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Performance of metallic seals used between face-turned surfaces is related to their abilities to flow plastically in
order to fill up cavities between wedge-shaped asperities. Multiple wedges indentation is therefore a simple way to
investigate what happens at such a seal–flange interface. In this paper, finite element analyses of single and multiple
wedges indentations are conducted. A particular attention is paid to the effects of hardening parameters on the
resulting hardness. First, it is observed that single wedge indentation hardness can be well-approximated by the
adaptation of analytic models initially developed for cone indentation problems. Second, it is shown that interaction
between indentation-strain field during multiple wedges indentation starts once the bearing ratio is about 25%. It leads
to a significant mean contact pressure increase, which is strongly dependent upon the strain hardening exponent.
Eventually, for a bearing ratio higher than 75%, a plastic locking stage occurs, which leads to a fast increase of the
mean contact pressure. Practical applications of this work to indentation and sealing research fields are discussed.

Keywords wedge, indentation, FEM, roughness interaction, metallic seals

1 Introduction
High-performance sealing applications rely on the use of entirely metallic seals. Their efficiency is directly
related to the ability for the soft metallic outer liner of the seal to plastically flow in and around the
topographical defects of the facing rigid rough surfaces, to reduce the leakage paths at the seal–flange
interface (Pérez-Ràfols et al. 2016). In many applications, the flat surface of the rigid flanges are obtained
through face turning (Robbe-Valloire et al. 2008). With such manufacturing process, the resulting surface
possesses a characteristic spiral-grooved texture (see Fig. 1). The resulting topography can be approximated
by arrays of wedges (Fig. 1), the dimensions of which being directly related to the process parameters
(feeding rate, cutting depth) and tool geometry (tool tip radius) as presented in Dumas et al. (2021).
Therefore, modelling of multiple wedges indentation can be of prime importance to better understand the
sealing mechanism of a rough rigid flange by a metallic gasket. The problem of sealing can thus be viewed
as a matter of describing the evolution of the gap at the seal–flange interface (at the roughness scale) as a
function of the applied normal load on the contact. This latter depends on wedge indentation-induced
contact pressure, that is the wedge indentation hardness.

Sharp indentation of elastoplastic solids has been widely investigated during the last three decades,
mostly because of the huge interest brought by the use of nanoindentation testing to characterize
mechanical properties of materials at a very small scale (Oliver et al. 1992; Cheng et al. 2004). However
most of the developments were devoted to conical or pyramidal indentation tests with only a few articles
related to wedge indentation. Since wedge indenters are self-similar when the contact is made along
the apex of the wedge, the principle of geometric similarity holds provided that the indented solids are
semi-infinite and that there is no internal length to account for (Kermouche et al. 2005). Consequently the
hardness (i.e., the mean contact pressure) does not depend upon loading parameters such as the applied
load or the displacement relative to the surface. The hardness is thus a function of material properties and
tip geometry only, here the tip angle for wedge indentation. In the case of wedge indentation of rigid
perfectly plastic solids, a direct relation can be made between the hardness and the yield stress through
slip lines theory of Hill (1950). An exact solution for wedge indentation of linear isotropic elastic solids
was also derived from Boussinesq’s theory by Johnson (1987). Between these two cases, an approximate
elastoplastic solution was derived through the concept of the representative elastic material that makes it
possible to relate the hardness to the yield stress accounting for materials elasticity (Kermouche et al.
2005). Surprisingly, methods based on expanding cavity analogies (Gao et al. 2006; Feng et al. 2007) were
not used to model wedge indentation, although their extension to this framework seems straightforward.
Consequently there is still a need nowadays to investigate which models lead to the best prediction of
hardness of elastoplastic solids when indented by a wedge.

Single wedge indentation corresponds to the first stage of sealing, when the distance between two
successive peaks is significantly larger than the contact length of a single peak. For a given contact length,
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Figure 1: Topography of a measured face-turned rough surface. The representation of a radial profile by an array of
wedge indenters is shown on the right.

the indentation-induced strain fields of the two successive peaks start to interact, which violates the
principle of geometric similarity (Tabor 1951; Cheng et al. 2004). Therefore the hardness becomes a
function of the ratio of the contact length and the distance between the peaks. Only a few papers (Meguid,
Collins, et al. 1977; Salikhyanov 2019) have dealt with such a problem since it requires an incremental
approach to derive an analytical solution through the slip lines theory. It is shown that two stages occur
after the single wedge indentation stage. The first stage is the interaction stage that corresponds to the
interaction between the two neighbouring indentation strain fields. Within this stage, the hardness
increases. This stage ends when the interaction between the two indentation strain fields result in a global
plastic locking. At this point the sealing cannot be improved anymore but is not terminated. To enter the
last stage of sealing, it is required that the plastic strain field interacts with some interfaces or boundary
conditions that forces the materials to flow up again. Eventually the remaining gap is filled with the
sealing materials and the sealing is over. There is clearly a need to investigate in a deeper way how to
describe these last two stages.

This article is organized as follows. First, we describe two single wedge hardness models developed
for Hollomon-based strain hardening elastoplastic solids. The results are compared to Finite Element
calculations to evidence the limitation of these two models. Then, we propose to investigate the interactions
between two neighbouring wedges using a Finite Element Analysis. Results are given in terms of apparent
hardness and compared to single wedge hardness. A particular attention is paid to the identification of
different interaction regimes from the single wedge indentation one to the final sealing stage. Finally,
conclusions and perspectives of this study are given.

2 Theoretical framework
2.1 Single wedge indentation models
As a versatile and easy-to-measure mechanical property, hardness is widely studied in the literature.
Several well-known models predict its value for rigid perfectly plastic solids through the slip lines method
of Hill (1950) or the empirical method of Tabor (1996). They lead to the conclusion that hardness is a
measure of the yield stress of a material through Eq. (1) where H𝑚𝑎𝑡 is the material hardness, 𝜎𝑌 is the
yield stress of the material and 𝛽 the tip-to-surface contact angle

H𝑚𝑎𝑡

𝜎𝑌
= 𝑓 (𝛽). (1)

However, real engineering materials exhibit non negligible elasticity and strain hardening so that models
developed for rigid perfectly plastic solids can lead to strong discrepancies. In such case, the hardness is
typically formulated as a function of supplementary material parameters as

H𝑚𝑎𝑡

𝜎𝑌
= 𝑓

(
𝛽,

𝐸

𝜎𝑌
, 𝑛

)
, (2)

with 𝐸 the Young modulus and 𝑛 the hardening exponent. In this work, we propose to compare two
analytical models, the Expanding Cylindrical Cavity model (ECC) from Johnson (1987); Gao et al. (2006)
and the Representative Elastic Material model (REM) derived from Tabor (1951). These two models take
strain hardening into account and are briefly introduced in the following sections.

2.1.1 The Expanding Cylindrical Cavity model (ECC)
For the ECC model, the stress and strain fields under the apex of the wedge are idealized as the expansion
of a cylindrical cavity subject to hydrostatic pressure. Johnson (1970) first offered this modelling for
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Figure 2: Schematic representation of the cylindrical cavity expansion under a wedge indenter.

conical and wedge indenters in elastic perfectly plastic materials. However, it does not take into account
the strain hardening of real materials.

𝜎 = 𝜎1−𝑛
𝑌 (𝐸Y)𝑛 (3)

Later, Gao (2003); Gao et al. (2006) extended the use of such model to obtain an analytical formulation for
conical and spherical hardness for a elastoplastic material following Hollomon’s power-law hardening
(eq. 3) with 𝜎 the equivalent stress, 𝜎𝑌 the yield stress, 𝐸 the Young modulus, 𝑛 the hardening exponent
and Y the total equivalent strain. Fig. 2 gives a representation of the plane strain cylindrical expansion of
cavity, to be applied to determine the hardness in single wedge indentation of elastoplastic solids. A
summary of the model is given here for general comprehension. Considering a semi-infinite half space,
indentation creates a dead volume which does not deform, joined together with the tip. This core volume is
considered as a cylindrical cavity which expands itself in the material under a hydrostatic pressure linked
to the mean pressure under the tip (i.e., material hardness). From the classical solution of an elastoplastic
cylinder subject to internal pressure, stress and displacement fields can be derived (Gao 2003). It yields an
elastic zone (𝑟 > 𝑟𝑝 ) where the material remains elastic, and a plastic zone (𝑟𝑐 > 𝑟 > 𝑟𝑝 ) where material
undergoes plastic deformation. The radius of the plastic zone 𝑟𝑝 is determined by the internal pressure
and the radius of the cavity, or core, 𝑟𝑐 . As shown on Fig. 2, an increment of indentation 𝛿 induces an
expansion of the core. The volume of material being conserved, this expansion is equivalent to the volume
of material displaced by the wedge which depends of the contact angle 𝛽 . The radial displacement being
known for the cylinder expansion, the quantities 𝑟𝑝 and 𝑟𝑐 can be related with one another and further
with the total displaced volume. Hence, the internal pressure can be expressed, depending only on the
material characteristics and the contact angle of the wedge.

According to our assumption, the internal pressure should be equal to the hardness of the material
H𝑚𝑎𝑡 . However, it is known that the model based on Johnson (1970) underestimates the hardness. To this
end, Studman et al. (1977) and Gao et al. (2006) propose a correction to the expression of this internal
pressure based on the stress discontinuity occurring at 𝑟𝑐 . Following a similar correction for the case
of wedge indentation, the modified ECC model gives a corrected hardnessH𝑚𝑎𝑡 in Eq. (4), showing a
dependency to the yield stress 𝜎𝑌 , the strain hardening coefficient 𝑛 and Young’s modulus 𝐸 arising from
Hollomon’s and Hooke’s laws. According to principle of geometrical similarity, the only geometrical
parameter is the contact angle 𝛽

H𝑚𝑎𝑡 =
𝜎𝑌√
3

{
1 − 1

𝑛
+
(√

3
2 + 1

𝑛

) (
2

𝜋
√
3
𝐸 tan 𝛽
𝜎𝑌

)𝑛}
. (4)

2.1.2 The Representative Elastic Material model (REM)
This model has been extensively described in Kermouche et al. (2005) and thus only the main features are
given hereafter. To describe the indentation of materials and based on empirical considerations, Tabor
(1951) proposed to define a representative stress 𝜎𝑟 and a representative strain Y𝑟 , characteristic of the
process under concern. The REM model defines a representative elastic material whose stress–strain curve
passes through the (Y𝑟 , 𝜎𝑟 ) couple of the indented material. The Young modulus of the representative
material is thus simply defined as 𝐸𝑟 = 𝜎𝑟/Y𝑟 . The representative strain can be split into a an elastic and a
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plastic part as Y𝑟 = Y𝑒𝑟 + Y
𝑝
𝑟 , with the elastic part being given by Y𝑒𝑟 = 𝜎𝑟/𝐸. Following the suggestion of

Tabor, the representative plastic strain Y
𝑝
𝑟 can be chosen as proportional to the tangent of the contact

angle 𝛽 as Y𝑝𝑟 = Z tan 𝛽 . Note that when the contact angle is “small”, only elastic strain may take place.
Hence, a threshold contact angle 𝛽0 has to be considered. The hardness (mean contact pressure) of the
representative elastic material can be formally derived using the linear elastic contact theory for a wedge
as (Sneddon 1965)

𝑝𝑚 =
1
2

𝐸𝑟

1 − a2𝑟
tan 𝛽, (5)

where a𝑟 is the representative Poisson coefficient, often taken as 0.5. Then assuming that the coefficient of
proportionality between the hardness and the representative stress is the same for the representative
elastic material and the indented material, the hardness of the latter is given by

H𝑚𝑎𝑡 = 𝑝𝑚 =
1

2(1 − a2𝑟 )
Z𝜎𝑟 tan 𝛽

Z tan 𝛽 + (1 − Z ) 𝜎𝑟
𝐸

, (6)

where Z is a function of the representative Poisson’s ratio and the contact angle. In Eq. (6), Young’s
modulus 𝐸 and contact angle 𝛽 are used explicitly. However, the hardening coefficient 𝑛 and yield stress
𝜎𝑌 are implicitly found in the calculation of the representative stress 𝜎𝑟 from the representative strain Y𝑟
(see Kermouche et al. (2005) for more details).

2.2 Multiple wedges indentation
To avoid artefacts related to interactions between neighbouring indents, the usual rule consists in
separating two successive indents with a distance about twenty times that of the penetration depth. This
empirical rule is actually based on the dimension of the plastic zone beneath an indent. This zone is often
assumed as spherical for pyramidal indentation, cylindrical for wedge indentation, with a radius about
three times the contact radius. For Berkovich and Vickers tips (𝛽 ≈ 20◦), the contact radius is about three
times the penetration depth. This is the reason why the plastic zone length is often assumed as ten times
the penetration depth, which leads to define a distance between two neighboring indents about twenty
times the penetration depth to avoid interaction artefacts. For a Cube corner tip (𝛽 ≈ 45◦), this distance
should be significantly smaller, but for asperity angles typically found in sealing (𝛽 ≲ 10◦) it should be
much larger. Hence the validity range of single wedge indentation appears to be very limited to investigate
a sealing process.

Application of slip lines theory to interacting wedges were recently proposed by Salikhyanov (2019). It
was developed for contact cold welding of metallic plates which is somewhat close to the sealing process.
The substrate is a rigid perfectly plastic infinite half-space but such a theory can be extended to finite
media (Hill 1950a). The main drawback is that a perfectly plastic material does not deform elastically
neither harden. Hence it cannot be expected to transpose the derived results to a real case in a quantitative
manner. Such an approach was successfully used for single wedge indentation (Hill 1950b; Johnson 1987)
and allows to highlight some interesting features, such as the relation between hardness and yield stress,
the pile-up geometry or the wedge angle effect. From this point of view the work of Salikhyanov (2019)
pointed out some interesting features in the framework of the interaction of two neighboring wedges
through the interaction of two wedge indentation slip lines fields.

As expected, the self-similarity is lost when the two slip-line fields start interacting and the hardnesss
(mean contact pressure) starts increasing. This interaction creates an entirely new slip-line field, as shown
in Salikhyanov 2019, which is a combination of the previous slip-lines with a growing interaction area in
the center of the groove. It effectively transforms plastic flows under both wedges, from known Hill
solution’s pile-up to a uniform rise (wedge symmetry) of the surface in the groove. With symmetric wedges,
previous pile-up is gradually recovered by the rising surface while the interaction area grows progressively
replacing the usual slip-line fields. A plastic locking stage is reached as the two slip-line fields fully recover,
it is described as the third stage of Salikhyanov 2019. At this point, the surface between wedges is perfectly
flat (by symmetry) and the unified slip-line field does not enable anymore material flow. Hence, the
closing of the groove is stopped. This state is mostly caused by the symmetry of recovering fields and
can not be resolved in the semi-infinite case treated by Salikhyanov 2019. However, a third interaction
(through the presence of the substrate boundary or another asperity) in a finite space framework as
shown in Hill 1950a can force the materials to flow up again. As expected, the self-similarity is lost when
the two slip line fields start interacting. The hardness (mean contact pressure) starts increasing up to
the plastic locking process that happens when the two slip line fields fully recover. The last stage of
sealing can occur only if the resulting slip line field interacts with another one (through the presence
of the substrate boundary or another asperity) that forces the materials to flow up again. Consequently
the contact between the wedge-shaped asperities and the material can be described through an apparent
hardness H , which is a priori higher than the single wedge material hardness H𝑚𝑎𝑡 . This apparent
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hardness is a function of geometrical parameters (contact angle 𝛽 , distance between wedges𝑊 , penetration
depth 𝛿 and projected contact area 𝐿𝑐 ) as well as elastoplastic material parameter as

H
𝜎𝑌

= 𝑓

(
𝛽,

𝛿

𝐿𝑐
,
𝑊

𝐿𝑐
,
𝐸

𝜎𝑌
, 𝑛

)
. (7)

3 Numerical framework and simulations
The Finite Element Method (FEM) has been widely used in the past decades to explore the mechanical
response of materials under indentation loading and to check analytical models derived for that purpose
(Cheng et al. 2004; Poon et al. 2008). Hereafter FEM is used to compare the two analytical models derived
for single wedge indentation. Then a FEM investigation of interacting wedges is proposed to explore how
the apparent hardness is affected by material properties and geometrical parameters. In this section, the
two single and multiple wedge indentation FE models are described in details.

3.1 Single wedge indentation
Calculations have been performed with the commercial FEM code abaqs® using 2D plane strain
elements to model wedge indentation, and using a large displacement–large strain option (updated
Lagrangian formulation, logarithmic strain). The mesh is especially refined near the contact zone, but
is also sufficiently wide to approximate a semi-infinite solid (see Fig. 3). The mesh is refined enough
in the contact zone to prevent mesh size effects. It then becomes progressively coarser farther away
from the contact zone, and a wide bulk is used to approximate a semi-infinite solid (see Fig. 3). A mesh
convergence study has been performed and is presented in appendix A. For a good representation of the
contact geometry, the width of the elements has been determined so as to have at least 37-66 nodes in
contact for the deepest penetration. The whole mesh contains about 4285 elements and 4374 nodes. The
contact between the indenter and the workpiece is assumed to be frictionless and loading is monitored by
prescribing a vertical quasi-static displacement of the indenter into the surface. Furthermore, the indenter
is assumed to be perfectly rigid. The plastic flow is described by a von Mises yield criterion coupled to
isotropic strain hardening. The stress–strain curves follows Hollomon’s power-law hardening (eq. 3)
described by three parameters, namely the initial yield stress 𝜎𝑌 , the strain hardening exponent 𝑛 and
the Young modulus. As shown in Cheng et al. (2004), the effects of the contact angle 𝛽 and the Young
modulus 𝐸 on the hardness can be deduced from dimensional analysis. As a consequence, it is chosen in
the present work to mostly investigate the effects of Hollomon’s hardening parameters 𝜎𝑌 and 𝑛 on the
resulting wedge hardness. The main advantage of such law resides in its few parameters which allow for
an extensive parametric study and a simplified use in analytical developments such as ECC and REM
models. However, it does not describe accurately the real behaviour of materials especially for high
deformations. Young’s modulus and Poisson’s ratio are arbitrarily taken as those of steel (𝐸 = 210GPa
and a = 0.3). The value of the contact angle has been fixed to 𝛽 = 20◦. For this parametric, the (𝜎𝑌 , 𝑛)
values are chosen from a regular “grid”, with 10MPa ⩽ 𝜎𝑌 ⩽ 500MPa by increments of 10MPa and
0.1 ⩽ 𝑛 ⩽ 0.5 by increments of 0.05. This leads to a total of 450 simulations populating the parametric
space. Hereafter it is proposed to compare the performance of the two analytical ECC and REM models
(given by Eqs. (4) and (6) respectively) in predicting the material hardness for material properties typical of
those found in metallic seals materials (aluminium, copper, silver, etc.)

For each simulation, the total vertical force 𝐹 and the projected contact length 𝐿𝑐 can be computed.
Note that since the problem is treated in plane strain, 𝐹 is homogeneous to a force per unit depth (direction
of the axis of the wedge), but simply denoted as "force" in the subsequent for simplicity. The hardness is
further obtained as the mean vertical contact pressure and given by

H𝑚𝑎𝑡 =
𝐹

𝐿𝑐
. (8)

Single wedge indentation of semi-infinite half space satisfies the principle of geometric similarity, the
hardness is computed for all computational frames and an average is performed on these frames to
eliminate any discrete mesh effects.

3.2 Multiple wedges indentation
In the framework of sealing, interaction between rigid asperities is clearly too complex to be investigated
in a purely analytical way. Hence FEM appears as a method of choice to explore such phenomena. It has
already been used on one hand to deal with interacting flat punches (Meguid and Klair 1985) or to assess
the validity of the slip line fields proposed by Salikhyanov (2019). In this paper, we design a geometry
of multiple wedges indentation based on this latter approach (see Fig. 4). The effects of geometrical
parameters that is proposed to be explored in this work are the distance between the two neighboring
wedges𝑊 and the contact angle 𝛽 . Periodic boundary conditions are applied on the left and right side of
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β

Figure 3: Single indentation FEM simulation in abaqs®. Partial view of the mesh of the indenter (blue) and the
substrate (grey).

β β
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Figure 4: Scheme of the multiple wedges indentation geometry. The indenter is shown in blue and the substrate in
grey. The mesh represented here is coarser than that used in the simulations for clarity.
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Table 1: Values of geometrical parameters used for the FEM simulations

Geometry 𝛽 𝐵 [mm] 𝑊 [mm]
#1 10◦ 1.00 0.10
#2 10◦ 1.00 0.50
#3 10◦ 0.30 0.10
#4 5◦ 1.00 0.35
#5 5◦ 1.00 0.10

the model, making the so-called double indentation a multiple wedges indentation with a virtual infinity of
wedge indenters. Thus the double wedge is viewed as a unit cell for the periodic problem. The bulk height
𝐵 is also taken into account since it also plays a role on sealing (it can be viewed as the thickness of the
sealing outer liner), in particular at the last stage of sealing. The two wedges being similar in this paper,
the reader may notice that a supplementary vertical symmetry in the middle of the two indenters could
have been used. This is due to the fact that the present numerical model was first designed to handle the
general case of asymmetrical indenters. We chose however to focus only the results for the symmetrical
case in the present paper.

Similarly to the case of single indentation, the simulations have been performed with abaqs® using
2D plane strain elements to model wedge indentation and using a large displacement–large strain option
(updated Lagrangian formulation, logarithmic strain). The contact between the indenter and the substrate
is considered frictionless and the wedge indenters perfectly rigid. The whole mesh contains about 6420
elements and 6648 nodes (see Fig. 4). A convergence study presented in appendix B justifies the use of a
rather coarse mesh (ratio of element size on indenter tips distance ≈ 1 %). This trade off is done to permit
an extensive parametric analysis of the multiple wedges indentation which can be quite demanding in
terms of computational time, especially because of contact convergence issues. The mechanical behaviour
of the substrate is described through the same constitutive model than the one used for single wedge
indentation (Hollomon’s power-law hardening).

Hereafter it is proposed to explore the effects of Hollomon’s parameters on the apparent wedge
indentation hardness H . We choose to focus on hardening parameters in the range 0.05 ⩽ 𝑛 ⩽ 0.4 and
20MPa ⩽ 𝜎𝑌 ⩽ 200MPa in the simulations. Since multiple wedges indentation does not satisfy the
principle of geometric similarity when wedge-induced strain fields start interacting, the hardness is
computed at each computational step. The reaction force of the double wedge is taken at each increment
and divided by the current projected contact area to compute the apparent hardness of the multiple
wedges indentation. A sliding average filter is applied to eliminate mesh-induced artificial oscillations
due to the discrete evolution of the contact length. As observed on Fig. 19 from the convergence study
in appendix B, a coarse mesh does not change the average value and evolution of our quantities. However,
the discrete evolution of the contact length produces artificial oscillations which are quite misleading.
A sliding average filter is hence applied. The convergence study validates this approach with Fig. 20
comparing averaging coarse mesh hardness evolution with refined mesh one. This new instantaneous
hardness is called apparent hardness,H . The results will be interpreted through the evolution of this
parameter as a function of the projected contact length. With sealing purposes in mind, it is interesting to
follow the closing of the aperture. Consequently, the evolution of the current opening between bulk and
indenter 𝑆 (comparable to the free volume under the indenter) is monitored during the indentation process.
Five indenter geometries are investigated to highlight the influence of geometrical parameters defined in
Fig. 4. The five sets of parameters employed are summarized in Tab. 1.

4 Results and discussion
4.1 Single wedge indentation
The accuracy of both the ECC and the REM analytical models are assessed with the help of finite element
modelling of single wedge indentation. To do so, the relative error defined in Eq. (9) is used, with H𝑚𝑎𝑡

the material hardness given by the ECC and REM models of Eqs. (4) and (6) respectively, and �H𝑚𝑎𝑡 the
hardness obtained numerically by the FEM simulations

𝜖 =
|H𝑚𝑎𝑡 − �H𝑚𝑎𝑡 |�H𝑚𝑎𝑡

. (9)

Fig. 7 summarizes the main results obtained for 𝛽 = 20◦. Note the region highlighted in red that corresponds
to hardening parameters typical of metallic sealing materials (copper, aluminium, nickel) with 0.2 ⩽ 𝑛 ⩽ 0.3
and 50MPa ⩽ 𝜎𝑌 ⩽ 200MPa. The ECC model yields very good results for a hardening exponent close to

7



Y. Marthouret et al. Wedge indentation of elastoplastic solids – from single indentation to interaction between indenters

200 400
Y [MPa]

0.1

0.2

0.3

0.4

0.5

n

REM model

200 400
Y [MPa]

0.1

0.2

0.3

0.4

0.5

n

ECC model

200 400
Y [MPa]

0.1

0.2

0.3

0.4

0.5

n

FEM simulation

1000

2000

3000

4000

5000

6000

Ha
rd

ne
ss

 [M
Pa

]

Figure 5: Maps of hardness values for REM, ECC models and FEM simulations, with 𝐸 = 210GPa and 𝛽 = 20◦

0.3. The higher the yield stress, the higher the precision. However for the extreme case of low yield stress
and low hardening exponent, the relative error can reach 50%. This corresponds to the asymptotic case of
rigid perfectly plastic solids for which it is well known that expanding cavity based models fail (Johnson
1987). Unlike the ECC model, the REM model leads to errors lower than 10% over the whole investigated
range of parameters. It is worth of interest to note that the REM model is almost insensitive to the yield
stress. Its best accuracy is obtained in the range 0.2 ⩽ 𝑛 ⩽ 0.3, which corresponds to the range of sealing
materials. For this latter case, the relative error is lower than 2.5%.

A wide range of angles is at stake in sealing surfaces so, in addition to 𝛽 = 20◦ (Fig. 7), Fig. 8 presents
numerical results for angles 𝛽 = 15◦, 10◦ and 5◦, focusing on the region of sealing materials.

Fig. 5 shows, for 𝛽 = 20◦, the evolution of hardness according to the studied parameters (𝜎𝑌 , 𝑛) of
Hollomon’s law. The analytical models have an evolution similar to FEM simulations especially the REM
model. The hardness increases with the elastic limit and the hardening coefficient as expected by Cheng
et al. 2004 The angle effect is shown on Fig. 6 for one material. The figure highlights that the two models
error is function of the contact angle. Indeed, on the presented material, ECC is slightly more accurate
than REM model for low angles (5◦) while REM model is better for higher angles (15◦). With a smaller
contact angle, REM model gradually under-performs but remains quite homogeneous with a relative
error lower than 10%. The REM model performs well for all studied angles with some privileged area
according to strain hardening coefficient. Overall, its relative error stays lower than 10 %. The ECC model
remains in good agreement near 𝑛 = 0.3 as previously, but the corresponding zone becomes narrower. It is
then outperformed by the REM model outside this thin and unpredictable area. Finally, its heterogeneity
is a problem in itself while the relative error of the REM model can be compared to a constant offset.

From these results it is thus recommended to use the REM model to compute the wedge hardness
in the framework of sealing applications. However this model is restricted to single indentation (i.e.,
without interaction between the neighbouring asperities). To highlight this point, the hardness results
obtained by FEM for the single indentation case are compared to those obtained for the case of multiple
wedges indentation as a continuous function of the applied load on the indenter. The evolution of the
dimensionless apparent hardness H ∗ = H/H𝑚𝑎𝑡 , is presented as a function of the applied indentation
load in Fig. 9. As expected, the single indentation hardness does not depend upon load, while the multiple
wedges indentation hardness increases quite rapidly with the load, indicating more and more prominent
interaction effect between the indenters. Also, both model yield to the same result for the low load range
(i.e., H ∗ ≈ 1). Results below a given load are not shown since the number of nodes in contact is not large
enough. The increase at larger load is clearly the effect of tip interaction observed by Salikhyanov (2019).
In other words, the single indentation stage is followed by the interaction stage that leads to an increase of
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Figure 6: Hardness for all models and various contact angles for a material with 𝐸 = 210GPa, 𝜎𝑌 = 102MPa and
𝑛 = 0.2.
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mean contact pressure due to asperity interaction.

4.2 Multiple wedges indentation
Multiple indentation is observed through apparent hardness and dimensionless contact area. The results
are presented using dimensionless quantities for a clarity purpose and to gain physical insight in the
phenomena at play. First, the apparent hardness H is made dimensionless by the single wedge indentation
material hardnessH𝑚𝑎𝑡 (computed using the REM model of Eq. (6)) as

H ∗ =
H

H𝑚𝑎𝑡

. (10)

As observed in the previous section, such a dimensionless parameter will highlight the evolution of
hardness due to interaction and hardening of the material. The dimensionless sealing force 𝐹 ∗ is defined as

𝐹 ∗ =
𝐹

𝑊H𝑚𝑎𝑡

, (11)
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Figure 9: Comparison of the computed instantaneous hardness between single and multiple wedges indentation.
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Figure 10: Typical evolution of the hardness as a function of the contact width in multiple wedges indentation,
highlighting the three steps with diamond markers for Fig. 11 fields.

with 𝐹 the actual force on the indenter and where𝑊H𝑚𝑎𝑡 represents the force that would lead to full
contact in a bearing contact model (Dapp et al. 2012), considering a constant mean pressure over the
contact taken as the material hardness. In addition, note that we have the obvious relation 𝐹 ∗ = H ∗𝐿∗.
The closing index 𝑆∗ = 𝑆/𝑆0 is defined to monitor the evolution of the free space under the indenter with a
scalar value. This gives an idea of the average gap between the indenter and the substrate, and hence of
the sealing progress. In a similar manner, one can derive the dimensionless (projected) contact area 𝐿∗
defined by

𝐿∗ =
𝐿𝑐

𝑊
, (12)

𝐿𝑐 being the projected true contact length. The evolution ofH ∗ as a function of the contact ratio 𝐿∗ is
shown in Fig. 10 to highlight the three main stages of sealing. This curve has been obtained considering
the first geometry in Tab. 1 and Hollomon’s parameters, 𝜎𝑌 = 100MPa and 𝑛 = 0.2. The first stage is the
single wedge indentation stage. As shown previously, the apparent hardness is well described by the
wedge indentation REM model. The transition between the single indentation regime to the interaction
regime is quite smooth. It is considered here that the interaction regime starts once the increase of the
hardness is around 5%, that corresponds to a contact ratio 𝐿∗ ≈ 0.25. Within the interaction regime, the
hardness seems to be proportional to the contact ratio. Once a given contact ratio of 𝐿∗ ≈ 0.75 is reached,
the hardness starts increasing dramatically. This last regime is the global plastic locking regime that begins
when the two neighbouring indentation-induced plastic flow fully recover. Contrary to slip line field
calculations (Salikhyanov 2019), the sealing keeps increasing but at the cost of a fast increase of the
apparent hardness. At full contact when 𝐿∗ → 1, the hardness reaches a value close to 2.5 that of the single
wedge indentation material hardness. The equivalent plastic strain field associated to each regime is given
in Fig. 11, diamond markers in Fig. 10 specify the position of strain pictures on the H ∗ (𝐿∗) curve. For the
sake of illustration, it is possible to associate the plastic deformation (Fig. 11) to the slip-line fields hence
following the expansion of both influence area and their interaction. This observation backs the point of
a three steps closing with indenters interaction. However, simulations were made with elasto-plastic
hardening materials while slip-line fields only stands for perfectly plastic materials so this comparison can
not be further extended. Note that theses results have been obtained for a given configuration In the two
following sections, effects of indenter geometry and strain hardening parameters will be investigated in
details.

4.2.1 Effects of the geometrical parameters
Fig. 12 presents the evolution ofH ∗, 𝐹 ∗ and 𝑆∗ as a function of 𝐿∗ for the five multiple wedges indentation
geometries defined in Tab. 1. The strain hardening parameters remain the same for each calculation, their
values were chosen as 𝜎𝑌 = 100MPa and 𝑛 = 0.2. The three sealing stages are clearly visible. H ∗ and 𝑆∗
seems to be geometry-independent. Despite a difference of material behaviour, theoretical investigation of
Hill (1950) in perfect plasticity and Johnson (1987); Sneddon (1995) in perfect elasticity let us expect a
dependence on bulk height 𝐵 which is not confirmed by our results. It might however not be excluded that
𝐿∗ and 𝑆∗ already include somehow the influence of the height. Therefore it is recommended to not

11



Y. Marthouret et al. Wedge indentation of elastoplastic solids – from single indentation to interaction between indenters

Step 1
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Step 3

Figure 11: Field of the equivalent plastic strain computed in abaqs® for the three stages of the multiple wedges
indentation.

consider 𝐵 as a driving parameter for the interaction stage of sealing. The only geometrical parameter
which seems worth of interest is the contact angle 𝛽 . The difference between 10◦ and 5◦ is however
not important enough to be clearly visible on Fig. 12. Note that Fig. 12-c points out the closing kinetic
during multiple wedges indentation. The bearing contact model is a purely geometrical model based
on the concept of erosion (Dapp et al. 2012). The indenter displacement consumes material on its way
without provoking any elastic or plastic deformations. A contact pressure is associated to this contact and
corresponds to the hardness of the eroded material H𝑚𝑎𝑡 . The response of this model to multiple wedges
indentation is drawn in dashed lines on Fig. 12. It further shows the differences brought by interaction of
indenters. These results show that sealing regimes can be described through dimensionless parameters
that are almost geometry-independent.

4.2.2 Effects of the material parameters
Let us now vary the strain hardening parameters and fix the geometrical configuration to 𝛽 = 10◦,
𝑊 = 0.1mm and 𝐵 = 1mm (corresponding to geometry #1 in Tab. 1). The influence of the yield stress is
presented in Fig. 13. As expected from Eq. (1) the normalization by H𝑚𝑎𝑡 totally transfers the effect of 𝜎𝑌
to the single indentation step. Moreover further steps do not seem to be modified by a variation in the
yield stress. The kinetic of closing in Fig. 13-c is not significantly influenced by 𝜎𝑌 and is quite similar to
the simple bearing contact in this case, it argues for few sink-in or pile-up behaviour in these material and
geometrical conditions.

Fig. 14-a shows the effects of the strain hardening exponent 𝑛 on the evolution of H ∗ as a function
of 𝐿∗. Note that here again, the three sealing stages are still clearly observable. The strain hardening
parameter 𝑛 seems to have a significant influence on both the slope of the interaction stage and the start of
the plastic locking stage. The higher the strain hardening exponent, the faster the hardness increase.
However, this is particularly visible for larger contact ratio. Let us note thatH ∗ is not equal to 1 for 𝑛 = 0.4
at low contact ratio and the expected plateau-like evolution of single wedge indentation is not visible. This
may be a consequence of the REM hardness model which may lead to some error for such value of the
strain hardening exponent. It can also be a consequence of a smaller single indentation regime when the
strain hardening parameter increases. The finite element mesh might be too coarse to catch this regime
properly as well. For sealing like material (𝑛 ≈ 0.2), the plateau-like regime is clearly visible. It is followed
as expected by a linear, then by a fast increase of the hardness. It is therefore clearly observed here that the
asperities interaction effect is enhanced by the strain hardening ability of sealing materials. As a matter of
fact, it would be better to use materials exhibiting a low strain hardening exponent for sealing applications.
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Figure 12: Influence of the geometrical parameters (see Tab. 1) on multiple wedges indentation. The results from the
bearing contact model are given as dashed lines.

13



Y. Marthouret et al. Wedge indentation of elastoplastic solids – from single indentation to interaction between indenters

0.00 0.25 0.50 0.75 1.00
L *

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

*

a)

0.00 0.25 0.50 0.75 1.00
L *

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

F
*

b)

0.00 0.25 0.50 0.75 1.00
L *

0.0

0.2

0.4

0.6

0.8

1.0

S
*

c)

Y =  30 MPa
Y =  60 MPa
Y =  100 MPa
Y =  200 MPa

Bearing contact

Figure 13: Influence of the yield stress on the multiple wedges indentation, with 𝑛 = 0.2.

Let us note that this significant effect of 𝑛 prevents the use of the theoretical frameworks of Hill et al.
(1947) or Salikhyanov (2019) to quantitatively predict the sealing process.

The evolution of the closing index is also affected by the strain hardening ability of the sealing material
as shown in Fig. 14-c. At first, it may be surprising to state that the highest impact is observed during the
single indentation and interaction stages and not the plastic locking stage. Let us remember that the
closing index is only related to the shape of the free surface for a given contact ratio. Therefore piling up
and sinking ability of the material will play a significant role. It is well known from single indentation
theory that a low strain hardening exponent 𝑛 will lead to the rise up of a ridge whereas a high strain
hardening exponent will prevent the formation of this ridge (Cheng et al. 2004). This is illustrated in
Fig. 16.

For 𝑛 = 0.3 (consequentially 𝑛 = 0.4), a sink-in is observed in single indentation as shown in Fig. 15.
For multiple wedges indentation, sink-in and pile-up are more difficult to detect. Indeed, the contact
depth over penetration depth ratio ℎ𝑐/ℎ is badly defined in this case. Moreover, some additional factors
can be involved in this behaviour with for example the plastic flow of the material confined by the
groove formed by the two neighbouring indenters. It makes the comparison difficult with the classical
comprehension of the pile-up or sink-in as presented in Bolshakov et al. 1998; Cheng et al. 2004, since
more parameters are at stake. Therefore we can ascertain that the higher the strain hardening parameter
𝑛, the lower the closing index for a given contact ratio but it cannot be entirely linked to pile-up (or
sink-in) behaviour. Within the plastic locking stage, the materials generally flows up homogeneously to
fill the remaining free volume for symmetric indenter angles. In Fig. 12, 13 and 14, the black dashed
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Figure 14: Influence of the strain hardening exponent 𝑛 on multiple wedges indentation, with 𝜎𝑌 = 100MPa.
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Figure 15: Computed vertical displacement field in single indentation (with 𝑛 = 0.3). Sink-in is observed as the
displacement is negative.

Pile-up Sink-in

hc hch

Figure 16: Illustration of the pile-up (blue) and sink-in (red) behaviours of the deformed surface in indentation.

line stands for the bearing contact model. This model is quite satisfying to describe the closing index,
especially for low hardening, but performs poorly when it comes to the prediction of the force (or
hardness), especially at the end of the interaction step and the plastic locking step. This means that the
present simulations can help correct and predict the necessary force for sealing while the geometrical
kinetics of sealing is more difficult to understand through them and rather be described by a simpler
model as the bearing contact one. Therefore the higher the strain hardening parameter 𝑛, the lower
the closing index for a given contact ratio. As discussed before the plastic locking stage starts when the
two neighboring indentation-induced plastic strain field recover each other. Within this regime there
is no more indentation pile-up and the materials flow up homogeneously to fill up the remaining free
volume. This is the reason why the evolution of the closing index 𝑆∗ as a function of the contact ratio
𝐿∗ is no more dependent on the strain hardening exponent. Eventually, the start of the plastic locking
regime might be determined from such a plot by measuring the minimum value of the contact ratio for
which the curves merge into a single curve.

Interestingly, the dimensionless sealing force 𝐹 ∗ presented in Fig. 14-b is only slightly affected by the
strain hardening exponent up to the start of the plastic locking stage. The dimensionless sealing force 𝐹 ∗
corresponds to the elementary force acting over two neighboring asperities. It is thus prone to be used in a
reduced model (Yastrebov et al. 2011) aiming at predicting the sealing ability of surfaces based on arrays of
wedge, typical of face-turned surface.

The present study aims at understanding how sealing materials can flow up to achieve a full contact
between a rigid rough surfaces and a soft material. To this end, a dry contact was considered, that is
no fluid is present and could be entrapped at the interface, especially in closed cavities resulting from
surrounding surface deformation during the indentation process. The usage of this framework is mainly
motivated by the fact that metal seals are generally installed and compressed under dry conditions
in practice. However, when a fluid is present at the interface, the problem obviously becomes more
complicated as simulations accounting for fluid-solid interactions are required to describe such behaviour
(Azushima et al. 1995; Bech et al. 1999). In this case, it might be assumed that the three stages would be
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greatly modified. Indeed, an entrapped fluid would bear a part of the load actually decreasing contact
pressure on the material surface and eventually decreasing the resulting contact area. Shvarts et al. 2018
however consider that for realistic fluids and material no dramatic opening of the contact takes place.
To extend the use of our work to wet surfaces as such found in lubrication problem, it would thus be
necessary to run additional simulations with entrapped fluid.

5 Conclusions
This article dealt with wedge indentation in the framework of sealing. The objective was to investigate
with the help of the finite element method how the mean contact pressure increases when two wedge
indenters interact up to the full closing of the cavity in-between. Three successive indentation regimes are
clearly evidenced. The first regime is the single wedge indentation one and is characterized by a constant
mean pressure called material hardness. When approximately 25% of the total projected area is in contact,
the second regime begins. It is defined as the interaction one and corresponds to a linear increase of the
mean contact pressure as a function of the contact length. The third and last regime takes place after 75%
of contact and is the plastic locking regime defined by a fast pace increase in contact pressure up to full
closing. The results are rather consistent with slip lines field theory (Salikhyanov 2019). Note that this
theory is restrictive since it is limited to rigid perfectly plastic solids. We should also recall that the law
used in our simulation does not described well high deformation behaviour so flat value of apparent
hardness at high contact ratio is not accurate. An experimental verification would be of great interest to
measure the resulting error Nevertheless, although this paper appears as a first step in this very complex
field, some first conclusions of interest can be drawn for the indentation and sealing communities:

• Single indentation regime
– For contact angle of 20◦ and within the range of metallic materials for sealing, the hardness is

modelled with an accuracy of 2.5% using the Representative Elastic Material model developed
by Kermouche et al. (2005).

– The adaptation of the Gao et al. (2006) expanding cavity model to wedge indentation leads also
to satisfactory results, with a lesser accuracy regarding sealing materials nonetheless.

• Interaction regime
– The use of suitable dimensionless quantities leads us to show that the interaction regime is

almost geometry-independent, which is of primary importance regarding the development of
further reduced sealing contact models.

– The main parameter governing the interaction regime is the strain hardening exponent. A
higher strain hardening exponent leads to the start of the interaction regime for a lower
contact length and a higher increase of the hardness.

• Plastic locking regime
– Contrary to slip line field prediction, the plastic locking regime is not really “locked”. The

sealing can proceed up to full closing, at the cost however of a fast increase of the apparent
hardness, up to two to three times the single wedge indentation hardness. It fixes a virtual
limit for closing, hence sealing, to approximately 80% of total projected area.

– Here again, the main parameter governing the interaction regime is the strain hardening
exponent 𝑛. A higher strain hardening exponent leads to the start of the plastic regime for a
lower contact length and a higher increase of the hardness.

• About sealing
– For a given hardness, the best sealing materials are those that can delay the start of the

interaction regime, that is those with the lowest strain hardening exponent 𝑛.
– The sealing of face-turned surface can be complete only once the plastic locking regime is

ended for one groove.
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A Mesh convergence study – single wedge indentation
The physical quantity studied by the single wedge indentation simulation is the contact pressure under the
tip of the indenter (i.e. the hardness). It is computed by dividing the vertical indentation force by the
projected contact area for multiple penetrations. The average value over these penetrations is kept to limit
mesh effects, and this is valid since the stress and strain fields are supposed to be geometrically similar. To
assess the effect of mesh refinement on the computed hardness, the following error is defined

𝜖 =
|H𝑚𝑒𝑠ℎ −H𝑟𝑒 𝑓 |

H𝑟𝑒 𝑓

, (13)

where H𝑚𝑒𝑠ℎ is the hardness computed for a given mesh size and H𝑟𝑒 𝑓 is the reference hardness, chosen
as that obtained for the finest mesh. Fig. 17 presents the evolution of this error for various meshes and
materials. The mesh size is expressed in terms of elements at the surface of the contact area. These
elements are responsible for the measure of contact area and contact pressure and, as such, should be
numerous to described the contact properly. It can be observed that even for a coarse mesh, the error made
is less than 0.6%, with few improvement when elements are doubled from 120 (0.8% ratio) to 240 (0.4%
ratio). We thus conclude that the mesh is converged and that even for comparatively coarse mesh the
effect is weak. In the present study of single wedge indentation, 65 elements (1.5% ratio) in the contact
area are utilized.

B Mesh convergence study – multiple wedges indentation
For the multiple wedges indentation, we define the following error over the entire indentation regime

𝜖 =

∫
|H ∗

𝑚𝑒𝑠ℎ
−H ∗

𝑟𝑒 𝑓
| d𝐿∗∫

H ∗
𝑟𝑒 𝑓

d𝐿∗
, (14)

where again H ∗
𝑚𝑒𝑠ℎ

is the dimensionless hardness for a given mesh size, H ∗
𝑟𝑒 𝑓

is a reference dimensionless
hardness (that obtained with the most refined mesh) and 𝐿∗ is the dimensionless contact length. Fig. 18
shows the evolution of the error as a function of the relative mesh size (ratio of the element size and the
distance between the indenters𝑊 ). The error is relatively small even for coarse meshes. However, the
mesh produces an oscillation-like effect due to the discrete variation of the contact length (see Fig. 19).
This local discrete variation is quite misleading so the focus of the present study should be laid upon a
locally average variation of the quantities instead. To this end, a sliding average filter is employed so as to
use a relatively coarse mesh while having a reasonable computational time. The effects of using such
sliding average filters are shown in Fig. 20. The hardness for the coarse meshes is then in better agreement
with that obtained with the more refined ones. Nevertheless, the averaging window acts severely on the
first points which were presenting the widest oscillation, and the average value falls below the ratio
H ∗ = 1 at small contact length. Note that this effect is mostly resolved from 𝐿∗ = 0.2 onward, that is the
interval of interest of the current study. The mesh convergence holds for several materials and it can be
concluded that the dependencies of the apparent hardness on the hardening coefficient or yield stress
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Figure 17: Evolution of the error on the single indentation hardness as a function of the relative mesh size, using the
most refined mesh as reference.

observed in this article are not due to a mesh effect. In this article, a mesh ratio of 1% relative to the
distance𝑊 between indenters is kept.
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Figure 18: Evolution of the error on the multiple wedges indentation hardness as a function of the relative mesh size,
using the most refined mesh as reference.
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Figure 19: Apparent hardness as a function of the normalized contact area for different mesh size and different
materials without averaging filter
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Figure 20: Apparent hardness as a function of the normalized contact area for different mesh size and different
materials using an averaging filter
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