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A B S T R A C T
This paper presents a study of the influence of the radiation transfer on the thermal conductivity measurement
in a parallel hot-wire method at high temperature. Simulations of the temperature evolution are first carried out
with COMSOL Multiphysics® using the coupled conduction–radiation module based on the P1 approximation
for the radiation calculation. A wide range of conditions were investigated: a low and a high density insulator
were considered with various radiation characteristics (purely scattering, absorbing and scattering, purely
absorbing) and with temperature varying up to 1500 °C. This study enables the determination of the validity
limit of the modeling of the temperature by a purely conductive model with an equivalent conductivity based
on the Rosseland approximation. When this assumption is valid, a new estimation process was proposed to
improve the estimation accuracy of the thermal properties. A calibration process of the distance between the
hot-wire and the thermocouple has also been proposed and validated, enabling a more accurate estimation of
the volume heat capacity.

An experimental study carried out on three insulating materials with densities ranging from 581 kg m−3

to 910 kg m−3 and at temperatures ranging from 20 °C to 1200 °C confirms the results of the theoretical study.
Finally, a method enabling the estimation of the extinction coefficient from thermal conductivity measurements
at various temperatures is presented and successfully applied to the three tested materials.

1. Introduction

As previously pointed out in [1], knowledge of the thermal conduc-
tivity of high temperature insulating materials is of great importance
for the control of industrial processes. It has also been stated that the
parallel hot-wire method is one of the most suitable method to measure
the thermal conductivity at high temperature [1,2], moreover it is a
standardized method [3]. Some recent developments in the modeling
of this method have led to a better accuracy of the measurement [1,3].
Nevertheless, the estimation process is more often based on a purely
conductive model, considering an equivalent thermal conductivity that
is the sum of the thermal conductivity due to conduction and of the
radiative thermal conductivity [1–6]. This approximation holds true for
optically thick media.

Some authors investigated the effect of radiation heat transfer with-
out making this assumption. Ebert and Fricke [7] simulated the heat
transfer in a hot-wire measurement with a one dimensional coupled
conduction–radiation model valid only for optically thick media. The
radiation emitted by the heating wire was also neglected. Their the-
oretical study showed that the hot-wire method is applicable only

∗ Corresponding author at: Université de Lorraine, CNRS, LEMTA, F-54500 Vandœuvre-lès-Nancy, France.
E-mail address: lea.penazzi@univ-lorraine.fr (L. Penazzi).

if the extinction coefficient exceeds a critical value. Gross and Tran
[8] simulated the heat transfer in a hot-wire measurement with a
one dimensional coupled conduction–radiation model solved by the
discrete ordinates method. They showed that this critical value in-
creases with the temperature. The influence of the proportion of dif-
fusion/absorption in the extinction coefficient was not addressed in
their theoretical study. Coquard et al. [9] developed a two dimensional
coupled conduction–radiation model solved by the discrete ordinates
method. They used it to study the accuracy of the estimation of the
thermal conductivity by the hot-wire method, they highlighted the
estimation bias for materials of low density or low optical thickness.
Nevertheless, the study was applied to only one material (an EPS foam)
and at ambient temperature. Daouas et al. [10] simulated the heat
transfer in a parallel hot wire measurement with a one dimensional
coupled conduction–radiation model solved by the discrete ordinates
method. A sensitivity study showed the possibility of estimating the
absorption coefficient in addition to the thermal parameters. How-
ever, the study was performed at room temperature on a very weakly
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Nomenclature

Greek Symbols
𝛽 Extinction coefficient (m−1)
𝜆 Thermal conductivity of the considered

material (W m−1 K−1)
𝛺 Solid angle (sr)
𝜙 Heat flux density (W m−2)
𝜌 Density of the material (kg m−3)
𝜎 Stefan–Boltzmann constant (W m−2 K−4)
𝜏 Optical thickness (–)
𝜃 Laplace transform of 𝑇 (𝑑, 𝑡)
𝜀 Emissivity (–)
𝜑w Linear heat flux produced by the heating

wire (W m−1)
𝝎 Direction (–)
Latin Symbols
 Radiant intensity (W m−2 sr−1)
𝒏 Outward unit direction on the surface (–)
𝑎 Thermal diffusivity of the isotropic mate-

rial (m2 s−1)
𝑐 Heat capacity of the material (J kg−1 K−1)
𝑑 Distance between the heating wire and the

thermocouple (m)
𝐺 Incident radiation (W m−2)
𝐼 Electrical intensity passing through the

heating wire (A)
𝑘a Absorption coefficient (m−1)
𝑘s Scattering coefficient (m−1)
𝐾𝑖 Modified Bessel functions of the second

kind 𝑖 ∈ {0; 1}
𝑙w Length of the heating wire (m)
𝑁 Stark number (–)
𝑛 Refractive index (–)
𝑃 Phase function (–)
𝑝 Laplace parameter (s−1)
𝑄r Radiative heat source (W m−3)
𝑅 Thermal contact resistance between the

heating wire and the sample (K W−1)
𝑟w Radius of the heating wire (m)
𝑅el Electrical resistance of the heating wire (Ω)
𝑇 Temperature (K)
𝑈 Voltage at the heating wire terminals (V)
Subscripts

c Relating to the conductive transfer (–)
r Relating to the radiative transfer (–)
w Relating to the hot wire (–)
exp Relating to the experimentation (–)
mod Relating to the modeling (–)

absorbing and non-scattering material. Zhang et al. [11] performed
a numerical study simulating the coupled conduction–radiation heat
transfer in a purely absorbing medium in both cases of hot-wire and
parallel hot-wire measurements with discrete ordinates method. The
numerical analysis shows that the thermal conductivity of insulated
material with low extinction coefficient measured by hot-wire device is
overestimated at high temperature. However, the study was conducted

on only one material with unique density and thermal conductivity. The
chosen thermal conductivity value was very low (𝜆 = 0.02W m−1 K−1)
and the maximum temperature does not exceed 1000 °Celsius.

The purpose of this study is to establish the conditions under which
the temperature evolution in a parallel hot-wire measurement can be
correctly represented by a pure conductive model using an effective
thermal conductivity. A theoretical study using the P1 approximation
method implemented in COMSOL Multiphysics® will be performed
for temperatures ranging from ambient to 1500 °C, for both absorbing
and scattering media and for several densities, extending the range of
materials and temperatures of the previous studies. When the purely
conductive model applies, a new estimation method is proposed that
improves both thermal conductivity and thermal capacity estimations.
A calibration process of the distance between the hot wire and the
thermocouple will also be proposed, enabling a more accurate estima-
tion of the volumetric heat capacity. The results will be supported by
an experimental study carried out on three insulating materials with
densities ranging from 581 kg m−3 to 910 kg m−3 and at temperatures
ranging from 20 °C to 1200 °C. Finally, a method enabling the estimation
of the extinction coefficient from thermal conductivity measurements at
various temperatures is presented and successfully applied to the three
tested materials.

2. Principle and models

2.1. Principle

The schematic diagram of the classical parallel hot-wire set-up is
presented in Fig. 1. A resistive heating wire with a radius 𝑟w is inserted
in a groove placed on the surface of the bottom sample. A thermocouple
is inserted in another groove placed at the surface of the same sample
at distance 𝑑 of the heating wire. A second sample with the same
dimensions as the bottom sample is then placed on top of it. A constant
heat flow rate is then imposed in the heating wire by passing an
electrical current with a constant intensity 𝐼 . The equations of the
system are:
⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜌𝑐 𝜕𝑇
𝜕𝑟𝑡

= 𝛁 ⋅ (𝜆c𝛁𝑇 ) (a)
𝑇 (𝑟, 0) = 0 (b)
lim
𝑟→∞

𝑇 (𝑟, 0) = 0 (c)

𝜑𝑤 = 𝜌w𝑐w𝜋𝑟2w
𝜕𝑇w
𝜕𝑡

+
𝑇w − 𝑇 (𝑟w)

𝑅𝑙w
(d)

(1)

A complete model of the system can be found in [1], it is based on
the following hypotheses:

• The samples are infinite in the 𝑂𝑥 and 𝑂𝑧 directions (semi-infinite
medium hypothesis).

• There is no temperature gradient along the 𝑂𝑦 direction (‘‘long
wire’’).

• The heat flow rate 𝜑w produced in the heating wire is constant.
• The mass of the thermocouple is negligible.
• Radiation heat transfer is negligible or may be represented by an
effective thermal conductivity.

Jannot and Degiovanni [1] established the following expression for
the Laplace transform of the thermocouple temperature:
𝜃(𝑑, 𝑝)

=

𝜑w
𝑝𝑙w

𝐾0(
√

𝑝
𝑎
𝑑)

𝜌w𝑐w𝜋𝑟2w𝑝𝐾0

(√
𝑝
𝑎
𝑟w

)
+ 2𝜋𝜆c

√
𝑝
𝑎
𝑟w

[
1 + 𝜌w𝑐w𝜋𝑟w2𝑝𝑅𝑙w

]
𝐾1

(√
𝑝
𝑎
𝑟w

)

(2)
The temperature rise 𝑇 (𝑑, 𝑡) is calculated by applying an inverse

Laplace transform to (2) using the De Hoog algorithm [12].
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Fig. 1. Schematic view of a parallel hot-wire set-up.

2.2. General equations

It is assumed here that the medium is gray. The coupled conduc-
tion and radiation heat transfer in transient hot-wire measurements is
described by the following energy balance:
𝜌𝑐 𝜕𝑇

𝜕𝑡
= −𝛁 ⋅ (𝜙𝜙𝜙c +𝜙𝜙𝜙r) (3)

Where 𝜙𝜙𝜙c is the conductive heat flux given by (4) and 𝜙𝜙𝜙r is the
radiative flux given by (4).
{

𝜙c = −𝜆c
𝜕𝑇
𝜕r (a)

𝛁 ⋅𝜙𝜙𝜙r = 4𝑘a𝑛2𝜎𝑇 4 − 𝑘a ∫4𝜋  (𝝎) d𝛺 (b) (4)

(𝝎) is the radiant intensity in the 𝝎 direction given by the radiative
transfer equation (RTE) (Eq. (5)):
𝜕 (𝝎)
𝜕𝑠

= −
(
𝑘a + 𝑘s

) (𝝎) + 𝑘a 𝑛2𝜎𝑇 4

+
𝑘s
4𝜋 ∫4𝜋  (

𝝎′)𝑃 (
𝝎′ → 𝝎

)
d𝛺′ (5)

Where 𝑘a is the absorption coefficient, 𝑘s, the scattering coefficient,
𝑛, the refractive index and 𝜎 is the Stefan–Boltzmann constant.

2.3. Model M1: P1 approximation

The P1 approximation, corresponding to a spherical harmonics
method (PN) truncated at the first order, enables solving the RTE
presented in (5). The P1 approximation relies on the assumption that
the scattering is linear isotropic [13]. This assumption is justified in this
present configuration as the medium is optically thick, 𝜏 ≫ 1, where 𝜏 is
the optical thickness defined by the integral of the extinction coefficient
𝛽 along a typical optical path 𝜏 = ∫ 𝑠

0 𝛽d𝑠.
From a computational point of view this approximation has a lim-

ited impact because it introduces only one additional degree of freedom
for the incident radiation 𝐺 (W m−2), which is a scalar quantity and
adds a heat source or sink to the temperature equation to account for
radiative heat transfer contributions. This method, however, fails to
accurately represent cases where the radiative intensity propagation
dominates over its diffusivity or where the scattering effects cannot be
described by a linear isotropic phase function. The P1 approximation is
a simplified approach, which is expected to be fairly good for absorbing
and highly scattering media at large optical distances from boundaries
or interfaces that have a strong variation of temperature and radiative
characteristics of the medium [14]. The P1 approximation solves the
RTE equation, expressed in (5), by solving the following equation:
𝛁 ⋅ (−𝐷𝑃1𝛁𝐺) = −𝑄r (6)
where 𝐺 is the incident radiation (Eq. (7)), 𝐷𝑃1 is the P1 diffusion
coefficient in the case of an isotropic diffusion (Eq. (7)) and 𝑄r is the

radiative volumetric heat source (Eq. (7)).
⎧
⎪⎨⎪⎩

𝐺 = ∫ 4𝜋
0  (𝝎) d𝛺 (a)

𝐷𝑃1 =
1

3𝑘a + 3𝑘s
(b)

𝑄r = 𝛁 ⋅𝜙𝜙𝜙r = 𝑘a(𝐺 − 4𝑘a 𝑛2𝜎𝑇 4) (c)
(7)

Regarding the boundary conditions, at the hot wire surface, ther-
mocouples surfaces and sample external surfaces are considered as
opaque surfaces. The following equation accounts for the radiation
emitted/absorbed by the boundaries and is known as the Marshak’s
boundary condition [15]:
𝒏 ⋅

(
−𝐷𝑃1𝛁𝐺

)
= 𝜙r,net (8)

Where 𝜙r,net is the net radiative heat flux at the boundary and 𝒏
the outward unit direction on the surface. In the following simulations,
surfaces of the hot wire, thermocouples and the external surface of the
sample were considered gray with an approximate common emissivity
value of 𝜀 = 0.8. The net radiative heat flux is then expressed as follows:

𝜙r,net =
𝜀

2(2 − 𝜀)
(4𝑛2𝜎𝑇 4 − 𝐺) (9)

2.4. Model M2: Rosseland approximation

If the medium is gray and optically thick, the radiative flux diver-
gence is expressed as follows:
𝜙r = −𝜆r

𝜕𝑇
𝜕𝑟

(10)
With the expression of the radiative thermal conductivity [16]:

𝜆r(𝑇 ) = 16
3

𝑛2𝜎 𝑇 3

𝛽
(11)

where 𝛽 is the extinction coefficient of the medium given by 𝛽 =
𝑘a + 𝑘s. We are thus brought back to a pure conduction problem with
an effective conductivity 𝜆 = 𝜆c + 𝜆r.

3. Materials and experimental device

An experimental study was carried out to confirm the theoret-
ical results. Measurements were undertaken on an isotropic mate-
rial: SilPower® (Saint-Gobain Quartz) with three different densities:
581, 741 and 910 kg m−3 referenced respectively as SG, MG and HG.
SilPower®Rigid Silica is a high performance infra-red reflector obtained
from Quartzel® fibers having an SiO2 content ≥ 99.95% (Saint-Gobain,
2021).

The dimensions of the samples are 230 × 120 × 60 mm3 as recom-
mended by the standard ISO 8894-2:2007. The parallel hot-wire (PHW)
measurements were conducted at 20, 200, 400, 600, 800, 1000 and
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Fig. 2. Schematic view of the measurement set-up.

1200°C. Three experiments were carried out for each temperature and
for each density. Fig. 2 presents a schematic view of the measurement
set-up. The heating wire made of Nickel–Chrome 80/20 has a diameter
of 0.5mm and it is inserted in a groove with a 0.5 × 0.5mm2 section.
The groove with the same length as the sample was machined in the
middle of one face of the sample.

To study the influence of the distance between the heating wire and
the thermocouple, the temperature rise was measured at two locations,
respectively at 𝑑1 ≈10mm and 𝑑2 ≈15mm from the heating wire. The
temperature measurements were carried out with two type 𝑁 sheath
thermocouples with an outer diameter of 0.5mm, inserted in grooves
with a 0.5 × 0.5mm2 section machined on the half-length of the sample
in order to measure the temperature at the center. The temperature
is recorded with 0.1 s time step by a data logger Picolog TC08. The
standard deviation of the temperature measurement is 0.01 °C before
heating.

The device was placed in an electric fusing kiln (Vecstar furnace)
equipped with a temperature controller (Watlow EZ-Zone) ensuring a
very good temperature stability inside the kiln (±1 °C).

Two wires were point-welded on the heating wire with a distance
𝑙w = 235mm between the two weldings (see Fig. 2). These wires were
connected to a voltmeter (Almemo 2890-9) to measure the electrical
voltage 𝑈 between the two points. A stabilized power supply (Tektronix
PWS2185) produces an electrical current with a constant intensity 𝐼
passing through the wire. These measurements allow the calculation
of the electrical resistance per meter of the heating wire with the
following formula:
𝑅el
𝑙w

= 𝑈
𝐼𝑙w

(12)

4. Estimation method

In previous works [1,3], the Levenberg–Marquardt algorithm [17]
was used to find the values of the unknown parameters 𝜆, 𝜌𝑐 and 𝑅 that
minimize the sum of the quadratic errors:

𝑆 =
𝑁∑
𝑛=1

[
𝑇exp(𝑑, 𝑡) − 𝑇mod(𝑑, 𝑡)

]2 (13)

Where 𝑇mod is calculated by inverse Laplace transform of (2). Us-
ing this estimation method, it was found that the estimated values
of the thermal contact resistance 𝑅 become negative when the tem-
perature increases which does not make any physical sense. As an

example, Fig. 3(a) represents: the experimental curve and the model
curve plotted with the triplet (𝜆, 𝜌𝑐,𝑅) of the estimated values and the
residuals (multiplied by 10 for a better reading) for an experiment on
the SilPower®SG at 600 °C for which the estimation over the interval
[100 s, 900 s] led to the value 𝑅 = −5.8 K ⋅ W−1. It can be seen that
the estimation residuals are perfectly flat over the estimation interval
which means that from 100 s onwards, the Rosseland assumption is
verified, hence, in this case, the use of the model is validated. Between
0 s and 100 s (see Fig. 3(b)), the experimental temperature is higher
than the model temperature which means that the heat flux transmitted
by radiation is higher than that predicted by the model. The negative
value of the contact resistance compensates for this model bias and
thus has the effect of shifting the temperature so that is obtained
𝑇exp(100s) = 𝑇mod(100s). However, it has another undesirable effect
illustrated in Fig. 4, which depicts the reduced temperature sensitivity
to the contact resistance for different values of the contact resistance.
The value 𝑅 = 2 K ⋅ W−1 is an average value consistent with those
obtained from COMSOL Multiphysics® simulations of our device. We
can see that the sensitivity to 𝑅 which varies little with the value
𝑅 = 2 K ⋅ W−1 varies significantly for strongly negative values of 𝑅.
We will show that this can create an estimation bias on the values of 𝜆
and 𝜌𝑐.

To do so, we performed a simulation based on Eq. (2) with the
estimated values 𝜆 = 0.22 W m−1 K−1 and 𝜌𝑐 = 6.11 × 105 J m−3 K−1

and considering 𝑅 = 2 K W−1, and then we added to the result a
constant value 𝑇0. This 𝑇0 value thus represents the contribution of
radiation between 0 and 100 s not taken into account by the Rosseland
model.

Two estimation methods were then applied to this curve over the
interval [100 s, 800 s]:

• An estimation E1 of (𝜆, 𝜌𝑐,𝑅) as described above.
• An estimation E2 of (𝜆, 𝜌𝑐, 𝑇1) by calculating the temperature from
the (2), considering 𝑅 = 0 K ⋅ W−1 and adding a constant value
𝑇1 𝑇0 that is:

𝑇 (𝑑, 𝑡) = −1
⎡⎢⎢⎢⎣

𝜑w
𝑝𝐿

𝐾0

( 𝑝
𝑎
𝑑
)

𝜌w𝑐w𝜋𝑟w2𝑝𝐾0

( 𝑝
𝑎
𝑟w

)
+ 2𝜋𝜆 𝑝

𝑎
𝑟w𝐾1

(
𝑟
𝑝
𝑎w

)
⎤⎥⎥⎥⎦
+ 𝑇1𝑇0

(14)
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Fig. 3. Experimental and simulated curves with estimation residuals ×10 for an experiment with SilPower®SG at 600 °C.

Fig. 4. Reduced sensitivity of the temperature according to thermal contact resistance
𝑅 values (𝜆 = 0.22 W m−1 K−1; 𝜌𝑐 = 6.11 × 105 J m−3 ⋅ K−1).

Where −1 is the operator of the inverse Laplace transform. 𝑇0 and
𝑇1 both stand for the contribution of radiation between 0 and 100s. For
the sake of rigor though, these values have been differentiated since 𝑇0
represents the value added to the preceding equation and 𝑇1 represents
the estimated value of 𝑇0 with the E2 estimation method. Furthermore,
one may state that due to the larger contribution of radiative heat
transfer at high temperature, the contact resistance 𝑅 is greatly reduced
to approximately zero.

Table 1 shows the estimation results for different values of 𝑇0. It can
be observed that the E2 estimation method leads to a constant error of
0.7% on 𝜆 and a negligible error on 𝜌𝑐. The E1 method leads to a small
estimation error on 𝜆 (less than 1% if 𝑇0 < 0.75 °C) but a large error on
𝜌𝑐 that increases with 𝑇0. We therefore treated the experimental curves
using the E2 estimation method and choosing an estimation interval
such that the residuals are flat and centered on zero over this interval.

5. Validity of the rosseland approximation

To determine the validity limits of Rosseland approximation in the
case of the parallel hot-wire method, we performed simulations us-
ing the COMSOL Multiphysics® coupled conduction–radiation transfer
solver based on the approximate model P1 [18].

Conduction is modeled with the energy balance equation with a
radiative source term (Eqs. (6) to (8)). The radiative source term is
modeled with the P1 approximation (Eqs. (11) to (15)). The solution
of the transient coupled conduction and radiation equations is solved
iteratively by the Finite Element method (FEM). Solid domains formed
by the hot wire, the two thermocouples and the sample are meshed

Table 1
Estimated values of the parameters by the two methods E1 and E2 for different values
of the temperature step due to radiation between 0 s to 100 s with 𝜆 = 0.22W m−1 K−1,
𝜌𝑐 = 6.11 × 105 J m−3 K−1.

T0 °C 0 0.25 0.5 0.75 1.0 1.25 1.5

E1
𝜆 W m−1 K−1 0.220 0.219 0.219 0.218 0.217 0.217 0.216
𝜌𝑐 (×105) J m−3 K−1 6.11 5.91 5.72 5.55 5.36 5.18 5.01
𝑅 K W−1 2.0 −4.0 −9.8 −15.4 −20.8 −26.0 −31.3

E2
𝜆 W m−1 K−1 0.219
𝜌𝑐 (×105) J m−3 K−1 6.11
𝑇1 °C −0.02 0.23 0.48 0.73 0.98 1.23 1.48

with 4974 unstructured tetrahedrals. The maximum size of an element
size is 6.36 × 10−3 m and the minimum size of an element is 3.6 × 10−5 m.
The mesh is automatically created and adapted for the model’s physics
settings. The time dependency in the FEM is solved by an implicit BDF
(Backward Differentiation Formula) method. This implicit solver uses
an backward differentiation formulas with order of accuracy varying
from one (also known as the backward Euler method) to two. The time
step used for the simulation is 0.1 s.

We first compared the solutions given by COMSOL Multiphysics® with
the exact solution in two asymptotic cases where an analytical solution
exists as proposed by Gross and Tran [8]:

(1) The case where the extinction coefficient is very large (𝑘a =
𝑘s = 108 m−1), the temperature evolves as in the case of a purely
conductive transfer because 𝜆r = 0 W ⋅m−1 ⋅ K−1.

(2) The case where the material is completely transparent (𝑘a = 𝑘s =
0 m−1) with perfectly opaque and reflecting surfaces (the heating
wire, thermocouple and external border of the sample with 𝜖 = 0)
( non-participant medium).

The geometry considered is a cylinder with an external diameter of
50mm heated uniformly on its internal diameter of 0.5mm, both sur-
faces being opaque and insulated, and the initial uniform temperature
being equal to 1000 °C.

As an example, Fig. 5(a) represents the case of the transparent
material the curves of the temperature at a distance 𝑑 = 15mm from
the heating wire, obtained with COMSOL Multiphysics®on the one
hand and with the exact analytical model on the other hand for the
following values of the parameters: 𝜆c = 0.5 W ⋅m−1 ⋅ K−1, 𝜌𝑐 =
106 J ⋅m−3 ⋅ K−1. The curves are in very good agreement and estimates
made from the curves simulated with COMSOL Multiphysics®using the
ISO 8894-2:2007 method [2] lead to values of 𝜆 that differ by less than
0.5% from the nominal value as shown in Fig. 5(b). The ISO 8894-
2:2007 method [2] was detailed in a previous paper [1], it recommends
the estimation for values of the ratio 𝑇 (2𝑡)∕𝑇 (𝑡) between 1.5 and 2.4,
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Fig. 5. (a) - Temperature curves simulated with COMSOL Multiphysics® and with the exact analytical model (𝜆c = 0.5 W m−1 K−1; 𝑘a = 𝑘s = 0 m−1) ; (b) - Estimated values of 𝜆
by processing the COMSOL Multiphysics®curve with the standard method ISO 8894-2:2007.

in the presented case the validity limit of the semi-infinite medium
assumption reduces this interval to [1.7, 2.4]. The results obtained in
the case where the extinction coefficient is very large are similar.

After this validation phase, we performed simulations with COMSOL
Multiphysics®of the experimental setup shown in Fig. 6. For each
simulation, the temperatures of the heating wire and of the two ther-
mocouples placed respectively at 10mm and 15mm from the heating
wire were recorded.

Preliminary tests were carried out in order to ensure the simula-
tions results independence to temporal and spatial discretization. The
simulations were performed between 0 s to 1000 s:

• For two temperatures: 1000 °C and 1500 °C.
• For two typical materials: a low density thermal insulating mate-
rial (𝜆c = 0.1 W ⋅m−1 ⋅ K−1 and 𝜌𝑐 = 2.5 × 105 J ⋅m−3 ⋅ K−1) and a
high density thermal insulating material (𝜆c = 0.5 W ⋅m−1 ⋅ K−1

and 𝜌𝑐 = 106 J ⋅m−3 ⋅ K−1).
• For four values of the extinction coefficient 𝛽, ie 500m−1, 1000m−1,
5000m−1 and 10 000m−1 and for each value of 𝛽 the following
three values of 𝑘a were considered: 𝑘a = 0.0001×𝛽; 0.5×𝛽; 𝛽 (with
𝑘s = 𝛽 − 𝑘a). The extreme cases correspond respectively to pure
scattering and pure absorption.

The absorption coefficient was not chosen equal to zero because it
has been shown [19] that in this case the radiative transfer could be
represented by a parallel resistance between the two surfaces, which
would invalidate the semi-infinite medium hypothesis even at short
times. We chose a minimum value equal to 0.0001 × 𝛽.

The refractive index of the medium was chosen equal to unity and
the emissivities of the wire and of the thermocouples equal to 0.8. The
thermal properties of the heating wire and thermocouple are those of
a stainless steel: 𝜆 = 11 W ⋅m−1 ⋅ K−1 and 𝜌𝑐 = 3.7 × 106 J ⋅m−3 ⋅ K−1.
The outer surface of the sample was assumed to be opaque, black and
insulated.

The temperature curves obtained for the two thermocouples were
treated as numerical experiments to estimate the values of the pa-
rameters 𝜆est, 𝜌𝑐est and 𝑇1, using the E2 estimation method described
previously. The time interval over which the estimation was performed
was adjusted for each curve to obtain flat and zero-centered estimation
residuals over this interval. The estimated value 𝜆est was then compared
to the effective conductivity calculated by:

𝜆 = 𝜆c +
16
3

𝜎𝑇
3

𝛽
(15)

Where 𝜆c is the phonic conductivity used in the COMSOL Multiphy-
sics® simulation 𝛽 is the extinction coefficient, and 𝑇 is the average

temperature of the measurement point as recommended by Gross and
Tran [8]. The estimated value 𝜌𝑐est was also compared to the nominal
value 𝜌𝑐. The analysis of all the results showed that there is no signif-
icant difference between the values estimated with 𝑑1 = 10mm and
those estimated with 𝑑2 = 15mm. Fig. 7 shows the relative deviations
between the values of effective conductivity 𝜆est estimated from the
temperature at 15mm and the nominal values calculated by (15) as a
function of the Stark number defined by Viskanta [20] and Cintolesi
et al. [21] and presented in (16):

𝑁 =
𝛽𝜆c

4𝜎𝑇
3 (16)

It is proportional to the ratio of the thermal conductivity 𝜆 to the
radiative conductivity 𝜆r.

Fig. 7(a) shows that in the case of the PHW method for the estima-
tion error to be less than 2% it is necessary that:

• 𝑁 > 0.1 in the case of an absorbing and scattering material, see
Fig. 7(a).

• 𝑁 > 2 in the case of a purely scattering material, this limit value
can be lower for materials of low thermal conductivity (𝑁 > 0.8
for 𝜆 = 0.1 W ⋅m−1 ⋅ K−1 for example), see Fig. 7(b).

Fig. 8 shows the relative deviations between the values of the
volumetric heat capacity estimated from the 15mm measurement and
the nominal values as a function of the Stark number. It shows that for
the estimation error to be less than 2% it is necessary that 𝑁 > 0.5 in
the case of an absorbing and scattering material, see Fig. 8(a). In the
case of a purely scattering material, the Stark number must be greater
than 10 for the accuracy to be better than 5%.

It should also be noted that the estimation time interval decreases
when the extinction coefficient decreases and this is all the more so
as the share of scattering is large. On the one hand the time required
for radiation to be well taken into account by a conductive model with
effective thermal conductivity increases, and on the other hand, the
increase of the effective thermal conductivity when the extinction co-
efficient 𝛽 decreases makes the assumption of the semi-infinite medium
less valid. As an example, the estimation interval for the high density
thermal insulating material varies from 0 s to 1000 s for 𝛽 = 10000 at
𝑇 = 1000 °C to 80 s to 250 s for 𝛽 = 500 at 𝑇 = 1500 °C.

6. Results and discussion

6.1. Distance calibration

The main source of uncertainty in the estimation of the volumetric
heat capacity is the uncertainty in the distance 𝑑 between the heating
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Fig. 6. Diagram of the modeled system with 𝑑1 = 10mm and 𝑑2 = 15mm.

Fig. 7. Relative deviation
(
𝛥𝜆
𝜆

= 𝜆est−𝜆nom
𝜆nom

)
between the effective conductivity values (𝜆est) estimated from the 15mm PHW measurements and the nominal values (𝜆nom = 𝜆c + 𝜆r)

as a function of the Stark number in (a) the absorption–diffusion case and (b) the pure scattering case.

Fig. 8. Relative deviation
(
𝛥𝜌𝑐
𝜌𝑐

= 𝜌𝑐est−𝜌𝑐0
𝜌𝑐0

)
between the volumetric heat capacities values estimated (𝜌𝑐est) from the 15mm PHW measurements and the nominal values (𝜌𝑐0) as a

function of the Stark number in (a) the absorption–diffusion case and (b) the pure scattering case.
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Fig. 9. (a) - Estimated values of the effective thermal conductivity ; (b) - Estimated values of the specific heat and values given by Brückner [22]. (SG: Standard density, MG:
Medium density, HG: High density).

wire and the thermocouple. The uncertainty on this distance is of the
order of 0.5mm given the brittleness of the materials in which the
grooves are made. For a distance 𝑑 = 10mm, an uncertainty of 0.5mm
leads to uncertainties of respectively 5% on the distance 𝑑 and 10% on
𝜌𝑐 [3]. To reduce this uncertainty, we performed three parallel hot-wire
experiments at 20 °C for each of the 3 SilPower® samples which specific
heat at 20 °C was measured by differential scanning calorimetry using
the Setaram 𝜇dSc3 apparatus and we obtained: 𝑐 = 760 J−1kg−1K−1. The
accuracy of the measurement is estimated at 2%. These experimental
curves were used to estimate the unknown parameters 𝜆, 𝑑 and 𝑅
considering the known value of 𝜌𝑐.

The results are presented in Table 2. A very good reproducibility
of the measurements is observed. It is also observed that the deviation
between the estimated values and the nominal values (𝑑nom,1 =10mm
and 𝑑nom,2 =15mm) can reach 5%. Since the uncertainty on 𝜌𝑐 is mainly
due to the error on 𝑑, the estimation error on 𝜌𝑐 is reduced to the uncer-
tainty on the reference value used to estimate the distances, i.e. about
2%. The accuracy of the estimate is thus significantly improved.

6.2. Measurements on silpower®

The estimated values of 𝑑1 and 𝑑2 were then used to estimate 𝜆,
𝜌𝑐 and 𝑅 for the experiments performed between 200 °C to 1200 °C.
Consistent with the results of the theoretical study, the values of 𝜆 and
𝜌𝑐 estimated with the measured temperatures at distances 𝑑1 and 𝑑2
from the heating wire were almost identical. The average deviation
observed for 𝜆 is 1.6% and that for 𝜌𝑐 is 2.1%. The results obtained
for 𝜆 and 𝜌𝑐 are shown in Figs. 9(a) and 9(b) respectively. The points
correspond to the average of the 6 measurements performed (3 for each
distance) and the bars represent the standard deviations of these groups
of 6 points. The 21 standard deviations on 𝜌𝑐 calculated each on 6
measurements were all less than 5% with an average of 2.6% which
demonstrates the effectiveness of the distance calibration procedure.

The values of thermal conductivity increase as expected with tem-
perature and with density. The values of the specific heat 𝑐 are close
for the three materials, which is logical given that they have the
same composition. These values are also very close to those measured
by Brückner for silica up to 600 °C [22] also shown in Fig. 9. For
temperatures above 800 °C, the difference between our values and
those of Brückner increases with temperature, these differences will be
explained later after the extinction coefficients of the different grades
have been estimated.

Fig. 10 shows the experimental and model curves from the esti-
mated values as well as the estimation residuals ×10 for the SilPower®SG
at 20 °C and at 1200 °C for the measurement at 𝑑 = 10mm. It can be

Table 2
Estimated values of SilPower®thermal conductivity and heating wire–thermocouple
distances at 20 °C.

N◦exp 𝜆 d1
𝑑1−𝑑nom,1
𝑑nom,1

𝜆 d2
𝑑2−𝑑nom,2
𝑑nom,2

W m−1 K−1 mm % W m−1 K−1 mm %

𝜌 = 581 kg m−3

1 0.123 9.99 0.121 14.65
2 0.124 10.00 0.124 14.67
3 0.125 10.01 0.125 14.67
Mean 0.124 10.00 0.0 0.123 14.66 2.27

𝜌 = 741 kg m−3

1 0.169 9.72 0.160 14.17
2 0.169 9.72 0.160 14.18
3 0.168 9.71 0.158 14.78
Mean 0.169 9.72 2.80 0.159 14.17 5.53

𝜌 = 910 kg m−3

1 0.213 9.38 0.211 14.78
2 0.217 9.43 0.217 14.91
3 0.214 9.46 0.214 14.88
Mean 0.215 9.42 5.80 0.214 14.85 0.96

seen that the residuals are perfectly flat and centered on the estimation
interval [100 s; 800 s] which validates the model of an effective thermal
conductivity on this time domain. The estimation at 20 °C leads to
perfectly flat residuals as early as 40 s while at 1200 °C we observe a
divergence of the residuals up to 100 s. The estimated values of the
temperature shift are 𝑇1 = −0.039 °C at 20 °C and 𝑇1 = 1.02 °C at 1200 °C.
The negative value at 20 °C is due to the contact resistance in the
absence of significant radiation at this temperature while the positive
value at 1200 °C is mainly due to the fact that the Rosseland model
underestimates the radiation at short times and that the radiation,
negligible at 20 °C, becomes significant at 1200 °C.

6.3. Estimation of the extinction coefficient

The following assumptions are made:

• The thermal conductivities of the solid and air in the porous
medium evolve linearly with temperature.

• The radiation is represented by the Rosseland approximation with
a constant extinction coefficient 𝛽.

The effective thermal conductivity can therefore be written:

𝜆 = 𝑎 + 𝑏𝑇 + 16𝑛2𝜎𝑇 3

3𝛽
(17)
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Fig. 10. Experimental curve and simulated curve with the values estimated between 100 s and 800 s both with estimation residuals ×10 for SilPower®SG (a) at 20 °C and (b) at
1200 °C for 𝑑 = 10mm.

Fig. 11. Estimated values of the various conductivities for SilPower® SG (Standard density) and SilPower® HG (High density).

Fig. 12. Relative deviation between the values of the specific heat estimated from
experiments or simulations and those given by Brückner [22].

For each material, we can then estimate the parameters 𝑎, 𝑏 and 𝛽
by minimizing the sum:

𝑆 =
𝐽∑
𝑗=1

𝐾∑
𝑘=1

[
𝜆exp,𝑘

(
𝑇𝑗
)
− 𝜆mod

(
𝑇𝑗
)]2 (18)

Where 𝜆mod corresponds to Eq. (17), 𝐽 is the number of tem-
peratures for which the measurement of 𝜆 was performed and 𝐾,
the number of thermal conductivity estimations carried out at each
temperature 𝑇𝑗 . Six estimations were performed at each temperature
(𝐾 = 6), respectively three at a distance 𝑑1 = 10mm and three at a
distance 𝑑2 = 15mm (see Table 2).

The standard deviation of each parameter 𝑎, 𝑏 and 𝛽 is then deduced
during the standard procedure of fitting and given by the covariance
matrix. The results are presented in Table 3 and the values of the differ-
ent estimated conductivities are presented in Fig. 11 for SilPower®SG
and SilPower®HG. The following comments can be made:

• The extinction coefficient decreases very logically when the den-
sity decreases.

• The values of the effective conductivity calculated with the
estimated values of the parameters 𝑎, 𝑏 and 𝛽 coincide perfectly
with the experimental values.

• It is often assumed that the thermal conductivity of the porous
solid matrix is proportional to that of the solid [23]. Despite
the high uncertainties, the ratios of the thermal conductivity of
SilPower®at 1200 °C to its value at 20 °C (obtained for all three
densities) are found to be very close (maximum deviation of 20%)
to that obtained for silica, of which the backbone of SilPower®is
more than 99% (see Table 3).
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Table 3
Estimated values of parameters 𝑎, 𝑏 and 𝛽 and their uncertainties.

𝜌 𝛽 𝜎𝛽 𝑎 𝜎𝑎 𝑏 𝜎𝑏
𝜆𝑐 1200 °C
𝜆𝑐 20 °C

kg m−3 m−1 % W m−1 K−1 % W m−1 K−1 % Thermal SiO2
a Air

SG 581 kg m−3 6.83 × 103 3.0 9.09 × 10−2 2.1 1.15 × 10−4 3.2 2.4
2.0 3.5MG 741 kg m−3 7.86 × 103 8.6 1.34 × 10−1 3.7 1.20 × 10−4 7.6 2.0

HG 910 kg m−3 1.35 × 104 19.4 1.83 × 10−1 3.5 1.31 × 10−4 9.2 1.8
aFrom Combis et al. [24].

Fig. 13. (a) - Experimental curve and model curve ; (b) - Simulated curve with COMSOL Multiphysics® and model curve.

• The accuracy of the 𝛽 estimate decreases when the value of 𝛽
increases: this is explained by the fact that when 𝛽 increases, the
share of the radiative conductivity 𝜆r in the effective conductivity
𝜆 decreases so the sensitivity of 𝜆 to 𝛽 decreases.

Estimates of the extinction coefficients 𝛽 and thermal conductivities
𝜆c of the solid allow the calculation of the Stark number 𝑁 for each
grade and for each temperature. This then allows us to plot the relative
differences between the estimated values 𝜌𝑐 and those calculated from
the Brückner values as a function of the Stark number 𝑁 (see Fig. 12).
We plotted on the same graph the deviations between the values
estimated from COMSOL Multiphysics® simulations for a scattering
material (𝑘s = 0.9999𝛽) and those from Brückner [22]. The deviations
calculated from experiments and estimates follow the same trend and
are close. SilPower® thus behaves as a highly scattering material to-
wards radiation which is consistent with its properties: it is a highly
reflective material (reflectivity greater than 95% in the infrared [25])
and it contains a volume fraction of 60% to 70% of air (transparent)
depending on the density.

Finally, as an example, a COMSOL Multiphysics®simulation was
performed with the estimated parameters for SilPower®SG at 1200 °C
i.e. 𝛽 = 6920 m−1 ; 𝜆r = 0.140W m−1 K−1 ; 𝜆c = 𝜆 − 𝜆r =
0.263W m−1 K−1 and considering a highly scattering material (𝑘s =
0.9999𝛽). This simulation was then treated as an experimental curve
to estimate 𝜆 and 𝜌𝑐. The value of 𝜌𝑐 was adjusted to 𝜌𝑐 = 7.00 ×
105 J m−3 K−1 so that the estimations from the experimental and the
simulated curves lead to the same value, 𝜌𝑐 = 8.30 × 105 J m−3 K−1.

Fig. 13(a) shows one experimental curve obtained at 1200 °Celsius,
the model curve with the estimated parameters and the estimation
residuals. Fig. 13(b) shows the curve simulated with COMSOL Mul-
tiphysics®, the model curve plotted with the estimated parameters and
the estimation residuals.

We can see that the residuals have globally the same shape and
an amplitude of the same order of magnitude as those represented on
Fig. 9(b), which confirms the very scattering character of SilPower®.
Moreover, the deviation between the nominal and estimated values of

𝜌𝑐 which is 𝛥𝜌𝑐
𝜌𝑐 = 8.3−7.0

8.3 = 15.6% is of the same order of magnitude as
the one observed with the experiments.

Nevertheless, the value of the absorption coefficient used to match
the COMSOL Multiphysics®simulation and the experiment is not re-
alistic (𝑘a = 6.9 m−1). This may be due to the approximation of the
P1 model or to the hypothesis of a gray medium. It will therefore be
necessary to develop a more accurate model if we want to represent
the whole experimental curve in order to estimate for example the
extinction or diffusion coefficient of the medium.

Conclusion

The influence of the radiation heat transfer on the estimation of
the thermal conductivity of a semi-transparent material by the parallel
hot-wire method has been first investigated with COMSOL Multiphy-
sics® using the coupled conduction–radiation model based on the
P1 approximation for the radiation calculation. It was shown that the
thermal conductivity may be estimated with an accuracy better than
2% if the Stark number𝑁 (representing the ratio conduction/radiation)
is:

• Greater than 0.1 for a purely absorbing or absorbing and scatter-
ing medium.

• Greater than 2 for a purely scattering medium.

It has also been shown that the classical estimation method based on
the estimation of the three parameters (𝜆, 𝜌𝑐) leads to negative values of
the thermal contact resistance 𝑅 ( which makes no physical sense) when
radiation increases and creates an estimation bias. An new estimation
method has been proposed to avoid this estimation bias.

A calibration process of the distance between the hot wire and
the thermocouple has also been proposed and validated, enabling a
more accurate estimation of the volume heat capacity. An experimental
study carried out on three insulating materials with densities ranging
from 581 kg m−3 to 910 kg m−3 and at temperatures ranging from 20 °C
to 1200 °C confirms the results of the theoretical study. A method
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enabling the estimation of the extinction coefficient from thermal
conductivity measurements at various temperatures has been presented
and successfully applied to the three tested materials.
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