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Abstract

In this work, the Quasi-particle Approach (QA) is applied to qualitatively reproduce the underlying mecha-
nisms of the displacive fcc (γ)→ bcc (α) transformation. At the microstructural scale, we demonstrate that the
QA is able to predict the growth of a bcc nucleus in a fcc matrix, and the eventual formation of an internally
twinned structure consisting in two variants with Kurdjumov-Sachs orientation relationship. At the atomic
level, the defect structure of twinning boundaries and fcc/bcc interfaces is identified, and the main mechanism
for the propagation of the fcc/bcc interface is analyzed. In detail, it is confirmed that twin boundaries are
propagated by the glide of pairs of partial twin dislocations, while the propagation of fcc screw dislocations
along coherent terrace edges is the pivotal vector of the fcc/bcc transformation. The simulation results are
compared qualitatively with our TEM and HRTEM observations of Fe-rich bcc twinned particle embedded in
the fcc Cu-rich matrix in the Cu-Fe-Co system.

Introduction

Displacive solid-state phase transformations from the face centered cubic (fcc) austenite phase (γ) to body
centered cubic (bcc) ferrite phase (α) play a pivotal role in the physical properties of steels and ferrous alloys.
It is characterized by a collective movement of a large number of atoms over a distance typically smaller than
the interatomic distance. The rapid change in crystal structure inherently alters the mechanical properties of
these materials, including fatigue, plasticity and strength, whence the early and thorough studies thereupon
[1, 2, 3, 4, 5, 6, 7, 8, 9].

The present understanding of fcc→bcc transformation is based on the Phenomenological Theory of Marten-
site Crystallography (PTMC) [10, 11], which posits the existence of an invariant plane strain for the shape
transformation [10, 11]. This is achieved by homogeneous deformations [12] giving rise to special Orientation
Relationships (OR), and producing shape deformations manifesting themselves by a specific surface relief [13].
Aside from [4], the PTMC does not account for the atomic structure of the interface, and thus cannot explain
the dislocation-based mechanisms fueling the propagation of the interface. This shortcoming was later addressed
by the Topological Model (TM) [14, 7, 15], which describes the structure of the fcc/bcc interface in terms of
periodic unit of coherent terraces reticulated by a network of glissile transformation dislocations [16, 17], and
by the new theory of the fcc→bcc transformation hereafter proposed in [18].

In parallel, modeling and simulation tools proved useful to confirm, refine or even inspire [18] theoretical pre-
dictions, as well as predict microstructures resulting from martensitic transformations (MT). At the mesoscale,
the phase-field model (PFM) [19] could reproduce the complex morphology and topological changes during
MT transformations [20, 21]. At the atomic scale, molecular dynamics (MD) [8, 22] and Monte Carlo (MC)
modeling [23, 24] significantly contributed to unravel the atomic structure and propagation mode of the fcc/bcc
interface, and remain numerical tools of choice to study martensitic transformations. One distinct advantage
of MD simulations comes from the existence of a large database of interatomic potentials that can be used to
quantitatively study interface migration. Leveraging this asset, MD was used to simulate the fcc→bcc transfor-
mation [25] and evaluate the velocities, mobility and activation energy of austenite–ferrite interfaces [26, 9] in
pure iron. It was also employed to understand the general mechanism for fcc/bcc interface propagation in steels
[18], and prospect the coupling between diffusional creep, displacive dislocation nucleation, and grain rotation
during nanoindentation and sintering [27]. The MD approach yet contends with several shortcomings. First,

URL: gilles.demange@univ-rouen.fr (G. Demange), wangzd@mater.ustb.edu.cn (Z. D. Wang)

Preprint submitted to Elsevier December 21, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1359645421009770
Manuscript_649d2c4bf57e862bbf2b5eba4fb4245e

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1359645421009770
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1359645421009770


the growth mechanisms provided by MD simulations [9] are strongly influenced by the choice of interatomic
potential [28, 29, 30]. Second, albeit particularly suited to prospect the relaxation of fcc/bcc interfaces [18], MD
approaches are limited to reproduce the dynamics of fcc→bcc transformations on large microstuctural units of
several dozen nanometers, mainly due to computational limitations. In parallel, Kinetic Monte Carlo (KMC)
methods notably allowed to identify the different propagation modes for the fcc/bcc interface [31]. Recently,
mixed MC/MD models enabled to alleviate the timescale limitation of MD. In doing so, it was possible to
investigate the nucleation a bcc phase from a fcc matrix [32] and the early stage of the growth of a Cr bcc
precipitate in a Cu fcc matrix [33].

An alternative approach to MD and KMC to prospect fcc → bcc transformations at the atomic scale is
provided by the atomic phase-field models (APFM) [34]. Atomic phase-field models can be sorted into two
main families. On the one hand, the Phase-Field-Crystal (PFC) model was originally derived by Elder et al.
[35, 36], upon using free-energy functionals that are minimized by periodic order parameters, the fluctuation
of which are interpreted as atoms. It was then extended to binary systems [37], first curtailed to the bcc
symmetry, thereupon expanded to arbitrary crystallography [38] under the banner of XPFC [39]. Recently, the
PFC approach was developed to model diffusion-mediated plasticity and creep [40], dendrite growth and ternary
alloys equilibrium properties [41], and stress induced grain boundary motion and solute drag [42]. The PFC
model was also extended to binary system [43]. One salient principle of the 2-components (X)PFC, is to feature
two spatially uncorrelated variables: the atomic density that sets the periodic crystal structure disregarding
local composition fluctuations, and the coarse grain concentration of one component. This allowed to connect
XPFC simulations to average thermodynamics data such as equilibrium phase diagrams [42]. However, the
XPFC model does not take into account the difference in atomic radius of the components in binary systems,
which hinders the reproduction of diffusion processes connected to atomic size effect. More generally, most PFC
models are not equipped with short range interactions that set the size of atoms [44, 45, 46]. In parallel to
the PFC models, an alternative APFM called the Quasi-particle Approach (QA) was developed in [47], where
the ensemble averaged atomic occupation probability of each chemical species is considered. The potentials
used in the QA are equipped with short range (SR) interactions that set the atomic radius for each species in
multi-component systems, and long range (LR) interactions that can be defined in a more versatile manner than
in most PFC models [48]. As a result, the QA can circumvent the usual numerical artifacts of PFC models,
account for different atomic sizes, and permit the modeling of a wide range of structures at the atomic scale
[48]. Among others, the QA was successful in modeling the structure of grain boundaries in the bcc iron phase
[49, 50], the self-assembly of atoms into complex structures [47], as well as solute segregation in Fe-based alloys
[51].

With this, the QA was selected in the present work to prospect the fcc→bcc transformation in a simplified
2-component precipitate/matrix system. For that purpose, two refinements were added to the QA. First, a
new potential designed to reproduce the fcc→bcc structural transformation was implemented for the first time.
Second, an original physically informed post-treatment approach was used to infer the positions of atomic
centers from the atomic occupation probability fields provided as the raw output of QA simulations. This
allowed to profit with the structural analysis tools of OVITO, and thereby strengthen the capacity of the QA
to characterize complex defect structures emerging during the transformation.

The motivation of this work is to apply the QA to connect the atomistic mechanisms of the twinning fcc→bcc
transformation to the microstructure dynamics on a large space scale. In doing so, this approach will fill the
gap between large scale simulations based on coarse grained models such as the standard PFM, and focused
simulations using atomistic approaches such as MD. A first qualitative comparison between the numerical results
and present experimental observations of internally twinned Fe-rich bcc particles having the Kurdjumov-Sachs
(KS) orientation relationships (ORs) in a Fe-Cu-Co alloy [52] is conducted, in order to challenge the model on
a real study-case.

This study is organized as follows: first, the QA model presently developed for the fcc→bcc transformation
in a binary system is introduced. Second, one large scale QA simulation of the fcc→bcc transformation in
a precipitate from a hypercritical bcc nucleus is presented as the cornerstone of the paper. The morphology
and the structure of the bcc inclusion are analyzed at the microstructural scale. Afterwards, twin boundaries
are prospected, and the growth mode of twin variants is deciphered at the atomic level. Lastly, the surface
relief of the fcc/bcc interface for an ellipsoidal bcc inclusion is characterized, whilst an interpretation of the
propagation mechanism of the curved interface is proposed from the analysis of transformation dislocations.
Finally, simulation results are compared with the experimental data obtained by TEM observations on an as
cast Fe-Cu-Co alloy.
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1. Numerical approach

In this section, the QA used in the present work is detailed. The numerical values of all model parameters
are listed in table 1. Additional details on the QA, as well as the choice of numerical settings of parameters can
be found in the Online Supplementary Material 1.

1.1. The Quasi-particle Approach (QA)

To describe the growth of the bcc particle in the fcc matrix in a binary system, the Quasi-particle Approach
(QA) proposed in [47] was used. This method can be seen as extension of the seminal Atomic Density Function
(ADF) theory first proposed in [53] to the continuum case. In the ADF theory, the atomic configuration of the
system at a given time t is described by the value of an occupation probability P (r, t) on each lattice site r of
an underlying Ising lattice I defined as a set of N0 lattice sites: I = {r}. The occupation probability P (r, t)
represents the probability for a given lattice site r to be occupied by an atom at time t. The temporal evolution
of these variables is governed by Onsager diffusion equations [53]. In the ADF approach, the probability function
is specified at each site of I, which coincides with the simulation grid. This confines the application range of
the model to isostructural phase transformations. It should be emphasized that this limitation is not specific to
the ADF model, as it also penalizes other rigid lattice approaches, including the KMC [24] and SKMF [54, 55]
models.

This shortcoming of the ADF theory was circumvented in the Continuum Atomic Density Function (CADF)
theory [56] upon choosing the simulation grid spacing ∆x several times smaller than the interatomic distance a
(∆x� a). With this, the CADF allowed to account for the atomic movements in the continuous space, thereby
making the model applicable to structural phase transitions. In the CADF framework, atoms are no longer
points, but rather spheres of radius R containing a certain number of the simulation grid nodes. With this, a
new interaction Hamiltonian should be defined to set the dynamics of the system. One such Hamiltonian was
proposed in an upgrade of the CADF model referred to as Quasi-particle Approach (QA) [47]. Therein, the
displacements of atoms can be associated to the creation and annihilation of non-traditional dynamic variables
called fratons on each grid node.

With this, a m-components system can be characterized by the values of m stochastic numbers cα(r) in each
lattice site r, where α = 1, 2, ..m labels the fratons corresponding to atoms of atomic species α. Here, m is the
number of different atomic species. Occupation variables cα are then averaged over the time-dependent Gibbs
ensemble of fratonic configurations into the occupation probability ρα(r, t) ≡ 〈cα(r, t)〉, where the 〈·〉 symbol
denotes the Gibbs ensemble average at temperature T over a time t. With this definition, the function ρα(r, t)
is the probability that a lattice point in site r is located anywhere inside the atomic sphere of an atom of kind
α at time t. Therefore, the atomic configuration of the system can be fully described by the density function
ρα(r, t), for α = 1, . . . ,m. Moreover, the temporal evolution of the system is given by the microscopic diffusion
equation:

∂ρα
∂t

(r, t) =

m∑
β=1

∑
r′∈I

Lαβ(r − r′)
δF

δρβ(r′, t)
, (1)

where the summation is carried out over the the number N0 of grid lattice sites r of the Ising lattice I. In
equation 1, Lαβ(r − r′) is the matrix of kinetic coefficients between fratons of kind α and β (α, β = 1, 2, ..m),
and F is the non-equilibrium Helmholtz free energy functional. The kinetic equation 1 approximates the
evolution rate of the density functions ρα(r, t) by the first non-vanishing term of its expansion with respect to
the thermodynamic driving force. This microscopic diffusion equation is strongly nonlinear with respect to the
density field ρα(r, t), but it is linear with respect to the chemical driving force. To guarantee the conservation
of the total number of fratons of kind α, the kinetic coefficients matrix should satisfy the following condition
for all α, β = 1, . . . ,m: ∑

r∈I
Lαβ(r) = 0. (2)

Each grid node can be occupied by a fraton of type α = 1, . . . ,m, or by no fraton (empty site V ). Then,
according to the conservation condition

∑m
α=1 ρα(r, t) + ρV(r, t) = 1, where ρV is the probability that a lattice

site is not occupied by a fraton, only m fraton density functions should effectively be defined to describe the
fratonic configuration of the m-components system. The free energy F of the system is defined under mean-field
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approximation by:

F =

m∑
α=1

m∑
β=1
β≥α

1

2

∑
r,r′∈I

Wαβ(r − r′)ρα(r, t)ρβ(r′, t)


+ kBT

∑
r∈I

[
m∑
α=1

ρα(r, t) ln(ρα(r, t)) +

(
1−

m∑
α=1

ρα(r, t)

)
ln

(
1−

m∑
α=1

ρα(r, t)

)]
.

(3)

Here, kB is the Boltzmann constant and T is the temperature. Moreover, the first and second terms on the
right-hand side of the equality respectively correspond to the internal energy and the configurational entropy.
Wαβ is the pairwise interaction potential between fratons of type α and β separated by a distance |r − r′|.
According to [57], the model fraton-fraton pair potential Wαβ embodies the so-called short range (SR) and long
range (LR) interactions, respectively written θα and WLR

αβ :

Wαβ(r − r′) = θα(r − r′)δαβ + λαβW
LR
αβ (r − r′). (4)

Here, δαβ is the Kronecker delta function. For interactions between fratons of the same atomic species (α = β),
λαα is the relative amplitude between LR and SR interactions. The setting of this parameter should ensure
that atoms have a specific finite size on the one hand, while keeping LR interactions sufficiently strong to
reproduce the desired crystallographic structure on the other hand. In this work, we chose to use a single value
λαα ≡ λ = 0.2 for all components α = 1, . . . ,m. Regarding cross interactions (α 6= β), no SR interactions are
considered in the present work (δαβ = 0 for α 6= β), so that Wαβ ≡ λαβW

LR
αβ . For this reason, the setting of

λαβ for α 6= β is not connected to the size of atoms, but rather to the intensity of chemical interactions between
different species. It should thus be set only after the atomic species are selected, and the functional form of
WLR
αβ is provided. This is done in the following.

In detail, the SR contribution θα allows the spontaneous condensation of fratons into atomic spheres, and
prevents the overlap or atoms. To describe SR interactions, the step function depicted in 1(a) was used [47]:

θα(r) =


− 1 if r ≤ Rα
ξ if Rα < r ≤ Rα + ∆Rα

0 otherwise.

(5)

Here, Rα sets the width of the attractive part of the SR potential, which allows the condensation of fratons
into atomic spheres. It is thus liken to the radius of atomic spheres for component α. Then, ∆Rα and ξ are
respectively the width of the SR potential barrier for each component α, and the height of this barrier. It should
be noted that ξ was chosen equal for each component α. The introduction of a repulsive contribution in the SR
potential not only prevents the overlap of atomic spheres, but also contributes to adjust the elastic properties
of the system. In this work, we chose ξ = 4.0 for the barrier height, and ∆Rα = 0.17Rα for the barrier width.
The numerical setting of Rα (and thus ∆Rα) depends on the lattice parameters and crystallographic structure
of each component α. It is thus provided in the following, after the crystallographic structures and lattice
parameters are selected.

For purposes of computational efficiency, the interaction potential Wαβ is implemented in reciprocal space

by means of the Fourier transforms θ̂α(k) and ŴLR
αβ (k) of the SR and LR interactions respectively, where k

is the k-vector defined by k = (kx, ky, kz) = 2π
N (h, k, l) with (h, k, l) being dimensionless coordinates in three

dimensions, and N the size of the cubic simulation box (number of grid nodes on each edge of the simulation
domain, so that the total number of grid nodes is N0 = N3). The functional form in Fourier space of the LR
interaction potentials can only be written for a specific crystallographic structure. It is provided in the following
(see formula 8). In Fourier space, the total interaction potential introduced in equation 4 then reads:

Ŵαβ(k) = θ̂α(k)δαβ + λαβŴ
LR
αβ (k), (6)

where we recall that λαα ≡ λ. The Fourier transformation θ̂α(k) of θα(r) can be written:

θ̂α(k) =
4π

k3
[
− sin(kRα) + kRα cos(kRα) + ξ

{
sin(k(Rα + ∆Rα))− k(Rα + ∆Rα) cos(k(Rα + ∆Rα))

− sin(kRα) + kRα cos(kRα)
}]
.

(7)

The corresponding profile of θ̂α(k) is displayed in figure 1(b).
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For α = β, the long range interaction potentials ŴLR
αα (k) sets the crystal structures for components α =

1, . . . ,m, and influences the corresponding elastic properties to a large extent. Then, the cross interaction
potentials ŴLR

αβ (k) control the chemical interactions between atoms of atomic species α 6= β in the system. In
this work, isotropic spherical potentials were used as a mean to allow the formation of crystallographic structures
with arbitrary orientation.

Rα Rα+∆Rα
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0
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r

θ
α

(r
)
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=
kBCC

(d) Ŵαβ

Figure 1: Pairwise interaction potentials used in this work: (a) short range interaction potential in real space θα(r) (for both

components), (b) short range interaction potential in Fourier space θ̂α(k), (c) long range interaction potentials ŴLR
αβ , (d) complete

interaction potentials Ŵαβ , using parameters a1 = 8∆x, a2 = 6.5∆x, Rα = 2.81∆x, ∆Rα = 0.48∆x, ξ = 4, σfcc
1 = σfcc

2 = σbcc =
σ12 = 0.09, λ = 0.2, and λ12 = 0.15. In c) and d), red dashes: component 2 (bcc), blue: component 1 (fcc), black: chemical
interactions between component 1 and component 2 atoms.

In this study, we propose a toy model of immiscible binary alloy (m = 2), aiming at reproducing the
displacive fcc→bcc structural transition in a precipitate/matrix binary system. Component 1 will henceforth
pertain to the fcc matrix, and component 2 to the precipitate undergoing the fcc→bcc transformation. We
also introduce two lattice parameters a1 and a2. The first lattice parameter a1 refers to the fcc structure for
both the fcc matrix (component 1), and the initial fcc structure of the precipitate (component 2). The second
lattice parameter a2 is the lattice parameter of the bcc structure of the precipitate (component 2). a1 and
a2 were chosen as a1 = 8.0∆x and a2 = 6.5∆x respectively. This setting appeared as a good compromise
between computational cost on the one hand, and a yield between a1 and a2 that was sufficiently close to√

3/2, which corresponds to the conservation of the atomic volume between the bcc and fcc phases on the other

hand. This setting comes with the lattice misfit δfcc/bcc ≡ |a1 −
√

3/2a2|/a1 = 0.0049 between fcc and bcc

phases, corresponding to the yield a1/a2 = 1.23 (a zero misfit corresponds to the yield a1/a2 =
√

3/2 ' 1.22).
This misfit is underestimated compared to its experimental counterparts (see [7, 18] and references therein):
δfcc/bcc ' 0.02 − 0.04 corresponding to a1/a2 = 1.25 − 1.27 for pure iron and steels, and δfcc/bcc ' 0.03
corresponding to a1/a2 = 1.26 between bcc iron and fcc copper [58]). It should be noted that the deviation
between the numerical and experimental values of the misfit results in a different elastic strain undergone by the
transformed particle. This can in turn influence the shape of the bcc inclusion and its habit plane [13]. However,
we assumed that the present version of the QA should be able to reproduce the underlying mechanisms of the
fcc→bcc transformation and twinning formation. This hypothesis is supported by previous MD simulations
performed for various OR and lattice misfits in [18]. Based on these numerical results, it was shown that the
fcc→bcc transformation was carried by a unique set of defect structures, disregarding the precise value of the
lattice misfit.

After setting the values of the lattice parameters a1 and a2, the atomic radius R1 and R2, and the corre-
sponding widths ∆R1 and ∆R2 of the potential barrier in the definition 5 of SR interaction potentials θ1 and
θ2 could also be fixed, based on the minimal distance between first next-neighbors for the considered crystal-
lography. Recalling that this distance is equal to dfcc = a1

√
2/2 in the fcc structure, and dbcc = a2

√
3/2

in the bcc structure, then the following conditions hold: R1 ≤ a1
√

2/4 ' 2.828∆x (fcc structure) and
R2 ≤ a2

√
3/4 ' 2.814∆x (bcc structure). For this reason, we set R1 = R2 = 2.81∆x in this work. It

follows that ∆R1 = ∆R2 = 0.17R1 = 0.48∆x.
In this study, only spherically symmetric potentials were used for the LR interaction potential, as a mean

to allow the formation of local clusters of different metastable phases with any orientations. Choice was made
to use linear combinations of Gaussian functions. In the general case, the number of minima equipping the LR
potential should be equal to the number of non-equivalent structural reflections in the first Brillouin zone of a
given crystallographic structure. The reciprocal lattice of the fcc crystal is the bcc structure with the reciprocal
lattice parameter 4π/a1. For this crystallography, two non-equivalent structural reflections can be found in the

first Brillouin zone, with the same number of diffraction spots. These are located in kfcc1 = 2π
√
3

a1
and kfcc2 = 4π

a1
.

Therefore, the LR interaction potential ŴLR
11 (k) for the fcc structure was equipped with two wells of equal
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depth, respectively located in kfcc1 = 2π
√
3

a1
' 1.360 and kfcc2 = 4π

a1
' 1.571. Besides, the reciprocal lattice of

the bcc crystal is the fcc structure with the reciprocal lattice parameter 4π/a2. It was shown in [35] and [47]
that only one minima could be used for the bcc structure. The LR potential ŴLR

22 (k) for the bcc structure was

thus equipped with one well centered in kbcc = 2π
√
2

a2
' 1.367 in a first time. However, the initial fcc structure

within the precipitate is strongly unstable with respect to the bcc structure when the pure bcc potential is used
and infinitesimal fluctuations of the occupation probability field ρ2 can trigger the fcc→ bcc transformation far
from the transition front. To prevent this instability, an additional well located in kfcc2 was adjoined to ŴLR

22 (k),
in order to make the fcc structure for component 2 metastable. For that purpose, the amplitude of this second
well was chosen smaller than that of the first well of ŴLR

22 (k). To achieve this, the depth of this additional
well was controlled by a multiplicative factor ε. This parameter should satisfy 0 < ε < 1 to ensure that the
bcc structure has a lower value of chemical potential than the fcc phase, which is the driving force for the fcc
→ bcc transformation in the QA, while preserving the metastability of the fcc phase. However, small (but
non zero) values of ε are better indicated, insofar as choosing ε too close to 1 can significantly slow down the
transformation. In this work, ε was set to 0.1. It should be noted that the choice of ε has no sensitive impact
on the simulated structure. However, because it modifies the driving force of the fcc → bcc transformation, it
may affect the transformation rate. This point is beyond the scope of the present work, and will not be further
discussed here.

To mimic the immiscibility of components 1 and 2, a repulsive cross interaction potential ŴLR
12 (k) was used,

which can be related to the mixing energy of the binary system. It is defined as a simple Gaussian function
centered in k = 0, allowing the phase separation of the different chemical species. It should yet be noted that
more sophisticated cross interaction potential functionals were previously developed in the framework of the
QA. For instance, anisotropic potentials based on cluster functions with tetrahedral direction of bonds were
implemented to model the formation of the zinc-blende structure in [47]. For the present case, a possible upgrade
of the cross interaction term might involve a more quantitative estimation of copper-iron interactions by feeding
the model with existing values of pair interaction energies. Then, the corresponding long range interaction
potentials read: 

ŴLR
11 (k) = − exp

(
− (k − kfcc1 )2

2(σfcc
1 )2

)
− exp

(
− (k − kfcc2 )2

2(σfcc
2 )2

)
ŴLR

22 (k) = − exp

(
− (k − kbcc)2

2(σbcc)2

)
− ε exp

(
− (k − kfcc2 )2

2(σfcc
2 )2

)
ŴLR

12 (k) = − exp

(
− k2

2(σ12)2

)
.

(8)

In equation 8, the parameters σfcc
1 , σfcc

2 , and σbcc are the standard deviation of the different Gaussian wells.
The choice of these parameters plays a prominent role in the fitting of the elastic properties of the material.
The procedure used in the QA to connect the parameters σfcc

1 , σfcc
2 , and σbcc of the LR potential in equation

8 to the elastic constants of the bcc and fcc systems is detailed in the Online Supplementary Material 2. One
should be aware that the tuning of other parameters stepping in the definition of the interaction potential (ξ,
λ etc.) also have an influence on the elastic constants. However, because their influence is not restricted to
the elastic constants, these parameters were fixed upstream, while the parameters σfcc

1 , σfcc
2 , and σbcc were

chosen afterwards as σbcc = σfcc
1 = σfcc

2 = 0.09, in order to keep the parameter setting of the model as simple
as possible, while providing consistent elastic properties. Besides, the parameters σ12 sets the range of the
chemical repulsion between component 1 and component 2. In this work, we also chose σ12 = 0.09. It should
be noted that the system is only weakly sensitive to the choice of σ12. The LR contributions to the interaction
potential introduced in equation 8, using the parameter settings of table 1 are depicted in figures 1(c).

At this point, SR and LR contributions to the interaction potential are defined for the present 2-components
system. Based on equations 6 and 8, and the previously selected value of λ, the interaction potentials Ŵ11 and
Ŵ22 are thus fully defined. As for Ŵ12, we recall that Ŵ12 = λ12Ŵ

LR
12 , so that λ12 should now be selected to

unequivocally define Ŵ12. This parameter weights the relative influence of the structural contributions Ŵ11

Ŵ22 with respect to the chemical repulsion ŴLR
12 . Details on the correct setting of this parameter, and the

normalization procedure of the potentials are provided in the Online Supplementary Material 1. In the present
work, λ12 was set to 0.15. The full interaction potentials introduced in equation 6 using the parameter settings
of table 1 are depicted in figure 1(d).

Using the procedure provided in the Online Supplementary Material 2 with the parameter setting summa-
rized in table 1, the elastic moduli of the fcc and bcc structures could be calculated in reduced units. These
are provided in the Appendix A. Rather than the absolute values of elastic constants in reduced units, the
yield between the bulk modulus B = (C11 + 2C12)/3 of each phase, as well as Zener anisotropy parameter
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A = 2C44/(C11 − C12) have a significant influence on the transformation. Here, indexing each parameter by
the corresponding phase (bcc and fcc), we obtained Abcc = 1.3 and Afcc = 3.1, and Bbcc/Bfcc = 1.4. In this
case, A > 1, and the elastically ”soft” directions, which minimize the elastic energy, are 〈100〉γ . Besides, the
ratio between bulk modulus ensures that the bcc structure is harder than the fcc one. A qualitative comparison
between QA simulations and experiments in a Fe-Cu-Co alloy displaying twinned iron-rich bcc precipitates in a
copper fcc matrix is proposed in the last section of this study. While the elastic constants used in the QA are not
fitted on their experimental counterpart in the Fe-Cu-Co alloy, Zener anisotropy parameters for the bcc and fcc
structures in both the QA model and experiments are nonetheless greater than 1.0. This is thus qualitatively
consistent with the experimental anisotropy parameter for bcc iron (∼ 2.7) and fcc copper (∼ 3.5) [59, 60].
Moreover, the yield between the bulk modulus of the bcc and fcc structures in the QA (1.4) is tantamount
to the experimental values for bcc Fe/fcc Fe (1.27) and bcc Fe/fcc Cu (1.35) [59, 60]. However, this slightly
overestimated difference between the elastic moduli of the bcc inclusion and the fcc parent phase in the present
work might add up to the underestimated lattice mismatch to underestimate the inclusion relaxation energy
contribution in the total elastic strain energy, and influence the morphology of the inclusion [13].

Simulations were performed in reduced units. The average density of probability ρ̄1,2 of type 1 and 2 atoms
was defined as 4πR3

1,2N1,2/(3V ), where V is the total volume of the system (V = (∆xN)3), and N1,2 is the total
number of atoms of type 1 and 2 at ground state. The input parameter in simulations was thus ρ̄ = ρ̄1 + ρ̄2.
In the present work, ρ̄1 = 0.0754 and ρ̄2 = 0.0546, so that ρ̄ = 0.13. Moreover, kBT and ξ were expressed in
kBTm units, where Tm is the melting temperature of the system with composition (ρ̄1, ρ̄2). The space scale was
chosen as the grid spacing ∆x, as set by the number of grid lattices spanning one lattice parameter. As for the
time scale, it is measured in units t∗ = tL∆F , where L is a kinetic coefficient for fraton displacements, and
∆F is the driving force of the transformation. One should bear in mind that the present work does not aim at
providing the real time scale of this displacive phase transformation, as the latter lingers as a very challenging
task for APFMs, but rather reproduce the metastable states along the kinetic path of the transition. The same
reckoning applies to the standard PFM, which was yet successfully used to model displacive transformations
before [20, 21, 61, 62]. Considering the optimized computational features of Fourier based numerical schemes,
the kinetic equation 1 for the density probability functions ρ1,2 was solved in Fourier space:

∂ρ̂1
∂t

(k, t) = ˆ̄L11(k)
[
Ŵ11(k)ρ̂1(k, t) + Ŵ12(k)ρ̂2(k, t) + kBT

{
ln
(
ρ1/(1− ρ1 − ρ2)

)}
k

]
+ ˆ̄L12(k)

[
Ŵ22(k)ρ̂2(k, t) + Ŵ12(k)ρ̂1(k, t) + kBT

{
ln
(
ρ2/(1− ρ1 − ρ2)

)}
k

]
∂ρ̂2
∂t

(k, t) = ˆ̄L22(k)
[
Ŵ22(k)ρ̂2(k, t) + Ŵ12(k)ρ̂1(k, t) + kBT

{
ln
(
ρ2/(1− ρ1 − ρ2)

)}
k

]
+ ˆ̄L12(k)

[
Ŵ11(k)ρ̂1(k, t) + Ŵ12(k)ρ̂2(k, t) + kBT

{
ln
(
ρ1/(1− ρ1 − ρ2)

)}
k

]
,

(9)

where ρ̂α is the Fourier transform of the fraton density function ρα, {·}k is the discrete Fourier transform

operator, and L̂11,22,12(k) = −LOns
11,22,12k

2. Details on the setting of Onsager diffusion coefficients are provided
in the Online Supplementary Material 1. All parameters are compiled in reduced units in table 1.

a1,2 R1,2 ∆R1,2 ξ λ ε σfcc
1,2 σbcc σ12 λ12 kBT ρ̄ LOns

11,22 LOns
12

8.0/6.5 2.81 0.48 4.0 0.2 0.1 0.09 0.09 0.09 0.15 0.11 0.13 1.0 0.5

Table 1: Parameters used in simulations.

To model the fcc to bcc phase transformation within the precipitate, the initial condition was chosen as a
pure component 2 particle with perfect cubic shape embedded in a pure component 1 matrix with cube on cube
OR. A small bcc nucleus was embedded in the center of the precipitate with KS OR with respect to the fcc
phase. This initial condition was used as a mean to overcome the nucleation barrier of the bcc nucleus. The
OR between the bcc nucleus and the fcc parent phase corresponded to the first Kurdjumov-Sachs (KS) variant
V1. The corresponding rotation matrix is provided in the Appendix B.

1.2. Numerical implementation and post-treatment of the QA

In this work, the length scale of the model was set to ∆x ' 0.045 nm corresponding to the Fe-Cu alloy
(a1 = 8.0∆x ∼ 0.360 nm, a2 = 6.5∆x ∼ 0.293 nm). In contrast, reduced time units were used considering the
complex dependence of the time scale on the thermodynamic and kinetic parameters of the system. Simulations
were performed in three dimensions on a 10243 grid lattice (N = 1024, so that the total number of points for the
Ising lattice is N0 = N3 = 10243) equipped with periodic boundary conditions (PBC). For the chosen length
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scale ∆x, this corresponds to a volume of (46 nm)3. The kinetic equations 9 were solved by the Spectral-Eyre
scheme [63], with the reduced time step ∆t = 0.005, on 512 cores of the supercomputer CRIANN of Normandy.
A computational advantage of the QA is to use a fully spectral approach on the one hand, and interaction
potentials relying on pair correlation functions on the other hand. This makes the approach highly suitable
for the MPI parallelization procedure, notably thanks to the FFTW subroutine [64]. It should nonetheless be
mentioned that the Fourier-spectral approach requires specific boundary conditions such as periodic boundary
conditions (PBC). For this reason, this class of methods is not suitable for free boundary problems (free surfaces),
where no additional conditions for the boundary atoms of the model’s volume are imposed [65, 66]. In this case,
other approaches should be used, such as MD.

QA simulations were eventually post-treated to accurately spot atom positions, and enhance the analysis of
defect structures at the atomic scale. Indeed, the QA is intrinsically a continuous approach. At finite temper-
ature, atoms are associated to atomic spheres with the fraton density function profile resembling a Gaussian.
However, numerical fluctuations of the atomic density fields ρα(r, t), as well as the emergence of partially delo-
calized, splitting, and coalescing atoms at interfaces (grain boundaries, fcc/bcc interface) and within the bulk
(dislocation propagation) spices things up to accurately spot the center of atoms. While this behavior grants the
method with its physical versatility and computational efficiency, it is a true hurdle when it comes to character-
ize defect structures. The fratons2atoms package [67] was harnessed using default parameters to interpret the
structures from QA calculations and make an educated guess of the most reliable deterministic atomic structure
associated to a given QA simulation. The fratons2atoms procedure and corresponding parameter setting are
detailed in the Online Supplementary Material 3.

2. Numerical results: microstructure resulting from the fcc → bcc transformation

2.1. Fcc→bcc transformation at the microstructural level in the precipitate: formation of an internally twinned
structure

Kinetic process of the fcc→bcc transformation. In this first section, the QA simulation of the full fcc→bcc
transformation process from a small bcc nucleus embedded in the fcc precipitate into a complex bcc structure
is prospected at the scale of the microstructure. In this regard, the different stages of the shape evolution and
atomic structure of the bcc inclusion in the fcc parent phase within the precipitate (essentially made up of
component 2 atoms) are displayed in figure 2. Therein, the Common Neighbor Analysis (CNA) from OVITO
was used to visualize the microstructural evolution. Green color is for fcc (γ) structure, blue color for bcc (α),
and red color for hcp structures. Any other crystallography is indicated in gray. This corresponds to perturbed
(non crystalline) structures, including interfaces and boundaries. In detail, the full kinetic process is displayed
in figure 2 (a) to (f), after cutting the simulation domain in the (100)γ plane. At initial state (figure 2 (a)), the
precipitate consists in a small cubic bcc germ with V1 KS OR (in blue), embedded in a fcc structure (in green).
No coherency condition was imposed to the corresponding fcc/bcc interface (in gray) at initial time. However,
the latter was observed to be achieved (or at least semi-coherency) after a few simulation steps. Moreover,
the precipitate is itself (semi-) coherently embedded in the fcc matrix. To visualize the interface between the
precipitate and the matrix (essentially containing component 1 atoms), a black dashed line was added as a guide
for the eye at initial time, but also at t = 500 (figure 2 (b)) and t = 750 (figure 2 (c)).
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Figure 2: Kinetic evolution of the precipitate (mainly containing component 2 atoms)/ matrix (mainly containing component 1
atoms) structure, as simulated in the QA model on a 10243 simulation domain, using numerical parameters listed in table 1,
starting from an initial bcc nucleus with KS OR (V1). Visualization via the CNA of OVITO, after extraction of atom centers
from the atomic density field ρ2, using fratons2atoms. Green: fcc, blue: bcc, red: hcp and grey: unknown (perturbed structure).
Components (1) and (2) are indicated by a circled 1 and 2 respectively. (a-f) Full kinetic process, cut in the (100)γ plane. (g-h)
cut in the (111)γ plane at t = 750 (g) and t = 7800 (h). The precipitate and matrix are referred as (1) and (2) respectively. The
twin boundary (TB), bcc envelope, fcc/bcc interface in the precipitate (1), and matrix (1)/precipitate (2) interface are indicated
in red.

The bcc inclusion grows with a roughly ellipsoidal morphology flattened in a specific direction referred to as
n0 from here, and estimated in the following. Based on Eshelby’s theory of coherent inclusion [13, 68], a plate
like morphology whose habit plane of normal vector n0 aligns with the invariant plane is prone to minimize
the bulk strain energy of the inclusion. Along this line, the flattened direction n0 of the inclusion can be used
as a first yardstick of the invariant plane direction normal. To estimate n0, the convex hull of the the bcc
inclusion was calculated, and the least square ellipsoidal fitting of this surface was performed upon extending
the constrained minimization method proposed in [69], from two to three dimensions. The convex hull of the
bcc inclusion at t = 1500 is displayed in figure 3. It is equipped with the principal axis x1, x2 and x3 of the
fitting ellipsoid, sorted in increasing order of ellipsoid parameter. It was found that n0 ≡ x1 = 〈0.56, 0.67, 0.49〉,
which forks off the direction normal to the (575)γ plane by 3.8◦ only. The latter is a usual habit plane of a
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martensite phase embedded in fcc austenite phase in many steels and iron based alloys [3, 6, 70, 71, 72, 73].
Besides, x3 corresponds to the largest ellipsoid parameter, and can thus be interpreted as the the preferential
growth direction. It was found that x3 = 〈0.52,−0.74, 0.42〉, which draws relatively near to the 〈12̄1〉γ crystal
orientation (7.57◦ deviation).

Regarding the shape of the bcc inclusion, it was mentioned in the model section that compared to iron based
alloys, the lattice misfit between the fcc and bcc phases is underestimated in the present work (0.5 % vs. 2-4
%), while the yield between the bulk modulus is overestimated (1.4 vs. 1.27-1.35) [59, 60, 18]. This respectively
leads to the underestimation of both the elastic strain energy and the relaxation energy contributions in the total
elastic strain energy for a coherent inclusion [13]. The stress applied to the bcc inclusion is thus underestimated
in the present work, resulting in a morphology of the inclusion less anisotropic than what could be expected
experimentally, notably for the FeCuCo alloy.

x (nm)
y (nm)

z
(n

m
)

n0 ≡ x1 ' 〈575〉γ
x3 ' 〈12̄1〉γ

x2

Figure 3: Convex hull of the bcc inclusion at t = 1500 and 3 principal axis x1 (∼ invariant plane strain direction n0), x2 and x3

(∼ preferential growth direction) of the fitting ellipsoid, sorted in increasing order of ellipsoid parameter.

As indicated in figure 2 (c), new structural domains siding the inclusion are formed after t = 500 (figure
2 (b)). A twin-like structure consisting in a series of three structural bcc domains with different orientations
emerges therefrom. The orientation relationship between these structural domains is discussed in the following
(see figure 4). As the bcc inclusion grows, a highly perturbed bcc envelope within the precipitate is nucleated
at the precipitate/matrix interface (figures 2 (d-f)), due to the a significant strain in the vicinity of the precip-
itate/matrix interface. First, the growth of the bcc inclusion within the precipitate might induce a variation
of the total volume of the precipitate, due to the lattice misfit between the fcc and bcc structures (see section
1.1). This strain is in turn be responsible for a substantial stress at the precipitate/matrix interface, thereby
producing the heterogeneous nucleation of the bcc envelope. Second, the chemical repulsion between atoms of
species (1) and (2) at the precipitate/matrix interface might also contribute to destabilize the fcc structure of
the precipitate in this region. For t > 1500, the perturbed envelope organizes into numerous small bcc structure
domains, as shown in figures 2 (e) and (f). At longer times, most structure domains coalesce, whilst the envelope
itself starts to merge with the bcc inclusion (t = 7800). Then, the bcc inclusion grows within the fcc structure
until the full fcc→bcc transformation is achieved in the precipitate. The transient (t = 750) and late stage
(t = 7800) structures of the transforming precipitate are elucidated in the (111)γ plane in more details in figures
2 (g) and (h) respectively. In these figures, the position of the matrix an the precipitate are indicated by the
index (1) and (2) respectively. The emerging bcc envelope, the fcc/bcc interface between within the precipitate,
the twin boundaries (TB) between bcc structural domains of the inclusion, and the precipitate/matrix ((1)/(2))
interfaces are framed by a red rectangles. It should be noted that the analysis of the precipitate/matrix ((1)/(2))
interfaces was not carried out in this work.

Numerical diffraction analysis of the twinning structure. The identification of the crystallography of the struc-
ture domains within the inclusion was achieved via the diffraction analysis of the atomic configurations extracted
from QA simulations. To that end, the diffraction intensity I2(k) = ρ̂2(k, t)ρ̂∗2(k, t) of the component 2 atoms
corresponding to the precipitate was calculated, where ρ̂∗2 refers to the complex conjugate of ρ̂2. The simulated
diffraction pattern in the (111)γ plane at t = 1500 is presented in figure 4. Diffraction spots corresponding to
three crystal structures can be observed. Each structure is identified by different color circles. Green circles
single out the diffraction spots of the fcc structure, including (2̄02)γ and (02̄2)γ points. Red circles enclose the
diffraction spots of the bcc structure with KS OR V1 (α1 phase), such as (21̄1)α1

and (2̄11̄)α1
. Finally, the

diffraction spots emphasized by blue circles can be obtained by reflection of the diffraction pattern of the KS
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Figure 4: Diffraction pattern in the (111)γ plane, as obtained from the projection of the diffraction intensity I2(k) of the second
component (precipitate). The diffraction spots corresponding to the bcc structure with KS OR V1 are indicated in red, KS OR V2
in blue, and fcc in green.

OR V1 variant. The superimposition of two (blue) spots with the (21̄1)α1
and (2̄11̄)α1

(red) spots additionally
indicates that the structure corresponding to the blue spots is the mirror image of the bcc structure with KS
OR V1 in the (21̄1)α1

plane. This is the bcc structure with KS OR V2. This structure will be referred to as α2

in the following. Therefore, we deduce that the structure domains formed after t = 750 have the V2 KS OR.
The corresponding rotation matrix is provided in the Appendix B.

The formalism of deformation twinning [74] provides a convenient toolbox to characterize the present twin-
ning structure. Based on the analysis of figure 4, the twinning plane is K1 = (21̄1)α1

, and the shear plane is
P = (111)γ ‖ (011)α1

. The twinning direction can then be defined as the intersection line between the shear
plane and the twinning plane, namely η1 = 〈1̄1̄1〉α1

. The corresponding twinning mode is thus (21̄1)α1
|〈1̄1̄1〉α1

.
It is prevalent in various iron based alloys [75, 76]. In addition, it was found that the misorientation an-
gle θ ' 69.5◦ between twinning variants V1 and V2 around the rotation axis 〈011〉α1 was consistent with the
predicted value θid = 70.5◦. For this mode, twinning proceeds by homogeneous simple shear deformation of
amplitude s = 1/

√
2, without shuffling. This deformation achieves perfect coincidence of lattices of both twins

in the shear plane.

2.2. Atomic structure of twin boundaries (TB) and propagation mechanism based on the glide of partial twin
dislocations

The twinned domains V1 and V2 envisioned in figure 2 are connected by twin boundaries (TB) lying parallel
to the V1/V2 twinning plane K1 = (21̄1)α1

. Two such TB are displayed in figure 5(a) and 5(b). Their location
in the (011)α1

plane is given by the row of gray atoms in OVITO’s CNA (perturbed structure) which marks
the transition from one bcc variant to another. The more accurate location of the TB along gray atoms can
be further determined, depending on the type of TB (red dashes in figures 5(a) and 5(b)). In bcc systems, TB
can be of two types: reflection (R) and isosceles (I) [77] as sketched in figure 6(a). In the first case (figure 6(a),
left), the twinned structure is obtained by reflection in the twinning plane (21̄1)α1

, and the TB is precisely
spotted at the reflection plane which cuts the center of gray atoms. In the second case (figure 6(a), right), the
atoms belonging to one variant are translated by a vector tI = 1

12 〈1̄1̄1〉α1
compared to the reflection TB, and

the mirror symmetry is violated. In that case, the TB is located between the (21̄1)α1
twinning plane and the

next (21̄1)α1 plane.
In this work, we mostly observed isosceles (I) twin boundaries (figure 5(a) –top and bottom– and figure

5(b)). The isosceles nature of the top TB portion in figure 5(a) is demonstrated in figure 6(b) (right), where
atoms belonging to variant V2 (blue triangles) are superimposed to atoms belonging to variant V1 (red squares)
in the (011)α1

plane, after (21̄1)α1
plane reflection. As a result, atoms belonging to variants V1 and V2 are

shifted along the 〈1̄1̄1〉α1
direction by the translation vector tI . Portions of reflection (R) twin boundaries were

also identified (strip of TB in the center of figure 5(a)). Using the same procedure as for the isosceles TB, figure
6(a) evidences the mirror symmetry between the two variants close to this portion of TB, insofar as atoms
belonging to V1 and V2 superimpose after (21̄1)α1

plane reflection.
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Figure 5: Twin dislocations analysis in the close packed plane (111)γ as extracted from QA simulations at t = 1500. (a) Partial

twin dislocation couple (IR+RI) with step h = a2/(2
√

6), Burgers vector b = 1
12
〈1̄1̄1〉α1 , connected by a strip of reflection TB (R).

Elsewhere, the TB is isosceles (I). (b) Zonal twin dislocation (Z) with step h = 2a2/
√

6, Burgers vector b = 1
6
〈1̄1̄1〉α1 . A video of

partial twin dislocations motion can be found in the Online Supplementary Material.

During the propagation of TB, the transition from one type of TB to another –(I)→(R) and (R)→ (I)–
is accompanied by the local re-stacking of (21̄1)α1

planes, which results in the shift of the interface along the
direction 〈21̄1〉α1

perpendicular to the twinning plane. In the present work, the amplitude of the shift was
observed to be half the distance between two successive (21̄1)α1

planes. This is materialized by the formation of
a step with height h = hIR/RI = a2/(2

√
6), as indicated by the mismatch between red dashed lines indicating

the TB in figure 5(a).
TB steps also bear a dislocation nature referred to as twinning dislocation [78, 79, 80, 74]. In figure 5(a),

the two steps correspond to two partial twin dislocations (IR and RI). Each partial is framed by its Burgers
circuit (black dashed line in figures 5(a) and 5(b)) traced out around the dislocation in the FS/RH reference
crystal convention [80]. The calculated Burgers vector b is close to the theoretical partial IR twin dislocation:
b ' bIR/RI = 1

12 〈1̄1̄1〉α1 . The correspondence bIR/RI = tI indicates that (IR) and (RI) partial twin dislocations
carry the translation of atoms close to the TB, when switching from (I) to (R) and (R) to (I) types of TB.
Moreover, in the present simulations, the vast majority of partial twin dislocations form (IR+RI) pairs connected
by a strip of reflection (R) interface, and bordered by two strips of isosceles (I) interface (figure 5(a)). From
the general theory of twin dislocations [80, 74], we surmise that the two partial dislocations having the same
Burgers vector repel one another, up to a distance where the increase of (R) type TB energy balances the
repulsion between partials.

Regarding the dynamics of twin variant growth, we could observe that the propagation of the TB exclu-
sively proceeds by the glide of pairs (IR+RI) of partial twin dislocations (see movies 1 and 2 of the Online
Supplementary Material), which translates TB steps along the 〈1̄1̄1〉α1

direction parallel to bIR/RI. The strong
glissility of partial twin dislocations which roots the propagation of the TB, stems from their wide core (diffuse
step) (see figure 5(a)). As a matter of fact, it was shown in [81] that the double 1

12 〈1̄1̄1〉α dislocation glide was
the prominent TB propagation in different metals, including bcc iron. A more detailed description of this twin
partials glide process can also be found there.

Close to the fcc/bcc interface, zonal dislocations (Z) characterized by the Burgers vector bZ = 1
6 〈1̄1̄1〉α1

,
and a step height of two (21̄1)α1

interplanar spacing could seldom be observed, as displayed in figure 5(b).
However, zonal dislocations are usually associated to a different twinning mode in bcc systems [82] than the
present (21̄1)α1

|〈1̄1̄1〉α1
mode. The emergence of (Z) dislocations might thus be induced by the stress exerted

by the fcc/bcc interface in the close vicinity. From the kinetic perspective, zonal dislocations are poorly glissile,
and their contribution to TB propagation should thus be negligible.

12



tI = 1
12〈1̄1̄1〉α1

〈21̄1〉α1

〈1̄1̄1〉α1

〈011〉α1

(R) (I)

V1V2 V1V2

(a) (I) and (R) twin boundary (theory)

(R) (I)

0 1 2 3
0

1

2

3

distance from TB (nm)

y
(n

m
)

V1

V2 ((21̄1)γ reflection)

〈21̄1〉α1

〈1̄1̄1〉α1

〈011〉α1 0 1 2 3
0

1

2

3

distance from TB (nm)

y
(n

m
)

tI

(b) (I) and (R) twin boundary (simulation)

Figure 6: Reflection (R) and isosceles (I) TB structure for the (21̄1)α1 |〈1̄1̄1〉α1 twinning mode, projected on the (011)α plane. (I)
TB obtained from (R) TB by imposing an additional translation of tI = 〈1̄1̄1〉α1 at the interface. (a) Schematic representation.
Dark blue: V2 bcc atoms on the (011)α plane. Dark red: V1 bcc atoms in the (011)α plane. Light blue: V2 bcc atoms in the
plane above and beneath the (011)α plane. Light red: V1 bcc atoms in the plane above and beneath the (011)α plane. (b) TB as
simulated by QA at t = 1500. Red circles: V1 atoms in the (011)α plane. Blue triangles: V2 atoms in the (011)α plane after (12̄1)γ
plane reflection.

2.3. Atomic study of the fcc/bcc interface: defect structure and propagation mechanism via screw dislocations
glide

Surface relief of the semi-coherent fcc/bcc interface. The bcc inclusion extracted from QA simulations at t =
1500 is presented in figure 7, using OVITO’s visual rendering to magnify the surface relief. It was obtained
by removing all atoms with fcc first neighbor environment, so that atoms labeled as bcc, hcp and perturbed
structures were considered to belong to the inclusion in this figure.

The relief of the inclusion takes the form of a series of surface units consisting in (111)γ ‖ (011)α terraces,
separated by 〈1̄01〉γ steps of one or several (111)γ interplanar spacings. Three (011)α ‖ (111)γ planes taken on
the top of the inclusion (top terrace) where the average orientation of the interface is close to the (011)α plane
are enlarged on the top right of figure 7. The corresponding terraces are flagged by transparent blue planes.
The same is done for three terraces spotted more on the side of the inclusion (side terrace, at the bottom right of
figure 7). From this, it appears that (111)γ terraces can be found all over the surface of the inclusion. However,
the length of these terraces is bigger when the average orientation of the interface is close to the (011)α terrace
plane (top and bottom of the inclusion), and smaller otherwise (side of the inclusion).

In virtue of the TM [14], the fcc/bcc interface with KS OR should be fully coherent at (011)α ‖ (111)γ
terraces. Under this hypothesis, the total misfit strain at the coherent (011)α terrace can be expressed in the
terrace plane coordinate frame (〈1̄10〉γ , 〈112̄〉γ , 〈111〉γ) as:

St =

εtotXX 0 0

0 εtotY Y 0

0 0 0

 , (10)

where both the deformation of the bcc and fcc phases are accounted for in the total strain. The infinitesimal
strain introduced in equation 10 can conveniently be approximated using the fcc and bcc lattice parameters
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〈1̄01〉γ〈111〉γ
〈12̄1〉γ

(011)α ∥ (111)γ terraces

(front terraces)

(side terraces)

〈1̄01〉γ steps

Figure 7: Surface relief of the bcc inclusion (bcc+unknown+hcp atoms as provided by OVITO CNA) as extracted from QA
simulations at t = 1500, using OVITO’s ’ambient occlusion’ visual rendering. Top (top right) and side (bottom right) coherent
units consisting in (011)α ‖ (111)γ terraces are spotted by transparent blue planes. Shades of gray reflect the distance of atoms
from the fcc/bcc interface.

only. For that purpose, we introduce the interatomic distances dαXX and dαY Y for the bcc structure, as well as
dγXX and dγY Y for the fcc structure, in the 〈1̄00〉α ‖ 〈1̄10〉γ and 〈112̄〉γ ‖ 〈011̄〉α directions. They respectively
correspond to the small and large diagonal of the atomic rhombi depicted in figure 8(a). This rhombi delineates
the atomic sites on the (011)α ‖ (111)γ planes for the unstrained fcc (green dashes) and bcc (blue line) structures
and the coherent state (black line). In the present work, a1 = 8.0∆x = 0.36 nm and a2 = 6.5∆x = 0.293 nm, so
that dαXX = a2 = 0.293 nm, dαY Y =

√
2a2 = 0.414 nm, dγXX =

√
2/2a1 = 0.255 nm and dγY Y =

√
3/2a1 = 0.441

nm.

x

yz
〈1̄10〉γ/〈1̄00〉α

〈112̄〉γ/〈011̄〉α(111)γ/(011)α

εtot
X X =−13.5%

εtot
Y Y = 6.38%

0.1 nm
γ

α
coherent state

(a) Atomic rhombi

Strain

10%
(compression)

-10%
(dilatation)

〈112̄〉γ

〈1̄10〉γ

〈111〉γ

ε
γ,α
X X

ε
γ,α
Y Y

bcc inclusion
(011)α terrace

fcc parent
(111)γ layer

(b) Strain (OVITO)

Figure 8: Misfit strain at the coherent (011)α ‖ (111)γ inclusion terrace expressed in the terrace plane coordinate frame
(〈1̄10〉γ , 〈112̄〉γ , 〈111〉γ). (a) Scale drawing of the atomic rhombi in the terrace plane. Blue lines represent the unstrained bcc
structure, green dashed lines the unstrained parent crystal, and bold black lines the coherent state. (b) QA calculation (t = 1500)
at one (011)α coherent terrace. Top: εγ,αXX . Bottom: εγ,αY Y . In (b) the strain was calculated using OVITO (finite strain theory).

Then, keeping in mind that the infinitesimal strain in a given direction reflects the change in length over the
initial length in this direction, εtotXX can be approximated by the difference of interatomic distance between the
fcc and bcc structures with respect to the average interatomic distance in the 〈1̄00〉α ‖ 〈1̄10〉γ (X) direction:

εtotXX ' 2(dγXX − d
α
XX)/(dαXX + dγXX). (11)

The same consideration applies for εtotY Y in the 〈112̄〉γ ‖ 〈011̄〉α (Y ) direction:

εtotY Y ' 2(dγY Y − d
α
Y Y )/(dαY Y + dγY Y ). (12)
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This eventually gives εtotXX ' −13.5% and εtotY Y ' 6.38% in the (011)α ‖ (111)γ terrace plane. Based on this
preliminary calculation, a strong dilatation (compression) of the fcc (bcc) structure in the 〈1̄10〉γ ‖ 〈1̄00〉α (x)
direction, and compression (dilatation) of the fcc (bcc) structure in the 〈112̄〉γ ‖ 〈011̄〉α (y) direction should be
observed at coherent terraces.

To ascertain the coherency of (011)α terraces in the present QA simulations, the deformation of the fcc and
bcc structures with respect to the unstrained state were calculated at these terraces. For that purpose, the
strain field was calculated using OVITO based on the finite strain theory in the fcc referential frame. Then, the
obtained strain tensor was expressed in the terrace plane coordinate frame (〈1̄10〉γ , 〈112̄〉γ , 〈111〉γ). The two
principal components XX and YY of the fcc and bcc strains as expressed in the terrace referential plane could
then be displayed in figure 8(b) for t = 1500, wherein big spheres correspond to atoms with bcc environment
and belonging to the (011)α plane, and small spheres correspond to atoms with fcc environment and belonging
to the interfacial (011)α ‖ (111)γ plane. The colormap reflects the amplitude of the accommodation strain for
each phase. In the (x) direction, the bcc phase is strongly compressed while the fcc structure is dilated. In the
(y) direction, it is the opposite situation (see figure 8(b)).

Identification and characterization of the dislocation network at the fcc/bcc interface. To understand the mecha-
nism rooting the propagation of the fcc/bcc interface, the defect structure at this interface in the (011)α ‖ (111)γ
plane is first prospected in figures 9 and 10. Therein, gray atoms indicate the interphase structure connecting
the fcc and the bcc phases, and green and blue spheres refer to atoms in the fcc and bcc structure, respectively.
(011)α terraces are schematically delineated by terrace edges aligned with the 〈1̄01〉γ direction (front edge at
the top right in figure 7), and the 〈11̄0〉γ/〈01̄1〉γ directions (side edge at the bottom right in figure 7).
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Figure 9: Defect structure of the fcc/bcc interface of (011)α terraces, as extracted from QA simulations at t = 750. Visual rendering
uses OVITO’s CNA and Diffraction analysis in the fcc structure. 1/ Along front edge (〈1̄01〉γ direction): (fcc) stacking fault (SF)
marked by 〈1̄01〉γ rows of hcp atoms, bordered by Shockley partial dislocations (orange line) with Burgers vector bp = ± 1

6
〈12̄1〉γ

(gray arrow), and accompanied by fcc screw dislocation with Burgers vector b1 = ± 1
2
〈1̄01〉γ (red arrow) and dislocation line

ξ1 = 〈1̄01〉γ (red dash-dotted line). 2/ Along side edge (〈11̄0〉γ/〈01̄1〉γ directions): (fcc) SF + Shockley partials (yellow tube) with
bp = ± 1

6
〈1̄12〉γ (gray arrow), siding fcc screw dislocation with b2 = ± 1

2
〈11̄0〉γ and ± 1

2
〈01̄1〉γ (blue arrow) and ξ2 = 〈1̄01〉γ/〈01̄1〉γ

(blue dash-dotted line). a) Burgers circuit for b2 dislocations only (blue dashed line). b) Burgers circuit for b1 dislocations only
(red dashed line). c) and d) Burgers circuit for resulting dislocation btot (black dashed line), and Burgers circuit for b2 and b1
contributions (blue and red dotted line).

At front edges (〈1̄01〉γ direction), 〈1̄01〉γ rows of atoms belonging to the hcp phase (in red) indicate the
presence of 〈1̄01〉γ stacking faults [18] produced by Shockley partial edge dislocations (orange tube) with Burgers
vector bp = ± 1

6 〈12̄1〉γ (gray arrow). The 〈1̄01〉γ SF+ 1
6 〈12̄1〉γ partial set is accompanied by a fcc screw dislocation

with the Burgers vector b1 = 1
2 〈1̄01〉γ (red arrow) and the dislocation line ξ1 = 〈1̄01〉γ (red dashdotted line).

One b1 dislocation is singled out in figure 9 b), where it is circumscribed by its Burgers circuit (red dashed
line).

A similar structure is found at side edges (〈11̄0〉γ/〈01̄1〉γ directions). Therein, Shockley partial edge dislo-
cations (yellow tube) with Burgers vector bp = ± 1

6 〈1̄12〉γ produce 〈11̄0〉γ/〈01̄1〉γ SF. This set of defects is again
tied to a second class of fcc screw dislocations having the Burgers vector b2 = ± 1

2 〈11̄0〉γ/± 1
2 〈01̄1〉γ (blue arrow)

and the dislocation line ξ2 = 〈1̄01〉γ/〈01̄1〉γ (blue dashdotted line). One b2 dislocation is isolated in figure 9 a),
where it is framed by its Burgers circuit (blue dashed line).

The net Burgers vector btot (black arrow) of b1 and b2 dislocations is defined in figure 9 c) and 9 d) by
the closure failure of the Burgers circuit (black dashed line) which encompasses both b1 and b2 dislocations
as circumscribed by their own Burgers circuits (blue and red dotted lines). The presence of similar screw
dislocations at the fcc/bcc interface in Fe-0.6C-2Si-1Mn and Fe-20Ni-5.5Mn steels was reported in [2].

Furthermore, b2 dislocations contribute to accommodate the misfit between the fcc structure in the 〈011̄〉γ
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ξ1

〈1̄01〉γ
〈12̄1〉γ

〈111〉γ
〈111〉γ

〈12̄1〉γ

〈101̄〉γ

a) b)

Figure 10: b1 screw dislocation at the fcc/bcc interface step of (011)α terraces, as extracted from QA simulations at t = 800.
Visual rendering uses OVITO’s CNA. Black arrows represent the displacement field (amplitude ×50) of atoms, between close times
t = 800 and t = 802.5. (a) ξ1 dislocation line (red dashed line) in the (011)α ‖ (111)γ plane. b) (1̄01)γ plane slice of the step,
aligned with (a). Two videos of a screw dislocation glide in the (111)γ and (101̄)γ planes corresponding to a) and b) respectively
can be found in the Online Supplementary Material.

δL

loop of dislocations

new loop formation

Figure 11: 3D distribution of b2 dislocation cores (yellow spheres) at the interface of the inclusion (transparent gray atoms with
ambient occlusion) as obtained by QA simulations at t = 750.

direction and the bcc structure in the 〈11̄1〉α (quasi-) parallel direction, for a curved fcc/bcc interface. One
argument for that can be found in the three dimensional distribution of b2 dislocation cores (yellow spheres) on
the surface of the ellipsoidal inclusion in figure 11. These are distributed in lines of dislocation cores organized
in loops which encircle the bcc inclusion, and lie in periodically distributed parallel planes. This type of defects
was previously envisioned using a mixed MD-MC approach at the semi-coherent interface of bcc-Cr precipitates
in a fcc-Cu matrix, where it was referred to as ”dislocation loops” [33]. This periodicity can be related to the
elastic accommodation of a twinned bcc particle with the fcc matrix. As was discussed in [83], the period Λ of
the twinned interface is the ratio between the conventional surface energy γTB of the twin boundaries between
two orientation variants, and the elastic energy Esc related to the semicoherent interface:

Λ =

√
γTB

µEsc
D, (13)

where D is the width of the plate, and µ is the shear modulus. In the present work, the periodic structure in
figure 11 with period δL = 1.36 nm can be also related to the ratio between the energy of staking faults and the
elastic energy. Herein, the increase of the elastic energy or the decrease of the staking faults energy will result
in the increase of δL.

Fundamental mechanism for the propagation of the fcc/bcc interface and the fcc → bcc transformation. Based
on these observations, the structure and propagation mechanism of the fcc/bcc interface in the case of an
ellipsoidal bcc inclusion is schematized in figure 12, using the same color coding for dislocations as in figure 9.
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At both front and side edges, we suggest that the fcc→bcc phase transition should follow the fcc→hcp→bcc
transformation path. It is triggered by bp Shockley partial dislocations that produce SF along the edge, where
the fcc/bcc interface can be spotted. This path can be divided into two steps: first, a Shockley partial dislocation
with Burgers vector 1

6 〈12̄1〉γ produces a SF which transforms the ABCABC stacking sequence of close-packed
(111)γ planes of the fcc structure into the ABAB stacking sequence in the hcp phase. Then, the homogeneous
deformation of the hcp structure produces the final transformation from (111)γ fcc to (011)α bcc planes. This
homogeneous deformation is carried by the glide of b1 and b2 fcc screw dislocations along there respective
dislocation line. In detail, the glide generates a shear displacement of atomic positions along the edge in the
(011)α ‖ (111)γ plane (figure 10 a)), while the rotation of atoms around the dislocation line (figure 10 b)) aligns
the fcc perturbed structure on the bcc structure, in the vicinity of the step. The present mechanism provides
an athermal/glissile propagation mode for a curved fcc/bcc interface [18].

〈1̄21̄〉γ

〈1̄01〉γ
〈111〉γ

BCC inclusion

FCC parent phase

〈11̄0〉γ (side edge)

〈1̄01〉γ (front edge)

step

(111)γ ∥ (011)α

terrace

ξ1

b1

ξ2
b2

bp

bp

Figure 12: Schematic representation of fcc/bcc interface structure and propagation mechanism in the case of an ellipsoidal bcc
inclusion. One (011)α terrace consisting in 〈1̄01〉γ and 〈11̄0〉γ/〈01̄1〉γ step edges and corners is depicted. The fcc→bcc interface
is located at fcc SF (along 〈1̄01〉γ in red, and 〈11̄0〉γ/〈01̄1〉γ in yellow) produced by fcc Shockley partial edge dislocations with
Burgers vector bp. The terrace step propagates outward (gray arrows), by means of the glide of b1 (red arrow) screw dislocation
along 〈1̄01〉γ and b2 (blue arrow) screw dislocation along 〈11̄0〉γ/〈01̄1〉γ .

3. Comparison with experimental results in a Fe-Cu alloy

To compare our predictions with a real system, the Cu-Fe alloys seems appropriate (see section 1.1). In this
immiscible system, the nanosized Fe-rich particles precipitate in the Cu-rich matrix during the cooling stage
of the casting process. The crystallographic features of the Fe-rich nanoparticle in the Cu-2.0Fe-0.5Co (wt.
%) alloy was investigated via transmission electron microscopy (TEM). Details about experimental conditions
are provided in the Appendix C. In figure 13 (a-c), a spherical Fe-rich nanoparticle is characterized by high
resolution TEM (HRTEM) micrographs and Fast Fourier Transform (FFT) patterns along the 〈111〉α zone axis
(ZA), indicating a bcc structure of Fe-rich nanoparticle and its KS OR with the fcc Cu matrix. Along the
〈1̄13〉α ZA of the same Fe-rich nanoparticle, a bcc twinned domains within the nanoparticle is displayed. It
is accompanied by HRTEM exhibition and FFT pattern indexation (figure 13 (d-f). The amplified image of
the twin boundary zone in figure 13 f) presents partial twin dislocation couple (IR+RI) corresponding to the
numerical atomic structure displayed in figure 5 a). In addition, the FFT pattern of one Fe-rich nanoparticle
along the 〈011〉α ZA indicates that twinning domains are formed with the KS OR variants V1 and V2 (figure
13 (g-i)). This is similar to the present QA simulations (figures 2 and 4). The theoretical misorientation angle
between the KS variants V1 and V2 observed experimentally (70.62◦, measured using e-Ruler 1.0) in figure 13
i) is also very close to the numerical value (70.5◦). The experimental thickness of twin domains is avg. 8.0 nm
(ranging from 2.2 to 23.6 nm) vs. 15 nm in simulations. This disparity stems from the fact that the simulation
box in our simulations is smaller than the size of Fe-rich particle observed experimentally. However, it is shown
in this study that this type of structures can be also observed in smaller particles using scaling parameters.
It is also noteworthy that a bcc envelope emerges between one spheroidal bcc (iron) precipitate and the fcc
(copper) matrix in figure 13 a) and d). We suggest that it might correspond to the transient envelope obtained
in simulations (figure 2) between the bcc inclusion and the fcc parent phase.

As a conclusion, while a fully quantitative comparison between our experimental and modeling results is
still beyond reach, it appears that the present numerical model finely reproduces the main characteristics of the
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Figure 13: HRTEM analysis of one spherical iron-rich nanoparticle along different directions. a) HRTEM micrograph along 〈111〉α
zone axis. b) Enlarged figure of dashed squire zone in a). c) FFT pattern corresponding to b), presenting the KS OR between
the iron-rich nanoparticle and the copper matrix. d) HRTEM micrograph along 〈1̄13〉α zone axis, showing twinning domains. e)
Enlarged figure of dashed squire zone in d). f) Zoom on the one of the twin boundaries marked by dashed squire zone in e) with
partial twin dislocation couple (IR+RI), the inset showing its corresponding FFT pattern. Envelopes of the iron-rich nanoparticle
were marked by black arrows in (a, d). g) HRTEM micrograph along 〈011〉α zone axis. h) Amplified figure of dashed squire zone
in g). i) Corresponding FFT pattern of h), presenting the KS OR V2 (yellow), and the KS OR V1 (White).

fcc→bcc transformation in a precipitate/matrix binary system.

Conclusion

In this work, the QA was further developed to simulate the fcc→bcc transformation in a model binary
system. For that purpose, it was equipped with new interaction potentials, and an original post-treatment
procedure which allowed to analyze structural defects. At the microstructural scale, the bcc inclusion was
found to grow from a bcc nucleus with KS OR, in the shape of a slightly flattened ellipsoid. An effective habit
plane close to (575)γ which minimizes the bulk strain energy of the inclusion was determined as the plane
normal to the flattened direction. Besides, the growth of the inclusion was accompanied by the spontaneous
appearance of the second KS variant with twin related OR. The simulated diffraction pattern was used to
identify the nature of this second variant and to determine the twinning plane and twinning direction. It was
shown that the corresponding twinning mode is (21̄1)α|〈1̄1̄1〉α. At the atomic level, twin boundaries were first
found to be mostly of isosceles nature, albeit hosting strips of reflection boundaries between pairs of partial
twin dislocations gliding along direction 〈1̄1̄1〉α. We concluded that the prominent mechanism of twin growth
was the glide of dissociated 〈1̄1̄1〉α twin dislocations along twin boundaries. Another feature predicted from
our simulation is that the fcc/bcc interface of the bcc inclusion within the precipitate was found to consist in
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(111)γ coherent terraces delineated by steps. Besides, the defect structure of terrace steps consists in pairs
of 1

2 〈1̄01〉γ and 1
2 〈11̄0〉γ fcc screw dislocations. Therefore, we could posit that the fcc/bcc interface athermal

propagation was mainly carried by the glide of 1
2 〈1̄01̄〉γ screw dislocations along 〈1̄01〉γ step edges, striding the

fcc→hcp→bcc transformation path. Meanwhile, 1
2 〈11̄0〉γ dislocations were assumed to accommodate the misfit

between the fcc and bcc structures in the 〈011̄〉γ and 〈11̄1〉α directions respectively. Finally, a first comparison
with HRTEM observations of twinned iron rich precipitates in a cast Fe-Cu alloy proved qualitatively consistent
with the present simulations.

As a conclusion, the present work demonstrates the potential of the QA, which belongs to the phase-field
framework, to address the challenging issue of martensitic transformation, which is notoriously difficult to
prospect experimentally. We thus suggest that the QA could be added to the existing numerical toolkit for
fcc→bcc transformations, as on the one hand it is able to provide an atomistic description of the process,
which usual coarse grained models such as the standard PFM cannot, while having the capacity to prospect
such transformations on large spatial scales and for complex geometries, which remains challenging for usual
atomistic approaches such as MD.

DATA AVAILABILITY

All datasets generated in the current study are available from the corresponding authors upon reasonable
request.
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Appendix A. Elastic constants used in this work

C11 (r.u.) C12 (r.u.) C44 (r.u.) B (r.u.) AZn Bbcc/Bfcc

bcc 0.23 0.10 0.086 0.14 1.3
1.4

fcc 0.14 0.081 0.090 0.10 3.1

Table A.2: Elastic constants (in reduced units) of the bcc and fcc structures obtained for the present setting of parameters (see
table 1). Zerner anisotropy constant AZn and the ratio Bbcc/Bfcc between bulk moduli is also provided.

Appendix B. Rotational matrices for KS OR V1 and V2

Rotational matrix J1 (resp. J2) that transforms the coordinate system of the parent fcc lattice into the bcc
lattice with KS OR V1 (resp. V2) reads [84]:

J1 =

0.742 −0.667 −0.075

0.650 0.742 −0.167

0.167 0.075 0.983

 , J2 =

 0.075 0.667 −0.742

−0.167 0.742 0.650

0.983 0.075 0.167



22



Appendix C. Experimental conditions

In this work, the microstructural evolution during casting of a Cu-2.0Fe-0.5Co (wt. %) alloy was investigated
via transmission electron microscopy (TEM). The alloy was prepared from high purity Cu, Fe and Co (purity of
99.99, 99.50, 99.95 wt. %, respectively) and elaborated by gravity casting in a vacuum chamber with a medium
frequency electrical furnace. A 50 mm × 65 mm × 195 mm cuboid specimen was cast after a homogenization
at 1300◦C for 20 minutes, followed by an isothermal holding at 1150-1200◦C. Thin TEM foils were prepared
from 3 mm diameter discs that were mechanically polished and electronically thinned by low-energy Ar milling.

TEM and HRTEM characterization was carried out under JEM-2100F Field Emission Electron Microscope.
The TEM and HRTEM images were further processed by DigitalMicrograph 3.5 and Gatan Microscopy Suite
2.1 software. The thickness of twin domains within Fe-rich precipitates were measured and determined from
the TEM and HRTEM images, and at least 100 twin domains were analyzed for quantification.
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Graphical abstract 1 – Top : surface relief of a bcc inclusion in a precipitate/matrix
binary system, as simulated by the Quasi-Particles (QA) model. Bottom left : partial
twin dislocation (TB) couple (IR+RI) with burgers vector b = 1

12〈1̄1̄1〉α1 and connec-
ted by a strip of reflection twin boundary (R) between two twinning domains with
Kurdjumov-Sachs orientation relationship (same QA simulation as above). Bottom
right : HRTEM micrograph along 〈1̄13〉α zone axis, showing similar twinning domains
and TB structure, in one spherical Iron-rich nanoparticle.




