI

Figure 6: Bias estimates of generalized ATE under standard ignorability where missing values
are “study-wise MCAR” (≡ MAR given S). For n ∈ {1000, 5000}, 20 repetitions. Case
A={m=10×n, RCT=10% NA, Obs=50% NA}; case B={m = 10×n, RCT=5% NA, Obs=22%
NA}.

6 Application on critical care data

In this part, we come back to the medical question introduced in the beginning of this work
about the potential effect of tranexamic acid (TXA) on mortality in patients with intracranial
bleeding. We recall that, in order to answer this question, we have at disposal two data sources:
(1) CRASH-2, a multi-center international RCT, (2) Traumabase, an observational national
registry.
A detailed data analysis of the observational registry to address the above medical question has
been conducted by Mayer et al. (2020). We thus refer to this previous analysis for a detailed
description of the observational registry as well as their findings. In a nutshell, leveraging only
the observational registry does not provide evidence towards a beneficial (or detrimental) effect
of TXA on trauma patients with TBI in terms of head-injury-related mortality.
We will first recall a summary of the findings of the original CRASH-2 study (Shakur-Still
et al., 2009) before turning to focus on how the handling of missing values in the RCT and the
observational registry impacts the final estimations of the population average treatment effect.
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6.1 Findings of the CRASH-2 RCT

The CRASH-2 (Clinical Randomisation of Antifibrinolytic in Significant Haemorrhage) trial
enrolled 20,211 patients in 274 hospitals in 40 countries between May 2005 and 2009 (Shakur-Still
et al., 2009).
The aim of this trial was to study the effect of tranexamic acid in adult trauma patients with
ongoing significant hemorrhage or at risk of significant hemorrhage, within 8 hours of injury
(inclusion criteria), except those for whom antifibrinolytic agents were thought to be clearly
indicated or clearly counter-indicated (exclusion criteria).7.
More precisely, eligible patients were defined as trauma patients within 8 hours of the injury, of
age at least 16 years:

• with ongoing significant hemorrhage (systolic blood pressure less than 90 mmHg and/or
heart rate more than 110 beats per minute)

• or who are considered to be at risk of significant hemorrhage.

The inclusion criteria and other baseline regressors are summarized in the graph of Figure 7.

Figure 7: Causal graph of CRASH-2 trial representing treatment, outcome, inclusion criteria
with S and other predictors of outcome (Figure generated using the Causal Fusion software by
Bareinboim and Pearl (2016)).

The results of the CRASH-2 study are reported in Shakur-Still et al. (2009) and show a beneficial
effect of TXA on the trial population for the primary outcome of interest (all-cause 28 day death).

6.2 Integration of the CRASH-2 trial and the Traumabase registry

In the following, we discuss common variables definition, outcome, treatment, and designs in
order to leverage both sources of information. We recall the causal question of interest: “What
is the effect of the TXA on brain-injury death on patients suffering from TBI?” This part is
important for the harmonization of the study protocol.

Treatment exposure. The treatment protocol of CRASH-2 frames the timing and mean of
administration precisely (a first dose given by intravenous injection shortly after randomization,
i.e., within 8 hours of the accident, and a maintenance dose given afterwards (Shakur-Still et al.,
2009)). The Traumabase study being a retrospective analysis, this level of granularity concerning

7Extract from the study protocol available at https://www.thelancet.com/protocol-reviews/05PRT-1.
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TXA is unfortunately not available. Neither the exact timing, nor the type of administration
are specified for patients who received the drug. However, the expert committee agreed that
the assumption of treatment within 3 hours of the accident is very likely since this drug is
administered in pre-hospital phase or within the first 30 minutes at the hospital (Mayer et al.,
2020).

Outcome of interest. The CRASH-2 trial defined primary outcome as any-cause death in
hospital within 28 days of injury. This outcome is also available in the Traumabase.

Covariates accounting for trial eligibility. For the CRASH-2 trial, four criteria determined
inclusion: age (patients of at least 16 years old were eligible), ongoing or risk of significant
hemorrhage (defined as systolic blood pressure below 90 mmHg or heart rate above 110 beats per
minute, or clinicians evaluation of a risk), within 8 hours of injury and absence of a clear indication
or counter-indication of antifibrinolytic agents. The necessary variables are also available in the
Traumabase, either exactly or in form of proxies, which allows the estimation of the trial inclusion
model on the combined data.

Additional covariates. Note that other covariates are (partially) available in both data sets,
while not responsible of trial inclusion according to CRASH-2 investigators. But as this could
still be covariates moderating the outcome and treatment effect, we include them in the outcome
models used in the CO and AIPSW estimators (5) and (6). According to the two data sets, we
could add three of them: sex (binary), type of injury (categorical, 1 =blunt, 2 = penetrating,
3 = blunt and penetrating), and initial Glasgow coma scale (numeric, integers from 3 to 15).
Note that this three covariates are all mentioned in the baseline of CRASH-2 results (Shakur-Still
et al., 2009), arguing that they should impact the outcome. The variables central capillary refill
time and respiratory rate are also mentioned but are not available in the Traumabase, we thus
omit them from this joint study.

Missing values. First, note that the RCT contain almost no missing values, whereas the
variables for determining eligibility in the observational data contains important fractions of
missing values, as shown in Table 8, while the sample sizes of the data sets are similar, see
Table 3.
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Figure 8: Percentages of missing values in each covariate for the Traumabase and CRASH-2
RCT.

Table 3: Sample sizes for the two studies.

m n #treated #all-cause 28d death
Traumabase 8248 – 686 1648
CRASH-2 – 3727 1866 1176

While the MCAR assumption is admitted for the RCT (Shakur-Still et al., 2009), the missing
values in the observational Traumabase are more complex and, according to the medical experts
monitoring the collection process, partly non-ignorable. For example, the pre-hospital systolic
blood pressure (SBP) is likely to be missing for patients with severe ongoing bleeding. Since the
latter is informed in the hemorrhage risk variable, we could admit the missing values in the SBP
variable as being MAR. A similar reasoning can be applied for the delay between the accident
and treatment administration. However, there remains uncertainty as to whether the observed
variables allow to fully explain the missingness in this variable.

Distribution shift. There are different ways of assessing the shift between the distributions
of the two studies, e.g., by univariate comparisons. We provide a simplified comparison of the
means of the covariates between the treatment groups of the two studies in Figure 9. This graph
illustrates again the fundamental difference between the two studies, namely the treatment bias
in the observational study and the balanced treatment groups in the RCT, but also a covariate
shift between the two studies. To provide an example, the average patient age in the RCT is
7-9 years below the average age in the observational study; and there are only 16% of female
patients in the RCT while there are over 20% in the observational study.
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Figure 9: Distributional shift and difference in terms of univariate means of the trial inclusion
criteria (red: group mean greater than overall mean, blue: group mean less than overall mean,
white: no significant difference with overall mean, numeric values: group mean (resp. proportion
for binary variables). Graph obtained with the catdes function of the FactoMineR package (Lê
et al., 2008).

Ignorability. Due to the design of the CRASH-2 study, namely the eligibility criteria which
all need to be informed to decide upon trial eligibility, the modified ignorability assumption CIS
(11) is less plausible to hold in this case and we rather consider the standard assumptions (2)
and (3) to be satisfied by the CRASH-2 and Traumabase studies.8 The additional assumptions
concerning the missing values mechanism(s) have been outlined above and we consider that the
assumptions for the multiple imputation strategy to be applicable are sufficiently plausible in
this real-world example.
The distribution of the estimated selection scores are given in Figures 10a (logistic regression via
EM), 10b (generalized random forest with MIA), and 10c (logistic regression on joint fixed effect
multiple imputations, MI). We notice that the scores obtained using EM and MI are similar
and suggest that the positivity assumption is satisfied since we observe a good degree of overlap
between the distributions of the scores for the two data sets. The scores estimated via MIA

8The CIS assumption may be plausible in a context where trial eligibility (and participation) are defined via
a set of sufficient conditions that are not all necessary conditions. More specifically, if we consider five covariates
X1, . . . , X5 and assume that there exist different possibilities to be included in the trial, e.g., a condition on
X1, X2 and X3 regardless of X4 and X5 and another alternative condition on X2 and X5. In the case of such
a design, the CIS assumption is potentially a suited assumption to generalize a treatment effect onto another
population.
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however concentrate around 0 and 1 for the observational and RCT observations respectively,
suggesting poor overlap under this model. In Appendix B, we provide further comparisons of
the estimated selection scores, pointing towards the multiple imputation strategy as the suited
approach in this case.
These results provide an additional argument in favor of the multiple imputation strategy which
appears to be more adapted to the handling of missing values in this analysis; in particular we
will apply a joint fixed effect multiple imputation strategy since it outperforms the other multiple
imputation strategies in the simulation study of Section 5.
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Figure 10: Estimated densities of the fitted selection scores.

6.3 Final results when generalizing the ATE from the CRASH-2 trial
to the observational data population

We now apply the estimators presented in this work and implemented first for the simulation
study of Section 5. The confidence intervals for the corresponding point estimators are computed
via non-parametric stratified bootstrap (Efron and Tibshirani, 1994) using 100 bootstrap samples
(using stratified sampling to preserve the study-specific sample sizes).
We additionally report two consistent ATE estimators from the solely CRASH-2 data:

• Difference in mean: the difference in mean estimator (classical estimator for RCT);

• Difference in condmean ols the difference in conditional means where the we assume
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linear-logistic outcome models for Y (1) and Y (0) (estimator for RCT with smaller vari-
ance).

The former only involves treatment assignment A and outcome Y and thus requires no additional
handling of the incomplete covariates; the latter is obtained using an EM algorithm for logistic
regression with ignorable missing values in the covariates (Jiang et al., 2020).
And we present the AIPW estimators (Robins et al., 1994) for the observational study applied
solely on the Traumabase data. For details about the derivation and properties of these estimators
applied on incomplete observations we refer to Mayer et al. (2020):

• Generalized random forest after multiple imputation (MI AIPW),

• Generalized random forest using MIA splitting criterion (MIA AIPW).

Since AIPW combined with either missing incorporated in attributes (MIA) or multiple imputa-
tion (MI) is recommended by Mayer et al. (2020) when analyzing observational data, these are
the estimators kept in this analysis.
When summarizing the results from the separate analyses on the RCT and the observational
data respectively and the results from the joint analysis of both studies, we observe on Figure 11
a discrepancy between the different results. The only approach with consistent estimations
throughout all estimators is the EM approach that points towards a beneficial effect of TXA
on all-cause mortality. The joint fixed effect multiple imputation IPSW and AIPSW estimators
(MI IPSW and MI AIPSW) also conclude on a beneficial effect of the treatment. However, the
calibration weighting estimator (MI CW) does not find a significant effect.
The large confidence intervals could be partly explained by the measurement noise in the ad-
ministration delay variable in the Traumabase9: contrary to the RCT, the Traumabase does
not encode the exact delay of treatment administration, but is defined by a noisy proxy (delay
between accident and admission to the resuscitation bay). However there exists evidence that
administration delay is a treatment modifier for TXA and that only early administration has a
beneficial effect (Hijazi et al., 2015; CRASH-2 Collaborators et al., 2011). This remark and the
discrepancies between the findings, especially the different conclusions of the joint fixed effect
multiple imputation estimators call for additional attempts to further refine the administration
delay proxy variable in the Traumabase and potentially for additional analyses with supplemen-
tary data such as the CRASH-3 study (Cap, 2019) which describes another slightly different TBI
patient population.

9Another direction to explore could be to trim the scores such as to avoid extreme weights. This could
potentially reduce the size of the confidence intervals but it is known to generally provide a biased result since
trimming of the weights induces an implicit change in the definition of the target population (Li et al., 2018)
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Figure 11: Separate and joint ATE estimators and 95% confidence intervals computed on the
Traumabase (observational data set; purple), on the CRASH-2 trial (RCT; cyan), and gener-
alized from CRASH-2 to the Traumabase target population (red). Number of variables used
for adjustment in each context is given in the legend. The confidence intervals obtained on the
observational data set and on the joint data sets are obtained via nonparametric bootstrap.

7 Conclusion

In this work we have shown that missing values in multiple data sources require additional
assumptions either on the mechanism that generated the missing values or on the data generating
processes of both data sources to ensure generalizability (or transportability) of the treatment
effect. We have proposed several estimators that are suited for generalizing a treatment effect
from an RCT to a different target population described by observational covariate data. Which
of the proposed methods is preferable depends on the underlying identifiability assumptions for
generalizing the treatment effect. If the identifiability assumptions on the full data case are kept
and only assumptions on the missingness mechanism are added, we recommend a joint multiple
imputation that models the data source as fixed effect as long as the missing values are ignorable.
If the identifiability assumptions are altered to account for informative missing values implicated
in the selection process, then estimators involving generalized conditional models are suited.
These estimators rely on strong assumptions about the form of ignorability that is imposed,
and we note that in many common examples in medicine or epidemiology it does not appear
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to be the most plausible one. The approach(es) that only imply additional assumptions on the
missing values mechanism seem both closer to real application contexts and methodologically
more feasible. Indeed, the presented data analysis on a treatment administered in critical care
falls into this latter case and the results obtained with the proposed estimators from the two
different presented approaches do not come to the same conclusion. This illustrates again the
importance of choosing adequate assumptions for identifiability with missing covariate values
and corresponding estimation strategies.
On the methodological side, for all considered approaches and simulation settings, the question
of varying missing values mechanisms across data sources remains to be addressed in more detail.
Note as well that we have focused on missing values in both data sets, but the recommendations
extend to the case where there are only missing values in the observational data and not the
RCT due to different levels of systematic data collection.
Finally, the problem of incomplete observations addressed here is different from the problem of
inconsistent variable sets between an RCT and an observational dataset, e.g., one variable is
completely missing in one set, which is a challenging problem of a different kind that is left for
future work. We note that this latter problem may cause issues of identifiability and is thus
more related to the problem of unobserved confounding and a recent work proposes sensitivity
analysis to address this issue (Colnet et al., 2021).
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A Details on the estimation methods with missing values

A.1 Prediction on new incomplete observations with parametric model

As mentioned in Section 4, it is possible to predict the outcome y for new incomplete observations,
using the regression model estimated via EM, by marginalizing over the distribution of missing
data given the observed. More formally, in the logistic regression case, using a Monte Carlo
approach and maximum a posteriori estimator, it is possible to predict the response y for a new
observation xi as follows:

1. Sample (
x
(s)
mis, 1 ≤ s ≤ S

)
∼ p (xmis | xobs)

2. Predict the response y by maximum a posteriori

ŷ = arg max
y

p (y | xobs) = arg max
y

∫
p(y | x)p (xmis | xobs) dxmis

= arg max
y

Epzmis|xobs
p(y | x)

= arg max
y

S∑
s=1

p
(
y | xobs, x(s)mis

)
For the linear case, the prediction proceeds in two steps:

1. Imputation of the new observation using the estimated variance-covariance matrix of the
covariates Σ̂.

x̂newmis = −
[
Σ̂−1mis,mis

]−1
Σ̂−1mis,obsx

new
obs

2. Prediction of response y using the imputed observation [xnewobs , x̂
new
mis ].

B Details on the critical care management application

We have seen in Section 6 that the scores obtained using EM and MI suggest that the positivity
assumption is satisfied, while the scores estimated via MIA however concentrate around 0 and
1 for the observational and RCT observations respectively, suggesting poor overlap under this
model. This can be also observed in the scatter plots in Figure 12, where we color the observations
according to the values of the systolic blood pressure (SBP, a variable with an important fraction
of missing values in the observational data, see Figure 8). We notice that MIA attributes a very
low selection score to all observations with missing SBP value and thus selects the response
indicator of the SBP variable to partly predict trial eligibility. This method has been studied
more extensively in a regression framework and not in a classification framework and here we
find that it predicts a class according to the presence of missing values and this is not necessarily
what we intend when applying this method.

30



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Selection Score (EM)

S
e
le

c
ti
o
n
 S

c
o
re

 (
M

IA
)

0 50 100 150 200 250
systolicBloodPressure

(a) x-axis: EM; y-axis: MIA.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Selection Score (EM)

S
e
le

c
ti
o
n
 S

c
o
re

 (
F

E
-M

I)

0 50 100 150 200 250
systolicBloodPressure

(b) x-axis: EM; y-axis: joint fixed effect MI.

Figure 12: Scatter plots of different estimated selection scores. The point color is set according
to the systolic blood pressure (SBP) covariate values (missing SBP values are indicated by gray
points).
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