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1. Introduction
For more than 25 years, altimetry has allowed the study of near-global sea surface height (SSH) at scales longer 
than 150 km and drastically transformed our understanding of mesoscale processes in the oceans. In particular, 
altimetry has given access to the upper-ocean circulation dynamics through geostrophy and revealed that most 
kinetic energy in the world ocean is contained in mesoscale eddies with wavelengths between 100 and 300 km 
(Wunsch & Ferrari, 2004). But the scales resolved by nadir (along-track) altimetry are limited by the 100–300 km 
spacing between satellite ground tracks. Even by merging several nadir measurements (Taburet et al., 2019), the 
space time resolution of the resulting 2D SSH maps does not allow to conveniently characterize and study small 
mesoscale (<150 km) motions (Amores et al., 2018; Ballarotta et al., 2019).

With wide-swath radar interferometry, the next generation of altimeters will provide two dimensional SSH data 
at much finer scales. For instance, the future Surface Water and Ocean Topography (SWOT) mission (Morrow 
et al., 2019) will provide SSH observations over a 120 km-wide swath with a near-global coverage, resolving 
spatial scales down to 15–30 km depending on the sea state (Fu & Ubelmann,  2014). Recent studies, based 

Abstract Wide-swath altimetry, for example, the Surface Water and Ocean Topography mission is expected 
to provide Sea Surface Height (SSH) measurements resolving scales of a few tens of kilometers. Over a large 
fraction of the globe, the SSH signal at these scales is essentially a superposition of a component due to 
balanced motions (BMs) and another component due to internal tides (ITs). Several oceanographic applications 
require the separation of these components and their mapping on regular grids. For that purpose, the paper 
introduces an alternating minimization algorithm that iteratively implements two data assimilation techniques, 
each specific to the mapping of one component: a quasi-geostrophic model with Back-and-Forth Nudging for 
BMs, and a linear shallow-water model with 4-Dimensional Variational assimilation for ITs. The algorithm is 
tested with Observation System Simulation Experiments where the truth is provided by a primitive-equation 
ocean model in an idealized configuration simulating a turbulent jet and mode-one ITs. The algorithm 
reconstructs almost 80% of the variance of BMs and ITs, the remaining 20% being mostly due to dynamics that 
cannot be described by the simple models used. Importantly, in addition to the reconstruction of stationary ITs, 
the amplitude and phase of nonstationary ITs are reconstructed. Sensitivity experiments show that the quality of 
reconstruction significantly depends upon the timing of observations. Although idealized, this study represents 
a step forward towards the disentanglement of BMs and ITs signals from real wide-swath altimetry data.

Plain Language Summary Wide-swath altimetry, for example, the Surface Water and Ocean 
Topography mission is expected to provide Sea Surface Height (SSH) images with pixels of 2 km, revealing 
motions at scales of a few tens of kilometers. At these scales, SSH variations are essentially due to the 
superposition of slow, balanced motions primarily constrain by Earth's rotation, and fast, propagating motions 
due to internal waves mainly generated by interactions between bathymetry and tidal water displacements. 
Several oceanographic applications require the separation of these two SSH components and their mapping 
on regular grids. This paper presents an original method to achieve this separation, based on data assimilation 
approaches and simple dynamical models. Experiments with synthetic SSH images, simulated from an ocean 
circulation model with detailed physics, show the efficiency of the method.
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on numerical models, have highlighted the impacts of short-mesoscale and submesoscale processes on ocean 
dynamics. Submesoscale motions have been found to trigger a large part of vertical motions (Klein & Lap-
eyre, 2009; McWilliams, 2016) that drive the exchanges of heat, carbon and nutrients between the ocean surface 
and subsurface. Small mesoscale processes (<100 km) also provide kinetic energy to larger scales through an 
inverse cascade (Ajayi et al., 2019; Capet et al., 2016), hence impacting the mesoscale dynamics. Wide-swath 
altimetry represents a unique opportunity to validate our present-day understanding of submesoscale motions and 
their role in oceanic processes in a broad sense.

At the scales measured by wide-swath altimetry, some SSH variations due to internal tides (ITs) may become 
comparable to those due to the mesoscale balanced motions (BMs; Qiu et al., 2018). ITs, producing high fre-
quency sea level fluctuations at scales around 200 km and below, are internal gravity waves generated when the 
barotropic tidal flow encounters variations of topography (Garrett & Kunze,  2007). Although the generation 
processes of ITs are well understood, the dissipation processes (that greatly influence the ocean's energy budget; 
e.g., Whalen et al., 2020) remain insufficiently known and quantified. Recent studies emphasize that ITs and 
BMs interact in a complex way (Kelly & Lermusiaux, 2016), with BMs scattering and refracting ITs (Dunphy 
et al., 2017). These complex interactions are thought to strongly modify local mixing but need to be validated 
with observations. The capacity of wide-swath altimetry to observe even a part of ITs SSH signal will help to 
better understand these interactions and the processes related to ocean mixing and dissipation.

The accurate characterization of both ITs and BMs from wide-swath altimetry data, in the small mesoscale spec-
trum where their signatures overlap, will require scientific and technological developments for the processing 
of observations. The first challenge concerns the design of gridded products. For BMs, the main objective is to 
increase the space-time resolution of the present-day SSH maps. For instance, the mismatch between the (high) 
spatial and (low) temporal sampling of SWOT fosters the development of innovative inversion techniques, which 
typically include dynamical constraints (Ubelmann et al., 2015). For ITs, the main objective is to map the inco-
herent part of the signal, that is, the part due to waves whose characteristics have been altered by interactions with 
BMs and stratification variations. This is further developed in the next paragraph. The second challenge consists 
in the separation of ITs and BMs components from wide-swath altimetry data to make the differentiated grid-
ded products possible. Both components are driven by different dynamics, and separation is needed to properly 
estimate quantities associated with each (e.g., surface currents for tracer advection, or energy dissipation due to 
waves). Separation is also made difficult by geographical and seasonal variations in the spatial scales and the 
relative strength of ITs and BMs (Qiu et al., 2018).

Disentangling the contribution of BMs and ITs on SSH is still an unsolved challenge. Due to its partial sampling 
in space and time, altimetry does not capture the fast SSH pulsation due to ITs. Stationary ITs (which are phase-
locked to the astronomical forcing) can be mapped by harmonic analysis of long time series (>10 years) of con-
ventional nadir altimetry data (Ray & Zaron, 2016). ITs become non stationary when interacting with BMs (Dun-
phy et al., 2017; Ponte & Klein, 2015) and/or being modulated by the stratification (Ray & Zaron, 2011). The 
phase and amplitude modulations of the ITs field can evolve on time scales between 5 and 20 days, which makes 
their predictability nearly impossible with conventional satellite altimetry (Haren et al., 2004; Nash et al., 2012). 
Recent studies (Nelson et al., 2019; Zaron, 2017) suggest that nonstationarity represents half of the total ITs var-
iance on average. Wide-swath altimetry will considerably increase the SSH measurement density and open the 
way to predicting nonstationary ITs.

In the context of SWOT development, the BMs-ITs separation problem has been addressed with various ap-
proaches. Torres et al. (2019) make use of a spatial scale threshold above which BMs dominate and below which 
ITs dominate. This spectral technique is less effective when the common spatial scale interval extends too much, 
which is particularly the case in winter due to the emergence of small vortices (<50 km) associated with mixed 
layer instabilities (Ajayi et al., 2020). Gonzalez-Haro et al. (2019) and Ponte et al. (2017) explore multi-sensor 
approaches with altimetry and sea surface temperature observations, motivated by the fact that BMs and ITs have 
distinct signature on both fields.

In this paper, we propose to simultaneously and dynamically map and separate SSH components of BMs and 
ITs from 2D altimetric observations, distributed in time. The proposed approach, illustrated on Figure 1, imple-
ments an alternating minimization algorithm that iteratively calls two mapping techniques, each one specific to 
the estimation of a component (BMs or ITs). At each iteration, the observations used to map one component is 
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made of the difference between the full observation and the previous estimation of the other component. Both 
mapping techniques are based on data assimilation. BMs are reconstructed with a Quasi-Geostrophic (QG) mod-
el assimilating observations with a Back-and-Forth Nudging (BFN) technique (Auroux & Blum,  2008). The 
algorithm is called BFN-QG hereafter. ITs are reconstructed with a Shallow-Water model (SW) assimilating 
observations with a 4-Dimensional Variational (4DVar) technique (Le Dimet & Talagrand, 1986). The algorithm 
is called 4DVar-SW hereafter. The joint estimation algorithm is tested with observing system simulation experi-
ments (OSSE). The true state of the ocean (illustrated on Figure 2) is provided by a primitive-equation regional 

Figure 1. The joint estimation algorithm alternates balanced motions estimations and internal tides estimations with 
observations recursively corrected from the other component. The algorithm is formalized and described in Section 4.

Figure 2. Sea surface height snapshot of the simulated true state of the ocean (left), its balanced motions component (middle) and its internal tides component (right). 
The black square represents the study domain in which the reconstructions are performed.
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model, ROMS, in an idealized configuration that simulates the propagation of a mode-one ITs through a turbulent 
mesoscale zonal jet (Dunphy et al., 2017; Ponte et al., 2017).

The papers is structured as follows: Sections 2 and 3 present the data assimilation algorithms reconstructing BMs 
and ITs, respectively; Section 4 formalizes and describes the general joint estimation approach that implements 
both assimilation algorithms; The experimental set-up is presented in Section 5 and the results are discussed in 
Section 6; Conclusions and perspectives are drawn in Section 7.

2. Mapping the Balanced Motions: BFN-QG Algorithm
The mapping technique for BMs is presented in detail in Le Guillou et al. (2021). It is based on a QG model and 
a data assimilation method called Back and Forth Nudging (Auroux & Blum, 2008), and referred to as BFN-QG. 
The dynamical model is a 1.5-layer QG model (Ubelmann et al., 2015). Forcing and mixing terms are omitted, 
resulting in the simplified QG equations:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐽𝐽 (𝜓𝜓𝜓 𝜕𝜕) = 0 (1)

where J is the Jacobian operator and the streamfunction ψ is proportional to SSH η:

𝜓𝜓 =
𝑔𝑔
𝑓𝑓
𝜂𝜂 (2)

with g the gravity constant, and f the Coriolis parameter. The potential vorticity (PV) is linked to the streamfunc-
tion by the elliptical equation:

𝑞𝑞 = ∇2𝜓𝜓 − 1
𝐿𝐿2

R

𝜓𝜓 (3)

where ∇2 is the Laplace operator and LR is the first baroclinic Rossby radius of deformation. Equation 1 needs 
boundary conditions (in practice, a prescribed SSH field is set at the border pixels; see Section 5 for more de-
tails). Propagating SSH from time ti to time ti+1 is a succession of elementary steps: (a) compute qi from ηi with 
Equations 2 and 3, (b) propagate qi with Equation 1 to obtain qi+1, (c) invert Equation 3 to retrieve ψi+1, then ηi+1.

The BFN technique is based on the Nudging method (Anthes, 1974), which consists of adding an extra term to 
the model prognostic equation (Equation 1) to pull the model variable towards the observations. This term is 
proportional to the difference between the observations and the model variable. Here, the model variable is PV q 
and the observations are 2D SSH ηobs. Thanks to Equations 2 and 3, a corresponding PV observation qobs can be 
derived from ηobs and used to nudge Equation 1 as:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐽𝐽 (𝜓𝜓𝜓 𝜕𝜕) −𝐾𝐾(𝜕𝜕obs − 𝜕𝜕) = 0 (4)

where K is a tunable coefficient controlling the strength of nudging. As explained in Le Guillou et al. (2021), the 
nudging term K(qobs − q) must exhibit smooth variations in time to avoid the emergence of numerical instabilities 
and enhance the constraint of the observations on the model dynamics. A Gaussian kernel is used for the nudging 
term:

�(�obs − �)[�] =
∑

�obs

�0�
−
( �−�obs

�

)2

(�obs[�obs] − �[�]) (5)

where K0 and τ are the nudging parameters and tobs are the observation times. Note that, similarly, spatial smooth-
ing needs to be implemented in the case of irregular space distribution of observations, as discussed in Le Guillou 
et al. (2021).

Nudging is also performed backward in time, by adding a feedback term with a sign opposite to that of the 
forward nudging. Note that the backward integration of the model is possible because the model Equation 1 is 
reversible in time.
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The BFN is the combination of the forward nudging and the backward nudging over a sliding time window of 
length TBFN. Over a specific time window [ti, ti + TBFN], the algorithm works as follows. The model state at time 
ti is prescribed from the previous time window. The forward nudging is first computed from ti to ti + TBFN. The 
final state at ti + TBFN is then used as initial condition to run the backward nudging back to ti. The result initializes 
the forward nudging, and so on until convergence. In a few iterations, the model converges towards a trajectory 
that both fits the observations and complies with the QG dynamics. The process can then be carried out in the 
next time window. Note that the time window TBFN must be long enough to include multiple observations and 
short enough to preserve dynamical consistency and ensure convergence within the window. The implementation 
details specific to the problem addressed in the paper are given in Section 5.

3. Mapping the Internal Tide Signal: 4Dvar-SW Algorithm
In this section, we aim at estimating the surface signature of ITs excited by one tidal component of frequency ω.

3.1. Dynamical Model

The dynamical model used to simulate the surface propagation of ITs motions is a linear SW model. This mod-
el represents the first baroclinic mode dynamics assumed to capture the largest part of the ITs signal (Ray & 
Zaron, 2016). The equations are (Gill, 1982):

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝑓𝑓𝑓𝑓 = −𝑔𝑔
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, (6a)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑓𝑓𝑓𝑓 = −𝑔𝑔
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, (6b)

��
��

= −��

(

��
��

+ ��
��

)

, (6c)

where (u, v) are the velocity components, η is the SSH, f is the Coriolis frequency, and He the equivalent depth that 
determines the baroclinic deformation radius (through the relation 𝐴𝐴 𝐴𝐴𝑑𝑑 =

√

𝑔𝑔𝑔𝑔𝑒𝑒∕𝑓𝑓 ). Equation 6 are discretized on 
a C-grid and a leap-frog time-stepping scheme (Sadourny, 1975). The domain is a square, land-free domain with 
a flat bottom and open boundaries. ITs enter through the boundaries and are not generated within the domain.

After entering the domain, ITs can be made incoherent by time variations of the equivalent depth, since He modu-
lates the phase speed of the waves, given by 𝐴𝐴 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =

√

𝑓𝑓2

𝑘𝑘2
+ (𝑔𝑔𝑔𝑔𝑝𝑝)2 where k is the wavenumber. Space variations 

of He (along with the spatial variation of f) changes the wave propagation direction and its wavelength (Rainville 
& Pinkel, 2006).

Open Boundary Conditions (OBCs) are designed to introduce and let out waves. They are of the radiative type 
(Blayo & Debreu, 2005). The amplitudes and directions of incoming waves are prescribed with a Flather condi-
tion (Flather, 1987) as:

𝑣𝑣𝑛𝑛 ±
√

𝑔𝑔
𝐻𝐻𝑒𝑒

𝜂𝜂 = 𝑣𝑣𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 ±
√

𝑔𝑔
𝐻𝐻𝑒𝑒

𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒 (7)

where vn is the normal component of the wave velocity at the boundary. Parameters 𝐴𝐴 𝐴𝐴𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 and ηext must be pre-
scribed. The signs in the above equation vary with the boundary (− for southern and western boundaries, + for 
the others).

Incoming waves are superpositions of progressive monochromatic waves with frequency ω and absolute wave-
number k. The frequency is a tidal frequency (details are given in Section 5) and k is deduced from ω using the 
dispersion relation:

𝜔𝜔2 = 𝑔𝑔𝑔𝑔𝑒𝑒𝑘𝑘2 + 𝑓𝑓 2 (8)

The superposing, monochromatic waves differ by their amplitudes and their propagation directions. Denoting 
𝐴𝐴 𝐴𝐴𝑛𝑛𝜃𝜃  and 𝐴𝐴 𝐴𝐴𝜃𝜃  the amplitudes of velocity and SSH of the wave entering the domain with an angle θ with the inward 
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boundary normal direction, and denoting κθ the unit vector of the propagation direction, the expressions of pa-
rameters 𝐴𝐴 𝐴𝐴𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 and ηext at boundary grid point r = (x, y) and time t are:

����[�, �, �] =
∑

�

ℜ�
(

��[�, �, �]��(��−��� ⋅�)
)

, (9a)

�����[�, �, �] =
∑

�

ℜ�
(

���[�, �, �]�
�(��−��� ⋅�)

)

 (9b)

where i is the imaginary unit and 𝐴𝐴 𝐴 is the complex notation.

Parameters 𝐴𝐴 𝐴𝐴𝑛𝑛𝜃𝜃  and 𝐴𝐴 𝐴𝐴𝜃𝜃  are linked together by the polarisation relations (obtained from Equation 6). Thus, prescrib-
ing boundary conditions with Equation 7 implies setting only 𝐴𝐴 𝐴𝐴𝜃𝜃  at each boundary and for each angle θ. A limited 
number of angles are predefined. The prescription of the boundary conditions involves 2NθNbNt values, with Nθ 
the number of prescribed wave directions, Nb the number of grid points at the boundary, and Nt the number of 
model time steps. In the following, we denote all these external values to be prescribed by ηext.

3.2. 4DVar Cost Function

The forward problem described in Section 3.1 is here formulated as:

(𝑢𝑢𝑢 𝑢𝑢𝑢 𝑢𝑢)𝑡𝑡𝑢𝑡𝑡𝑢𝑡𝑡 = 𝑀𝑀(𝜙𝜙) (10)

where 𝐴𝐴 𝐴𝐴 = (𝐻𝐻𝑒𝑒, 𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒)𝑒𝑒,𝑒𝑒,𝑡𝑡 are the input parameters, M is the non linear operator solving the prognostic Equation 6 
associated with the OBCs (Equation 7) over a fixed time interval [t0, t1]. In Equation 10, we neglect the initial 
condition in the function arguments. Given the high speed of the waves crossing the domain and the absence of 
balanced motions, the initial condition is completely forgotten after 10 days. As stated in Section 5, the 4DVar 
window is 4-month long, and the first (and last) 10 days are ignored for the performance diagnostics. The sea state 
essentially depends on boundary conditions ηext and model parameter He. So, the initial condition is unimportant. 
In the following, we start experiments with a flat and motionless body of water (all variables to zero).

The associated inverse problem consists in seeking the set of parameters 𝐴𝐴 𝐴𝐴opt = (𝐻𝐻opt
𝑒𝑒 , 𝜂𝜂opt

𝑒𝑒𝑒𝑒𝑒𝑒) that produces a model 
state trajectory that best fits the observations ηobs in the time window [t0, t1]. We formulate this problem as the 
minimization of the 4DVar cost function:

𝐽𝐽 (𝜙𝜙) = (𝜙𝜙 − 𝜙𝜙𝑏𝑏)𝑇𝑇 𝐵𝐵−1(𝜙𝜙 − 𝜙𝜙𝑏𝑏) + (𝜂𝜂obs −𝐻𝐻 ⋅𝑀𝑀(𝜙𝜙))𝑇𝑇𝑅𝑅−1(𝜂𝜂obs −𝐻𝐻 ⋅𝑀𝑀(𝜙𝜙)) (11)

where 𝐴𝐴 𝐴𝐴𝑏𝑏 = (𝐻𝐻b
𝑒𝑒 , 𝜂𝜂b𝑒𝑒𝑒𝑒𝑒𝑒) is the background control vector, H is the linear operator that projects the model state in 

the observation space, B and R denote the background and observation error covariance matrices, respectively. In 
this work, these matrices are set diagonal. This aspect is justified by the expression of the control variables in a 
reduced-order basis, making them independent from each other (see Section 3.3).

The minimum of J is found using a descent method that requires the calculation of the gradient ∇J with respect 
to ϕ:

∇𝐽𝐽 (𝜙𝜙) = 2𝐵𝐵−1(𝜙𝜙 − 𝜙𝜙𝑏𝑏) − 2𝑀𝑀∗ ⋅𝐻𝐻𝑇𝑇 ⋅𝑅𝑅−1(𝜂𝜂obs −𝐻𝐻 ⋅𝑀𝑀(𝜙𝜙)) (12)

This gradient is computed with an adjoint method that makes use of the adjoint model M*. Since the model M 
is non linear, an incremental 4Dvar algorithm (Courtier et al., 1994) is implemented to find the optimal set of 
parameters ϕopt that cancels ∇J.

3.3. Reduced-Order 4Dvar

Order reduction is a standard practice in geophysical data assimilation or inversion, to overcome the issues of 
ill-posedness and numerical complexity (e.g., Robert et al., 2005, for 4Dvar). Control variables are projected 
into a low-dimensional basis of vectors (EOFs - Empirical Orthogonal Functions—are a usual choice, relevant to 
many inverse problems) and the cost function minimization is performed in this low-dimensional space to make 
it possible or faster.
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In this work, we propose to express the control vector (i.e., the model parameters ϕ) in a reduced basis G made 
of space-time Gaussian functions. This choice has been motivated by the fact that we know He and ηext should 
vary “weakly” in space and time. Depth He inherits its time variation scales from the balanced flow, and the tidal 
forcing is quasi-stationary in comparison with the generated internal tides. Mathematically, we call G(k,i) one basis 
function centered at the point (tk, ri) (tk is a timestamp and ri is a spatial coordinate), expressed as:

�(�,�)(�, �) = �
−
(

(�−�� )
2

2�2

)

�
−
(

‖�−��‖2

2�2

)

 (13)

where τ (respectively σ) is the time (respectively space) characteristic scale. For He, r and ri both refer to 2D 
coordinates (x, y) while for ηext they refer to a 1D coordinate (along the domain boundary). Thus, G(k,i) is a 3D 
function for He and a 2D function for ηext. As an illustration, we represent in Figure 3 the space-time distribution 
of the basis functions for ηext at the western boundary and the wavy SSH produced by one element of the basis. 
Two successive basis functions are separated by tk+1 − tk = τ in time and ‖ri+1 − ri‖ = σ in space.

In this basis, ϕ is written as:

𝜙𝜙 = 𝐺𝐺 ⋅𝑤𝑤 =
∑

𝑘𝑘

∑

𝑖𝑖

𝑤𝑤𝑘𝑘𝑖𝑖𝐺𝐺(𝑘𝑘𝑘𝑖𝑖)
 (14)

where w = (wik) are the coordinates of ϕ in the basis G, and the new control variables of the 4DVar. The cost 
function J and its gradient ∇J are then obtained by replacing H by H ∙ G in Equations 11 and 12.

For the order reduction to be efficient, the characteristic scales τ and σ of the Gaussian basis functions have to be 
carefully chosen. They should be short enough to explain a maximum of the variability of He and ηext and long 
enough to reduce significantly the dimension of the control space. Besides, the use of the order reduction (in ad-
dition to the motionless initial state) prevents non tidal dynamics (such as geostrophic motions) from appearing. 
This also impacts the choice of the characteristic scales: τ (respectively σ) must be larger than the tidal time period 
(respectively wavelength). Table 2 gives the retained (constant) values of τ and σ for the experiments presented in 
Section 5, considering the previous comments. With these values, the dimension of the control space is reduced 
by a factor of 104.

Figure 3. Illustration of the reduced-order basis for ηext at the western border for θ = −π/4: (a) the spatial decomposition with σ = 150 km (in red the spatial Gaussian 
centered around yi); (b) the temporal decomposition with τ = 5 days (in red the temporal Gaussian centered around tk); (c, d, e) sea surface height snapshots produced by 
one element G(k,i) of the basis around the space-time coordinate (yi, tk) at three distinct times (represented by the green circles in (b)).
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In addition to reducing the size of the control vector, the reduced order basis justifies the choice of a diagonal 
matrix for B, assuming that the basis element are independent from each other.

4. Joint Estimation Approach
As stated in the introduction, our goal is to map and separate BMs and ITs based on wide-swath altimetry obser-
vations that contains both components, and our approach is based on data assimilation. Let us represent by ηBM 
the SSH field related to BMs, ηIT the SSH field related to ITs, and ηobs the observation of ηBM + ηIT. The recon-
struction problem is formulated as finding:

argmin
𝜂𝜂BM ,𝜂𝜂IT

‖𝜂𝜂BM + 𝜂𝜂IT − 𝜂𝜂obs‖
2

 (15)

where the norm typically considered here is the L2 norm based on the space-time integral. The resolution of the 
minimization problem is addressed using a classical alternating minimization procedure (Tseng, 1990). The use 
of an alternating minimization algorithm is based on the strong assumption of the decoupling between the dy-
namics driving BMs and ITs. Iterations are performed, alternating the two minimization subproblems:

�̂BM
k = argmin

�BM

‖

‖

‖

�BM + �̂IT
k-1 − �obs

‖

‖

‖

2
, (16a)

�̂IT
k = argmin

�IT

‖

‖

‖

�̂BM
k + �IT − �obs

‖

‖

‖

2

 (16b)

In these equations, k is an iteration index. �̂BM
k  and �̂IT

k  are BMs and ITs estimations, respectively, at iteration k.

Both minimization subproblems in Equations 16a and 16b can be solved with methods standard in geophysical 
data assimilation (4DVar, 3DVar, Kalman filters, etc). In what follows, Equation 16a is solved with BFN-QG 
(see Section 2) assimilating the corrected observation �obs − �̂IT

k-1 . Equation 16b is solved with 4DVar-SW (see 
Section 3) assimilating the corrected observation �obs − �̂BM

k  . The joint estimation pseudo-code is presented in 
Algorithm 1 and illustrated in Figure 1.

With this setup, BMs and ITs dynamics are uncoupled (which is essential for the alternating assimilation to 
work): they are governed by distinct prognostic equations and no link is made between them (in particular, He 
and LR are treated as independent quantities). In reality, BMs and ITs interact together. Here, we only simulate the 
effect of BMs on ITs propagation through the control of the space-time variation of He.

5. Experiment Setup
The joint estimation algorithm is tested with OSSEs: a simulation provides reference surface data containing both 
BMs and ITs motions; SSH observations are extracted from this simulation and are assimilated; the estimated 
fields are then compared to the reference fields.

Algorithm 1. The joint estimation algorithm. Variables �̂BM and �̂IT are BMs and ITs estimations, respectively. C is a 
convergence criterion. In this study, we stop the algorithm when the space-time trajectories of BMs and ITs do not differ 
more than 1% of those obtained at the previous iteration.
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5.1. Reference Simulation

The test flow consists of a turbulent zonal jet and a mode-1 internal tide propagating signal described in Dun-
phy et al. (2017) and Ponte et al. (2017). This simulation is carried out with the Coastal and Regional Ocean 
COmmunity (CROCO, https://www.croco-ocean.org) model. The horizontal resolution is 4 km and the domain 
size is 1,024 km × 2,880 km. The mode-one internal tide is generated by a zonally uniform tide excitation in the 
southern part of the domain. The time period of the tide is T = 12 hr. The plane wave produced is propagating 
northward and is encountering the meridional jet located at the center of the domain (Figure 2).

The reference SSH, called ηtruth, is decomposed into BMs and ITs (Dunphy et al., 2017). The reference BMs field 
𝐴𝐴 𝐴𝐴BM

truth is obtained by low pass filtering ηtruth:

𝜂𝜂BM
truth(𝑡𝑡) =

1
𝑊𝑊 ∫

𝑡𝑡+2𝑇𝑇

𝑡𝑡−2𝑇𝑇
𝜂𝜂truth(𝑡𝑡) 𝑒𝑒−(

𝑡𝑡𝑡𝑡−𝑡𝑡
𝑇𝑇 )

2
𝑑𝑑𝑡𝑡𝑡𝑡 

where 𝐴𝐴 𝐴𝐴 = ∫ 𝑡𝑡+2𝑇𝑇𝑡𝑡−2𝑇𝑇 𝑒𝑒−(
𝑡𝑡𝑡𝑡−𝑡𝑡
𝑇𝑇 )

2
𝑑𝑑𝑡𝑡𝑡𝑡 . The reference ITs field 𝐴𝐴 𝐴𝐴IT

truth , is obtained with an harmonic fitting:

�IT
truth(�) = ��(�) cos

(2��
�

)

+ ��(�) sin
(2��

�

)

 

where:

��(�) =
2
� ∫

�+2�

�−2�
�truth(��) cos

(

2���
�

)

�−
(

��−�
�

)2

��� 

��(�) =
2
� ∫

�+2�

�−2�
�truth(��) sin

(

2���
�

)

�−
(

��−�
�

)2

��� 

Figure 2 shows snapshots of the total field, BMs, and ITs flows. The ITs surface signature on SSH is not ex-
ceeding 5 cm, while BMs' is around 50 cm. These values are consistent with observed SSH in western boundary 
current for the BMs (McWilliams et al., 2019) and high energetic internal tide activity (Zaron & Egbert, 2014) 
for the ITs. The ITs wavelength is about 150 km. South of the jet, the wave is rectilinear and aligned with the 
southern boundary, which reflects its stationarity. North of the jet, the wave is dispersed due to its interaction 
with turbulent BMs, producing nonstationarity in the wavefield (Dunphy et al., 2017). The (weak) residual of this 
decomposition (𝐴𝐴 |𝜂𝜂truth − 𝜂𝜂BM

truth − 𝜂𝜂IT
truth| < 1 cm, not shown) corresponds mostly to the mode 2 ITs generated by the 

interaction of the wavefield with the turbulent jet.

In the following experiments, the horizontal resolution is degraded to 16 km (by local averaging) to reduce com-
putational complexity. Observations are extracted from the degraded fields. Both models (QG/SW) and diagnos-
tics are computed on this coarse grid.

5.2. Observational Scenarios

Observations are drawn from the true (degraded) SSH (ηtruth), containing both BMs and ITs components. They 
are free of error, complete in space, and regularly distributed in time. The observation frequency is 75 hr in the 
reference experiments discussed in Section 6.1.

In order to help evaluation of the mapping performance of the joint estimation experiments (hereafter denoted 
as joint), two additional scenarios are considered. The first one, denoted idealized, refers to the case where both 
components can be observed separately, and each observation is processed with the appropriate assimilation 
system. This means that BFN-QG (4Dvar-SW) is fed with observations extracted from 𝐴𝐴 𝐴𝐴BM

truth (𝐴𝐴 𝐴𝐴IT
truth , respectively) 

fields. This ideal scenario provides upper bounds for the mapping performance of the joint experiments. The 
second scenario, hereafter denoted as independent, implements each assimilation system independently (without 
iteration) with observations of the full signal ηobs. This scenario provides a baseline to be outperformed by the 
joint experiments.

This study also investigates the impact of the observational temporal sampling on the mapping performances. For 
that purpose, a sensitivity experiment is performed and discussed in Section 6.2.

https://www.croco-ocean.org


Journal of Advances in Modeling Earth Systems

LE GUILLOU ET AL.

10.1029/2021MS002613

10 of 17

5.3. Configuration of Assimilation

Assimilation is performed in an inner domain of the reference simulation, 
illustrated by the black squares in Figure 2, to avoid the effects of boundary 
conditions and forcing in the reference simulation. The experiments are run 
over 4 months.

The BFN-QG parameters are listed in Table 1. The Rossby radius of deforma-
tion LR is chosen from a climatology for western boundary currents. Note that 
LR is fixed, while He is a space-time varying control variable of the 4DVar-SW 
system. The boundary conditions for the QG model were given by the mean 
SSH field, which is computed by time averaging the reference SSH ηtruth over 
the entire simulation time period. For operational implementation, DUACS 

L4 product (or equivalent) could be used, as in Le Guillou et al. (2021). The length of the BFN time window TBFN 
is fixed to 15 days after a few trial and error experiments. After BFN convergence (reached when the forward and 
backward trajectories do not differ from the previous ones by more than 1%), the 7 days in the middle of the interval 
(days 5–11) are saved and the BFN windows is shifted by 3.5 days for the next iterations. Results from days shared 
by two consecutive windows are averaged. This guarantees smoothness in the time sequence of SSH.

The 4Dvar-SW parameters are listed in Table 2. For the joint scenario, the background values 𝐴𝐴 𝐴𝐴b
𝑒𝑒  and 𝐴𝐴 𝐴𝐴b𝑒𝑒𝑒𝑒𝑒𝑒 are 

updated at each iteration by the optimal values found at the previous iteration. We consider two values for the 
observation error covariance matrix R: 0.01 m for the joint and idealized scenarios, 0.1 m for the independent 
scenario. The value for the independent scenario is higher to reflect representativeness errors and allow conver-
gence of the 4Dvar-SW even with the presence of BMs in the observations. We set 𝐴𝐴 𝐴𝐴𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒 one order of magnitude 
below the amplitude of the target signal because of the superposition of the Gaussian basis functions in space (as 
illustrated in panel b of Figure 3).

5.4. Diagnostics

For measuring the performance of the reconstruction, we use the time varying Root Mean Square Error (RMSE) 
and its associated score S, defined as follows:

����BM(�) =

√

√

√

√
1
�

�
∑

�=1

((

�̂BM(�, �) − �BM
truth(�, �)

))2
, (17a)

�BM = 1 − ����BM

���
(

�BM
truth − �BM

truth

) ,
 (17b)

����IT(�) =

√

√

√

√
1
�

�
∑

�=1

((

�̂IT(�, �) − �IT
truth(�, �)

))2
, (17c)

� IT = 1 − ����IT

���
(

�IT
truth

) (17d)

where N is the number of pixel in the study domain, 𝐴𝐴 �̄�𝑋 is the time-average of the variable X and RMS is the root 
mean square function. A score of 1 indicates a perfect reconstruction in terms of RMSE, while a score of 0 indi-
cates that the time-averaged RMSE is as large as the RMS of the reference field. Note that for BMs, the score is 
defined relative to the time anomaly of the reference field.

6. Results
6.1. Reconstruction Performances

Figure 4 illustrates the performances of the joint estimation algorithm over the iterations for a temporal sampling 
of 75 hr (6.25 ITs periods). The joint estimation algorithm converges after 10 iterations. The scores obtained with 
the idealized and independent scenarios are also shown. As the joint estimation is started by a BMs reconstruc-
tion, the first iteration of the joint algorithm corresponds to the independent scenario for BMs.

Parameter Description Value

dt QG model timestep 1,800 s

LR First Rossby radius of deformation 30 km

K0dt (non-dimensionalized) Nudging coefficient 0.1

τ Nudging time scale 2 days

TBFN BFN sliding time window length 15 days

Table 1 
BFN-QG Parameters
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Without the alternating minimization, the estimation scores for both BMs 
and ITs fall between 60% (worst case, independent scenario) and 80% (best 
case, idealized scenario). The 80% bound is likely due to the observation time 
sampling and to physical processes unresolved by the QG and SW models. 
These processes include the presence of higher baroclinic modes and ageo-
strophic dynamics for the QG model, higher tidal harmonics and neglected 
terms in the SW model. The lower 60% bound reflects the presence of the 
component that the system cannot (or hardly) reconstruct (ITs for the QG 
model, BMs for the SW model). This component appears as noise in the 
observations.

The joint estimation algorithm is able to disentangle BMs and ITs compo-
nents of SSH. Throughout iterations, both components are progressively sep-
arated. This is particularly visible in the 𝐴𝐴 ̂𝜂𝜂BM snapshots, where ITs signature 
is clearly visible at the first iteration, and gradually filtered out throughout 
iterations. We attribute the strength of the joint estimation to the fact that 
each data assimilation sub-system (BFN-QG and 4DVar-SW) filters out the 
component it is not supposed to reconstruct. This is reflected in the relatively 
high (closer to 1 than 0) scores reached in the independent scenarios.

The 4Dvar-SW technique can reconstruct a large part of the nonstationary part of ITs. Figure 5 shows snapshots 
of the stationary and nonstationary parts of the reference and estimated ITs fields. Stationary part has been ex-
tracted with an harmonic fitting of the signal over all the experimental window. Nonstationary part is obtained 
by subtracting the stationary part from the full ITs field. Eight seven percent of the stationary and 44% of the 
nonstationary ITs variances are recovered on average. For the nonstationary ITs fields, 4Dvar-SW captures 54% 
of the variance in the northern part of the domain, but only 28% in the southern part. This poor performance is 
attributed to the weakness of the nonstationary signal in the southern part (Figure 5, right column). Besides, some 
physical processes, such as ITs reflection on the turbulent jet, refraction by relative vorticity gradients and vertical 
shear (Dunphy et al., 2017; Olbers, 1981) may not be captured by 4Dvar-SW.

The spatial patterns of SSH 𝐴𝐴 ̂𝜂𝜂BM estimated by BFN-QG and the optimal equivalent depth 𝐴𝐴 𝐴𝐴opt
𝑒𝑒  obtained with 

4Dvar-SW share similarities together and with the reference equivalent depth, as illustrated on Figure 6. A nat-
ural improvement of the method would be to use 𝐴𝐴 ̂𝜂𝜂BM to estimate a background value 𝐴𝐴 𝐴𝐴b

𝑒𝑒  in the 4Dvar-SW to 
improve the ITs reconstruction. This would require to exploit the fact that He reflects the “large scale” baroclinic 
radius (LR) modified by the mesoscale eddies through modification of the stratification profile N(z) (Dunphy 
et al., 2017; Kelly & Lermusiaux, 2016). However, to do so, one would need a climatology of the stratification 
and, more critically, a knowledge of the vertical structure of the balanced flow, in order to convert SSH anoma-
lies to He. Reciprocally, 4DVar-SW could help refine the estimation of He and stratification, thus providing some 
information on the vertical structure of the balanced currents and on the ocean heat content (Zhao, 2016).

6.2. Sensitivity to the Observation Temporal Sampling

In this section we investigate the impact of the observation temporal sampling on the estimation of ITs and BMs. 
Thirteen time intervals Δtobs are tested, from 69 to 75 hr by increments of 30 min. The ITs period being T = 12 hr, 
the 6 hr-interval length corresponds to T/2 and the central 72 hr step corresponds to a multiple of T. For each Δtobs, 
we run an idealized, an independent and an joint experiments. The results are shown on Figure 7.

The ITs estimation is strongly degraded near Δtobs = 72 hr, which affects the reconstruction of BMs in the joint 
estimation. At Δtobs = 72 hr, ITs estimation scores are even negative in the joint and independent scenarios. This 
particular time interval presents a singularity and leads to an aliasing issue, since it observes only one phase of 
the wavefield and does not detect the wave propagation. The same occurs with multiples of T/2 (e.g., 66 and 78 hr, 
not shown here), when only two opposite phases of the wavefield are observed. Since the ITs component is not fil-
tered out by 4DVar-SW, the estimation of BMs by BFN-QG in the joint scenario is similar to the independent one.

Using the joint estimation algorithm mitigates the poor ITs reconstruction with time intervals near 72 hr. The ITs 
estimation scores with Δtobs = 71 hr or 73 hr are negative in the independent experiments, but exceed 0.6 in the 
joint experiments. This experiment suggests that specific temporal samplings of wide-swath altimeters (e.g., that 

Parameter Description Value

dt SW model timestep 1,200 s

θ Entry angles of incoming waves − π/2, 0, π/2

σ Gaussian space scale 150 km

τ Gaussian time scale 20 days

𝐴𝐴 𝐴𝐴b
𝑒𝑒 Background value for He 0.9 m

𝐴𝐴 𝐴𝐴b𝑒𝑒𝑒𝑒𝑒𝑒 Background value for ηext 0 m

𝐴𝐴 𝐴𝐴𝐻𝐻𝑒𝑒 Background error for He 0.2 m

𝐴𝐴 𝐴𝐴𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒 Background error for ηext 0.001 m

R Observational error 0.01 m or 0.1 m

Note. As the covariance matrix (B and R) are diagonal, only standard 
deviations are given.

Table 2 
4Dvar-SW Parameters
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Figure 4. Performances of the estimation of balanced motions (top) and internal tides (bottom). For each class of motion, snapshots at the first, the second, and the 
tenth iterations are shown. The evolution of the scores for the joint (solid blue curve), idealized (dash red curve) and independent (dash black curve) scenarios are 
plotted in function of the iterations of the joint estimation algorithm.
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of SWOT) will be key to a good BMs/ITs separation, and that the joint estimation algorithm can mitigate (but not 
rule out) the bad consequences of an inappropriate temporal sampling.

7. Conclusions
In this study, we have presented an alternating minimization algorithm to simultaneously and dynamically map 
and separate ITs and BMs signals from 2D altimetric observations. Two data assimilation techniques are used 
in an iterative process to estimate both signals: BMs are reconstructed by the BFN-QG algorithm while ITs are 
reconstructed by the 4Dvar-SW algorithm. At any given iteration, the assimilated observations used to map one 
signal are made of the difference between the full observation (containing both signals) and the previous estima-
tion of the other signal. The use of the 4Dvar-SW algorithm for ITs reconstruction allows to map (i.e., estimate in 
magnitude and phase) both stationary and nonstationary ITs signals which is not obvious with other conventional 
separation methods such as harmonic analyses.

Figure 5. Sea surface height snapshots of the internal tides (ITs) field from the reference (top) and the reconstruction by the joint estimation algorithm (bottom). The 
full ITs signal (left) is decomposed in the stationary (middle) and nonstationary (right) components.
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The joint estimation of BMs and ITs has been tested in an idealized context, with a true state of the ocean and 
artificial observations extracted from a numerical simulation that propagates a mode-one internal tide through a 
turbulent quasigeostrophic jet. This numerical experiment aims at illustrating the feasibility of this approach in a 
simplified context and should constitute a step closer to the processing of wide-swath altimetry data.

The results show that the joint estimation allows to simultaneously separate and estimate 78% and 75% of the 
BMs and ITs variance, respectively. The remaining variance is interpreted as being due to non resolved dynamics 
by the QG and SW models.

A sensitivity study of the observational temporal sampling has also been performed and shows that an unfortunate 
temporal sampling of the observations can be detrimental to the joint estimation performances. In particular, the 
performances of the ITs reconstruction are considerably reduced when the time step between two consecutive 
observations is a multiple of half the ITs time period T/2. Fortunately, it turns out that this situation is singular for 
non sun-synchronous orbits, meaning that a slight shift from a multiple of T/2 in the observation time sampling 
ensures good performances again.

Although the results of the observational temporal sampling sensitivity study are encouraging, future work should 
investigate the method applied to a realistic observational sampling, such as SWOT. One of the major next steps 
will be to assess the potential of the method with spatially sparse observations. An interesting avenue to improve 
the method in that context could be to use additional information, such as conventional nadir data, to ensure the 
joint estimation method convergence hence improving the reconstructions.

Another crucial step towards operational SSH mapping will be to experiment on a more realistic ocean simula-
tion, with multiple tidal components and harmonics in constant interaction. To allow the 4Dvar-SW to efficiently 
extract ITs signal from realistic SSH data, some technical improvement may be needed. Source terms, that gen-
erate ITs signal inside the study domain, may have to be implemented and controlled by the assimilation to map 
ITs signals around generation sites (located at ocean ridge and sea mounts for instance). One can also think of 
improving the resolved dynamics by including higher baroclinic modes. Finally, it may be needed to add interac-
tion terms between BMs and ITs in the shallow water equations (as described in Kelly & Lermusiaux, 2016) to 
correctly estimate complex ITs field. For that last remark, one first strategy would be to estimate a background 
term of He from the reconstruction of BMs.

Figure 6. Left: balanced motions sea surface height reconstructed by BFN-QG in the joint estimation algorithm. Middle: reference He computed from the 3D fields of 
the reference simulation. Right: He estimated by 4Dvar-SW in the joint estimation algorithm.
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Data Availability Statement
Data used in this paper can be downloaded here: https://ige-meom-opendap.univ-grenoble-alpes.fr/thredds/file-
Server/meomopendap/extract/LeGuillou/data_BM-IT_idealized.tar.gz. The numerical codes of the algorithms 
described in this paper can be found here: https://github.com/leguillf/MASSH.

Figure 7. Performances of the joint estimation algorithm in function of the observation temporal sampling.

https://ige-meom-opendap.univ-grenoble-alpes.fr/thredds/fileServer/meomopendap/extract/LeGuillou/data_BM-IT_idealized.tar.gz
https://ige-meom-opendap.univ-grenoble-alpes.fr/thredds/fileServer/meomopendap/extract/LeGuillou/data_BM-IT_idealized.tar.gz
https://github.com/leguillf/MASSH
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