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Performance of metallic seals used between face-turned surfaces is related to their abilities to flow plastically in

order to fill up cavities between wedge-shaped asperities. Double wedge indentation is therefore a simple way to

investigate what happens at such a seal–flange interface. In this paper, finite element analyses of single and double

wedge indentations are conducted. A particular attention is paid to the effects of hardening parameters on the

resulting hardness. First, it is observed that single wedge indentation hardness can be well-approximated by the

adaptation of analytic models initially developed for cone indentation problems. Second, it is shown that interaction

between indentation-strain field during double wedge indentation starts once the bearing ratio is about 25%. It leads to

a significant mean contact pressure increase, which is strongly dependent upon the strain hardening exponent.

Eventually, for a bearing ratio higher than 75%, a plastic locking stage occurs, which leads to an exponential increase of

the mean contact pressure. Practical applications of this work to indentation and sealing research fields are discussed.

Keywords wedge, indentation, FEM, roughness interaction, metallic seals

1 Introduction
High-performance sealing applications rely on the use of entirely metallic seals. Their efficiency is directly

related to the ability for the soft metallic outer liner of the seal to plastically flow in and around the

topographical defects of the facing rigid rough surfaces, to reduce the leakage paths at the seal–flange

interface (Pérez-Ràfols et al. 2016). In many applications, the flat surface of the rigid flanges are obtained

through face turning (Robbe-Valloire et al. 2008). With such manufacturing process, the resulting surface

possesses a characteristic spiral-grooved texture (see Fig. 1). The resulting topography can be approximated

by arrays of wedges (Fig. 1), the dimensions of which being directly related to the process parameters

(feeding rate, cutting depth) and tool geometry (tool tip radius) as presented in Dumas et al. (2021).

Therefore, modelling of multiple wedge indentation can be of prime importance to better understand the

sealing mechanism of a rough rigid flange by a metallic gasket. The problem of sealing can thus be viewed

as a matter of describing the evolution of the gap at the seal–flange interface (at the roughness scale) as a

function of the applied normal load on the contact. This latter depends on wedge indentation-induced

contact pressure, that is the wedge indentation hardness.

Sharp indentation of elastoplastic solids has been widely investigated during the last three decades,

mostly because of the huge interest brought by the use of nanoindentation testing to characterize

mechanical properties of materials at a very small scale (Oliver et al. 1992; Cheng et al. 2004). However

most of the developments were devoted to conical or pyramidal indentation tests with only a few articles

related to wedge indentation. Since wedge indenters are self-similar when the contact is made along

the apex of the wedge, the principle of geometric similarity holds provided that the indented solids is

semi-infinite and that there is no internal length to account for (Kermouche et al. 2005). Consequently the

hardness (i.e., the mean contact pressure) does not depend upon loading parameters such as the applied

load or the displacement relative to the surface. The hardness is thus a function of material properties and

tip geometry only, here the tip angle for wedge indentation. In the case of wedge indentation of rigid

perfectly plastic solids, a direct relation can be made between the hardness and the yield stress through

slip lines theory of Hill (1950). An exact solution for wedge indentation of linear isotropic elastic solids

was also derived from Boussinesq’s theory by Johnson (1987). Between these two cases, an approximate

elastoplastic solution was derived through the concept of the representative elastic material that makes it

possible to relate the hardness to the yield stress accounting for materials elasticity (Kermouche et al.

2005). Surprisingly, methods based on expanding cavity analogies (Gao et al. 2006; Feng et al. 2007) were

not used to model wedge indentation, although their extension to this framework seems straightforward.

Consequently there is still a need nowadays to investigate which models lead to the best prediction of

hardness of elastoplastic solids when indented by a wedge.

Single wedge indentation corresponds to the first stage of sealing, when the distance between two

successive peaks is significantly larger than the contact length of a single peak. For a given contact length,
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Figure 1: Topography of a measured face-turned rough surface. The representation of a radial profile by an array of

wedge indenters is shown on the right.

the indentation-induced strain fields of the two successive peaks start to interact, which violates the

principle of geometric similarity (Tabor 1951; Cheng et al. 2004). Therefore the hardness becomes a

function of the ratio of the contact length and the distance between the peaks. Only a few papers (Meguid,

Collins, et al. 1977; Salikhyanov 2019) have dealt with such a problem since it requires an incremental

approach to derive an analytical solution through the slip lines theory. It is shown that two stages occur

after the single wedge indentation stage. The first stage is the interaction stage that corresponds to the

interaction between the two neighbouring indentation strain fields. Within this stage, the hardness

increases. This stage ends when the interaction between the two indentation strain fields result in a global

plastic locking. At this point the sealing cannot be improved anymore but is not terminated. To enter the

last stage of sealing, it is required that the plastic strain field interacts with some interfaces or boundary

conditions that forces the materials to flow up again. Eventually the remaining gap is filled with the

sealing materials and the sealing is over. There is clearly a need to investigate in a deeper way how to

describe these last two stages.

This article is organized as follows. First, we describe two single wedge hardness models developed

for Hollomon-based strain hardening elastoplastic solids. The results are compared to Finite Element

calculations to evidence the limitation of these two models. Then, we propose to investigate the interactions

between two neighbouring wedges using a Finite Element Analysis. Results are given in terms of apparent

hardness and compared to single wedge hardness. A particular attention is paid to the identification of

different interaction regimes from the single wedge indentation one to the final sealing stage. Finally,

conclusions and perspectives of this study are given.

2 Theoretical framework
2.1 Single wedge indentation models
As a versatile and easy-to-measure mechanical property, hardness is widely studied in the literature.

Several well-known models predict its value for rigid perfectly plastic solids through the slip lines method

of Hill (1950) or the empirical method of Tabor (1996). They lead to the conclusion that hardness is a

measure of the yield stress of a material through Eq. (1) where H𝑚𝑎𝑡 is the material hardness, 𝜎𝑌 is the

yield stress of the material and 𝛽 the tip-to-surface contact angle

H𝑚𝑎𝑡

𝜎𝑌
= 𝑓 (𝛽). (1)

However, real engineering materials exhibit non negligible elasticity and strain hardening so that models

developed for rigid perfectly plastic solids can lead to strong discrepancies. In such case, the hardness is

typically formulated as a function of supplementary material parameters as

H𝑚𝑎𝑡

𝜎𝑌
= 𝑓

(
𝛽,

𝐸

𝜎𝑌
, 𝑛

)
, (2)

with 𝐸 the Young modulus and 𝑛 the hardening exponent. In this work, we propose to compare two

analytical models, the Expanding Cylindrical Cavity model (ECC) from Johnson (1987); Gao et al. (2006)

and the Representative Elastic Material model (REM) derived from Tabor (1951). These two models take

strain hardening into account and are briefly introduced in the following sections.

2.1.1 The Expanding Cylindrical Cavity model (ECC)
For the ECC model, the stress and strain fields under the apex of the wedge are idealized as the expansion

of a cylindrical cavity subject to hydrostatic pressure. Johnson (1970) first offered this modelling for
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Figure 2: Schematic representation of the cylindrical cavity expansion under a wedge indenter.

conical and wedge indenters in elastic perfectly plastic materials. However, it does not take into account

the strain hardening of real materials. Later, Gao (2003); Gao et al. (2006) extended the use of such model

to obtain an analytical formulation for conical and spherical hardness for a elastoplastic material following

Hollomon’s power-law hardening (𝜎 = 𝜎1−𝑛
𝑌

(𝐸𝜀)𝑛 with 𝜎 the equivalent stress, 𝜎𝑌 the yield stress, 𝐸 the

Young modulus, 𝑛 the hardening exponent and 𝜀 the total equivalent strain). Fig. 2 gives a representation

of the plane strain cylindrical expansion of cavity, to be applied to determine the hardness in single wedge

indentation of elastoplastic solids. A summary of the model is given here for general comprehension.

Considering a semi-infinite half space, indentation creates a dead volume which does not deform, joined

together with the tip. This core volume is considered as a cylindrical cavity which expands itself in the

material under a hydrostatic pressure linked to the mean pressure under the tip (i.e., material hardness).

From the classical solution of an elastoplastic cylinder subject to internal pressure, stress and displacement

fields can be derived (Gao 2003). It yields an elastic zone (𝑟 > 𝑟𝑝 ) where the material remains elastic, and a

plastic zone (𝑟𝑐 > 𝑟 > 𝑟𝑝 ) where material undergoes plastic deformation. The radius of the plastic zone 𝑟𝑝
is determined by the internal pressure and the radius of the cavity, or core, 𝑟𝑐 . As shown on Fig. 2, an

increment of indentation 𝛿 induces an expansion of the core. The volume of material being conserved, this

expansion is equivalent to the volume of material displaced by the wedge which depends of the contact

angle 𝛽 . The radial displacement being known for the cylinder expansion, the quantities 𝑟𝑝 and 𝑟𝑐 can be

related with one another and further with the total displaced volume. Hence, the internal pressure can be

expressed, depending only on the material characteristics and the contact angle of the wedge.

According to our assumption, the internal pressure should be equal to the hardness of the material

H𝑚𝑎𝑡 . However, it is known that the model based on Johnson (1970) underestimates the hardness. To this

end, Studman et al. (1977) and Gao et al. (2006) propose a correction to the expression of this internal

pressure based on the stress discontinuity occurring at 𝑟𝑐 . Following a similar correction for the case

of wedge indentation, the modified ECC model gives a corrected hardnessH𝑚𝑎𝑡 in Eq. (3), showing a

dependency to the yield stress 𝜎𝑌 , the strain hardening coefficient 𝑛 and Young’s modulus 𝐸 arising from

Hollomon’s and Hooke’s laws. According to principle of geometrical similarity, the only geometrical

parameter is the contact angle 𝛽

H𝑚𝑎𝑡 =
𝜎𝑌√
3

{
1 − 1

𝑛
+
(√

3

2

+ 1

𝑛

) (
2

𝜋
√
3

𝐸 tan 𝛽

𝜎𝑌

)𝑛}
. (3)

2.1.2 The Representative Elastic Material model (REM)
This model has been extensively described in Kermouche et al. (2005) and thus only the main features are

given hereafter. To describe the indentation of materials and based on empirical considerations, Tabor

(1951) proposed to define a representative stress 𝜎𝑟 and a representative strain 𝜀𝑟 , characteristic of the

process under concern. The REM model defines a representative elastic material whose stress–strain curve

passes through the (𝜀𝑟 , 𝜎𝑟 ) couple of the indented material. The Young modulus of the representative

material is thus simply defined as 𝐸𝑟 = 𝜎𝑟/𝜀𝑟 . The representative strain can be split into a an elastic and a

plastic part as 𝜀𝑟 = 𝜀𝑒𝑟 + 𝜀
𝑝
𝑟 , with the elastic part being given by 𝜀𝑒𝑟 = 𝜎𝑟/𝐸. Following the suggestion of

Tabor, the representative plastic strain 𝜀
𝑝
𝑟 can be chosen as proportional to the tangent of the contact

angle 𝛽 as 𝜀
𝑝
𝑟 = 𝜁 tan 𝛽 . Note that when the contact angle is “small”, only elastic strain may take place.

Hence, a threshold contact angle 𝛽0 has to be considered. The hardness (mean contact pressure) of the
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representative elastic material can be formally derived using the linear elastic contact theory for a wedge

as (Sneddon 1965)

𝑝𝑚 =
1

2

𝐸𝑟

1 − 𝜈2𝑟
tan 𝛽, (4)

where 𝜈𝑟 is the representative Poisson coefficient, often taken as 0.5. Then assuming that the coefficient of

proportionality between the hardness and the representative stress is the same for the representative

elastic material and the indented material, the hardness of the latter is given by

H𝑚𝑎𝑡 = 𝑝𝑚 =
1

2(1 − 𝜈2𝑟 )
𝜁𝜎𝑟 tan 𝛽

𝜁 tan 𝛽 + (1 − 𝜁 ) 𝜎𝑟
𝐸

, (5)

where 𝜁 is a function of the representative Poisson’s ratio and the contact angle. In Eq. (5), Young’s

modulus 𝐸 and contact angle 𝛽 are used explicitly. However, the hardening coefficient 𝑛 and yield stress

𝜎𝑌 are implicitly found in the calculation of the representative stress 𝜎𝑟 from the representative strain 𝜀𝑟
(see Kermouche et al. (2005) for more details).

2.2 Multiple wedge indentation
To avoid artefacts related to interactions between neighbouring indents, the usual rule consists in

separating two successive indents with a distance about 20 times that of the penetration depth. This

empirical rule is actually based on the dimension of the plastic zone beneath an indent. This zone is often

assumed as spherical for pyramidal indentation, cylindrical for wedge indentation, with a radius about 3

times the contact radius. For Berkovich and Vickers tips (𝛽 ≈ 20°), the contact radius is about 3 times

the penetration depth. This is the reason why the plastic zone length is often assumed as 10 times the

penetration depth, which leads to define a distance between two neighboring indents about 20 times the

penetration depth to avoid interaction artefacts. For a Cube corner tip (𝛽 ≈ 45°), this distance should be

significantly smaller, but for asperity angles typically found in sealing (𝛽 ≲ 10°) it should be much larger.

Hence the validity range of single wedge indentation appears to be very limited to investigate a sealing

process.

Application of slip lines theory to interacting wedges were recently proposed by Salikhyanov (2019). It

was developed for contact cold welding of metallic plates which is somewhat close to the sealing process.

The substrate is a rigid perfectly plastic infinite half-space but such a theory can be extended to finite

media (Hill 1950a). The main drawback is that a perfectly plastic material does not deform elastically

neither harden. Hence it cannot be expected to transpose the derived results to a real case in a quantitative

manner. Such an approach was successfully used for single wedge indentation (Hill 1950b; Johnson 1987)

and allows to highlight some interesting features, such as the relation between hardness and yield stress,

the pile-up geometry or the wedge angle effect. From this point of view the work of Salikhyanov (2019)

pointed out some interesting features in the framework of the interaction of two neighboring wedges

through the interaction of two wedge indentation slip lines fields.

As expected, the self-similarity is lost when the two slip line fields start interacting. The hardness

(mean contact pressure) starts increasing up to the plastic locking process that happens when the two slip

line fields fully recover. At this point the sealing is stopped but not ended. The last stage of sealing can

occur only if the resulting slip line field interacts with another one (through the presence of the substrate

boundary or another asperity) that forces the materials to flow up again. Consequently the contact

between the wedge-shaped asperities and the material can be described through an apparent hardness

H , which is a priori higher than the single wedge material hardness H𝑚𝑎𝑡 . This apparent hardness is a

function of geometrical parameters (contact angle 𝛽 , distance between wedges𝑊 , penetration depth 𝛿 and

projected contact area 𝐿𝑐 ) as well as elastoplastic material parameter as

H
𝜎𝑌

= 𝑓

(
𝛽,

𝛿

𝐿𝑐
,
𝑊

𝐿𝑐
,
𝐸

𝜎𝑌
, 𝑛

)
. (6)

3 Numerical framework and simulations
The Finite Element Method (FEM) has been widely used in the past decades to explore the mechanical

response of materials under indentation loading and to check analytical models derived for that purpose

(Cheng et al. 2004; Poon et al. 2008). Hereafter FEM is used to compare the two analytical models derived

for single wedge indentation. Then a FEM investigation of interacting wedges is proposed to explore how

the apparent hardness is affected by material properties and geometrical parameters. In this section, the

two single and multiple wedge indentation FE models are described in details.

3.1 Single wedge indentation
Calculations have been performed with the commercial FEM code ABAQUS® using 2D plane strain

elements to model wedge indentation, and using a large displacement–large strain option (updated
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Figure 3: Single indentation FEM simulation in ABAQUS®. Partial view of the mesh of the indenter (blue) and the

substrate (grey).

Lagrangian formulation, logarithmic strain). The mesh is especially refined near the contact zone, but is

also sufficiently wide to approximate a semi-infinite solid (see Fig. 3). For a good representation of the

contact geometry, the width of the elements has been determined so as to have at least 37-66 nodes in

contact for the deepest penetration. The whole mesh contains about 4285 elements and 4374 nodes. The

contact between the indenter and the workpiece is assumed to be frictionless and loading is monitored by

prescribing a vertical quasi-static displacement of the indenter into the surface. Furthermore, the indenter

is assumed to be perfectly rigid. The plastic flow is described by a von Mises yield criterion coupled to

isotropic strain hardening. The stress–strain curves follows Hollomon’s power-law hardening described by

two parameters, namely the initial yield stress 𝜎𝑌 and the strain hardening exponent 𝑛. As shown in Cheng

et al. (2004), the effects of the contact angle 𝛽 and the Young modulus 𝐸 on the hardness can be deduced

from dimensional analysis. As a consequence, it is chosen in the present work to mostly investigate the

effects of Hollomon’s hardening parameters 𝜎𝑌 and 𝑛 on the resulting wedge hardness. Young’s modulus

and Poisson’s ratio are arbitrarily taken as those of steel (𝐸 = 210GPa and 𝜈 = 0.3). The value of the

contact angle has been fixed to 𝛽 = 20°. Hereafter it is proposed to compare the performance of the two

analytical ECC and REM models (given by Eqs. (3) and (5) respectively) in predicting the material hardness

for material properties typical of those found metallic seals materials (aluminium, copper, silver, etc.)

For each simulation, the total vertical force 𝐹 and the projected contact length 𝐿𝑐 can be computed.

Note that since the problem is treated in plane strain, 𝐹 is homogeneous to a force per unit depth (direction

of the axis of the wedge), but simply denoted as “force” in the subsequent for simplicity. The hardness is

further obtained as the mean vertical contact pressure and given by

H𝑚𝑎𝑡 =
𝐹

𝐿𝑐
. (7)

Since single wedge indentation of semi-infinite half space satisfies the principle of geometric similarity, the

hardness is only computed for the last computational frames and an average is performed on these last

frames to eliminate any discrete mesh effects.

3.2 Double wedge indentation
In the framework of sealing, interaction between rigid asperities is clearly too complex to be investigated

in a purely analytical way. Hence FEM appears as a method of choice to explore such phenomena. It

has already been used on one hand to deal with interacting flat punches (Meguid and Klair 1985) or to

check the slip line fields proposed by Salikhyanov (2019). In this paper, we design a geometry of double

wedge indentation based on this latter approach (see Fig. 4). The effects of geometrical parameters that is

proposed to be explored in this work are the distance between the two neighboring wedges𝑊 and the

contact angle 𝛽 . Periodic boundary conditions are applied on the left and right side of the model. The bulk

height 𝐵 is also taken into account since it also plays a role on sealing (it can be viewed as the thickness of

the sealing outer liner), in particular at the last stage of sealing. The two wedges being similar in this

paper, the reader may notice that a supplementary vertical symmetry in the middle of the two indenters
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Figure 4: Scheme of the double wedge indentation geometry. The indenter is shown in blue and the substrate in grey.

Table 1: Values of geometrical parameters used for the FEM simulations

Geometry 𝛽 𝐵 [mm] 𝑊 [mm]

#1 10° 1.00 0.10

#2 10° 1.00 0.50

#3 10° 0.30 0.10

#4 5° 1.00 0.35

#5 5° 1.00 0.10

could have been used. This is due to the fact that the present numerical model was first designed to

handle the general case of asymmetrical indenters. We chose however to focus only the results for the

symmetrical case in the present paper.

Similarly to the case of single indentation, the simulations have been performed with ABAQUS® using

2D plane strain elements to model wedge indentation and using a large displacement–large strain option

(updated Lagrangian formulation, logarithmic strain). The contact between the indenter and the substrate

is considered frictionless and the wedge indenters perfectly rigid. The whole mesh contains about 6420

elements and 6648 nodes (see Fig. 4). The mechanical behaviour of the substrate is described through

the same constitutive model than the one used for single wedge indentation (Hollomon’s power-law

hardening).

Hereafter it is proposed to explore the effects of Hollomon’s parameters on the apparent wedge

indentation hardness H . We choose to focus on hardening parameters in the range 0.05 ⩽ 𝑛 ⩽ 0.4 and

20MPa ⩽ 𝜎𝑌 ⩽ 200MPa in the simulations. Since double wedge indentation does not satisfy the principle

of geometric similarity when wedge-induced strain fields start interacting, the hardness is computed at

each computational step. A sliding average filter is applied to eliminate mesh-induced artificial oscillations

due to the discrete evolution of the contact length. This new instantaneous hardness is called apparent

hardness,H . The results will be interpreted through the evolution of this parameter as a function of

the projected contact length. For sealing purposes in mind, it is interesting to follow the closing of the

aperture. Consequently, the evolution of the current opening between bulk and indenter 𝑆 (comparable to

the free volume under the indenter) is monitored during the indentation process. Five indenter geometries

are investigated to highlight the influence of geometrical parameters defined in Fig. 4. The five sets of

parameters employed are summarized in Tab. 1.

4 Results and discussion
4.1 Single wedge indentation
The accuracy of both the ECC and the REM analytical models are assessed with the help of finite element

modelling of single wedge indentation. To do so, the relative error defined in Eq. (8) is used, with H𝑚𝑎𝑡
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Figure 5: Error maps for single indentation models, with 𝐸 = 210GPa and 𝛽 = 20°.

the material hardness given by the ECC and REM models of Eqs. (3) and (5) respectively, and
�H𝑚𝑎𝑡 the

hardness obtained numerically by the FEM simulations

𝜖 =
|H𝑚𝑎𝑡 − �H𝑚𝑎𝑡 |�H𝑚𝑎𝑡

. (8)

Fig. 5 summarizes the main results obtained for 𝛽 = 20°. Note the region highlighted in red that

corresponds to hardening parameters typical of metallic sealing materials (copper, aluminium, nickel) with

0.2 ⩽ 𝑛 ⩽ 0.3 and 50MPa ⩽ 𝜎𝑌 ⩽ 200MPa. The ECC model yields very good results for a hardening

exponent close to 0.3. The higher the yield stress, the higher the precision. However for the extreme case

of low yield stress and low hardening exponent, the relative error can reach 50%. This corresponds to the

asymptotic case of rigid perfectly plastic solids for which it is well known that expanding cavity based

models fail (Johnson 1987). Unlike the ECC model, the REM model leads to errors lower than 10% over the

whole investigated range of parameters. It is worth of interest to note that the REM model is almost

insensitive to the yield stress. Its best accuracy is obtained in the range 0.2 ⩽ 𝑛 ⩽ 0.3, which corresponds

to the range of sealing materials. For this latter case, the relative error is lower than 2.5%.

A wide range of angles is at stake in sealing surfaces so Fig. 6 presents numerical results for angles

𝛽 = 15°, 10° and 5°, focusing on the region of sealing materials. With a smaller contact angle, REM model

gradually under-performs but stays quite homogeneous with a relative error lower than 10%. ECC model

remains in good agreement near 𝑛 = 0.3 as previously, but the corresponding zone becomes narrower. It is

then outperformed by the REM model outside this thin and unpredictable area. Finally, its heterogeneity is

a problem in itself while the relative error of the REM model can be compared to a constant offset.

From these results it is thus recommended to use the REM model to compute the wedge hardness in

the framework of sealing applications. However this model is restricted to single indentation (i.e., without

interaction between the neighbouring asperities). To highlight this point, the hardness results obtained by

FEM for the single indentation case are compared to those obtained for the case of double indentation as a

continuous function of the applied load on the indenter. The evolution of the dimensionless apparent

hardnessH ∗ = H/H𝑚𝑎𝑡 , is presented as a function the applied indentation load in Fig. 7. As expected, the

single indentation hardness does not depend upon load, while the double indentation hardness increases

quite rapidly with the load, indicating more and more prominent interaction effect between the indenters.

Also, both model yield to the same result for the low load range (i.e., H ∗ ≈ 1). Results below a given load

are not shown since the number of nodes in contact is not large enough. The increase at larger load is
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Figure 6: Error maps for single indentation models, with 𝛽 = 5°, 10° and 15°.

clearly the effect of tip interaction observed by Salikhyanov (2019). In other words, the single indentation

stage is followed by the interaction stage that leads to an increase of mean contact pressure due to asperity

interaction.

4.2 Double wedge indentation
Double indentation is observed through apparent hardness and dimensionless contact area. The results

are presented using dimensionless quantities for a clarity purpose and to gain physical insight in the

phenomena at play. First, the apparent hardness H is made dimensionless by the single wedge indentation

material hardnessH𝑚𝑎𝑡 (computed using the REM model of Eq. (5)) as

H ∗ =
H

H𝑚𝑎𝑡

. (9)

As observed in the previous section, such a dimensionless parameter will highlight the evolution of

hardness due to interaction and hardening of the material. The dimensionless sealing force 𝐹 ∗ is defined as

0 5 10 15 20 25 30 35 40
Indenter force [N]

0.95

1.00

1.05

1.10

1.15

1.20

*

Single indentation
Double indentation

Figure 7: Comparison of the computed instantaneous hardness between single and double wedge indentation.
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Figure 8: Typical evolution of the hardness as a function of the contact width in double wedge indentation, highlighting

the three steps.

𝐹 ∗ =
𝐹

𝑊H𝑚𝑎𝑡

, (10)

with 𝐹 the actual force on the indenter and where𝑊H𝑚𝑎𝑡 represents the force that would lead to full

contact in a bearing contact model (Dapp et al. 2012), considering a constant mean pressure over the

contact taken as the material hardness. In addition, note that we have the obvious relation 𝐹 ∗ = H ∗𝐿∗.
The closing index 𝑆∗ = 𝑆/𝑆0 is defined to monitor the evolution of the free space under the indenter with a

scalar value. This gives an idea of the average gap between the indenter and the substrate, and hence of

the sealing progress. In a similar manner, one can derive the dimensionless (projected) contact area 𝐿∗

defined by

𝐿∗ =
𝐿𝑐

𝑊
, (11)

𝐿𝑐 being the projected true contact length. The evolution ofH ∗
as a function of the contact ratio 𝐿∗ is

shown in Fig. 8 to highlight the three main stages of sealing. This curve has been obtained considering the

first geometry in Tab. 1 and Hollomon’s parameters, 𝜎𝑌 = 100MPa and 𝑛 = 0.2. The first stage is the

single wedge indentation stage. As shown previously, the apparent hardness is well described by the

wedge indentation REM model. The transition between the single indentation regime to the interaction

regime is quite smooth. It is considered here that the interaction regime starts once the increase of the

hardness is around 5%, that corresponds to a contact ratio 𝐿∗ ≈ 0.25. Within the interaction regime, the

hardness seems to be proportional to the contact ratio. Once a given contact ratio of 𝐿∗ ≈ 0.75 is reached,

the hardness starts increasing exponentially. This last regime is the global plastic locking regime that

begins when the two neighbouring indentation-induced plastic flow fully recover. Contrary to slip line

field calculations (Salikhyanov 2019), the sealing keeps increasing but at the cost of a fast increase of the

apparent hardness. At full contact when 𝐿∗ → 1, the hardness reaches a value close to 2.5 that of the

single wedge indentation material hardness. To illustrate these three regimes, the equivalent plastic strain

field associated to each regime is given in Fig. 9. Note that theses results have been obtained for a given

configuration. In the two following sections, effects of indenter geometry and strain hardening parameters

will be investigated in details.

4.2.1 Effects of the geometrical parameters
Fig. 10 presents the evolution ofH ∗

, 𝐹 ∗ and 𝑆∗ as a function of 𝐿∗ for the five double indentation geometries

defined in Tab. 1. The strain hardening parameters remain the same for each calculation, their values were

chosen as 𝜎𝑌 = 100MPa and 𝑛 = 0.2. The three sealing stages are clearly visible. H ∗
and 𝑆∗ seems to be

geometry-independent. The height of the bulk 𝐵 has very little influence contrary to what was expected

from the theoretical investigation of Hill (1950). It might however not be excluded that 𝐿∗ and 𝑆∗ already
include somehow the influence of the height. Therefore it is recommended to not consider 𝐵 as a driving

parameter for the interaction stage of sealing. The only geometrical parameter which seems worth of

interest is the contact angle 𝛽 . The difference between 10° and 5° is however not important enough to be

9
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Step 1

Step 2

Step 3

Figure 9: Field of the equivalent plastic strain computed in ABAQUS® for the three stages of the double indentation.

clearly visible on Fig. 10. Note that Fig. 10-c points out the closing kinetic during double indentation.

The bearing contact model is a purely geometrical model based on the concept of erosion (Dapp et al.

2012). The indenter displacement consumes material on its way without provoking any elastic or plastic

deformations. A contact pressure is associated to this contact and corresponds to the hardness of the

eroded materialH𝑚𝑎𝑡 . The response of this model to double indentation is drawn in dashed lines on Fig 10.

It further shows the differences brought by interaction of indenters. These results show that sealing

regimes can be described through dimensionless parameters that are almost geometry-independent.

4.2.2 Effects of the material parameters
Let us now vary the strain hardening parameters and fix the geometrical configuration to 𝛽 = 10°,

𝑊 = 0.1mm and 𝐵 = 1mm (corresponding to geometry #1 in Tab. 1). The influence of the yield stress is

presented in Fig. 11. As expected from Eq. (1) the normalization byH𝑚𝑎𝑡 totally transfers the effect of

𝜎𝑌 to the single indentation step. Moreover further steps do not seem to be modified by a variation in

the yield stress. The kinetic of closing in Fig. 11-c is not influenced by 𝜎𝑌 and is quite similar to the

simple bearing contact in this case, it argues for few sink-in or pile-up behaviour in these material and

geometrical conditions.

Fig. 12-a shows the effects of the strain hardening exponent 𝑛 on the evolution of H ∗
as a function

of 𝐿∗. Note that here again, the three sealing stages are still clearly observable. The strain hardening

parameter 𝑛 seems to have a significant influence on both the slope of the interaction stage and the start of

the plastic locking stage. The higher the strain hardening exponent, the faster the hardness increase.

However, this is particularly visible for larger contact ratio. Let us note that H ∗
is not equal to 1 for

𝑛 = 0.4 at low contact ratio and the expected plateau-like evolution of single wedge indentation is not

visible. This may be a consequence of the REM hardness model which may lead to some error for such

value of the strain hardening exponent. It can also be a consequence of a smaller single indentation regime

when the strain hardening parameter increases. The finite element mesh might be too coarse to catch this

regime properly as well. For sealing like material (𝑛 ≈ 0.2), the plateau-like regime is clearly visible.

It is followed as expected by a linear, then by an exponential increase of the hardness. It is therefore

clearly observed here that the asperities interaction effect is enhanced by the strain hardening ability of

sealing materials. As a matter of fact, it would be better to use materials exhibiting a low strain hardening

exponent for sealing applications. Let us note that this significant effect of 𝑛 prevents the use of the

theoretical frameworks of Hill et al. (1947) or Salikhyanov (2019) to quantitatively predict the sealing

process.

The evolution of the closing index is also affected by the strain hardening ability of the sealing material
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Figure 10: Influence of the geometrical parameters (see Tab. 1) on double indentation. The results from the bearing

contact model are given as dashed lines.
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Figure 11: Influence of the yield stress on the double indentation, with 𝑛 = 0.2.
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Figure 12: Influence of the strain hardening exponent 𝑛 on double indentation, with 𝜎𝑌 = 100MPa.
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Figure 13: Illustration of the pile-up (blue) and sink-in (red) behaviours of the deformed surface in indentation.

as shown in Fig. 12-c. At first, it may be surprising to state that the highest impact is observed during the

single indentation and interaction stages and not the plastic locking stage. Let us remember that the

closing index is only related to the shape of the free surface for a given contact ratio. Therefore piling up

and sinking ability of the material will play a significant role. It is well known from single indentation

theory that a low strain hardening exponent 𝑛 will lead to the rise up of a ridge whereas a high strain

hardening exponent will prevent the formation of this ridge (Cheng et al. 2004). This is illustrated in Fig. 13.

Therefore the higher the strain hardening parameter 𝑛, the lower the closing index for a given contact ratio.

As discussed before the plastic locking stage starts when the two neighboring indentation-induced plastic

strain field recover each other. Within this regime there is no more indentation pile-up and the materials

flow up homogeneously to fill up the remaining free volume. This is the reason why the evolution of

the closing index 𝑆∗ as a function of the contact ratio 𝐿∗ is no more dependent on the strain hardening

exponent. Eventually, the start of the plastic locking regime might be determined from such a plot by

measuring the minimum value of the contact ratio for which the curves merge into a single curve.

Interestingly, the dimensionless sealing force 𝐹 ∗ presented in Fig. 12-b is only slightly affected by the

strain hardening exponent up to the start of the plastic locking stage. The dimensionless sealing force 𝐹 ∗

corresponds to the elementary force acting over two neighboring asperities. It is thus prone to be used in a

reduced model (Yastrebov et al. 2011) aiming at predicting the sealing ability of surfaces based on arrays of

wedge, typical of face-turned surface.

5 Conclusions
This article dealt with wedge indentation in the framework of sealing. The objective was to investigate

with the help of the finite element method how the mean contact pressure increases when two wedge

indenters interact up to the full closing of the cavity in-between. Three successive indentation regimes are

clearly evidenced. The first regime is the single wedge indentation one and is characterized by a constant

mean pressure called material hardness. When approximately 25% of the total projected area is in contact,

the second regime begins. It is defined as the interaction one and corresponds to a linear increase of the

mean contact pressure as a function of the contact length. The third and last regime takes place after 75%

of contact and is the plastic locking regime defined by an exponential increase in contact pressure up to

full closing. The results are rather consistent with slip lines field theory (Salikhyanov 2019). Note that this

theory is rather restrictive since it is limited to rigid perfectly plastic solids. Nevertheless, although this

paper appears as a first step in this very complex field, some first conclusions of interest can be drawn for

the indentation and sealing communities:

• Single indentation regime
– For contact angle of 20° and within the range of metallic materials for sealing, the hardness is

modelled with an accuracy of 2.5% using the Representative Elastic Material model developed

by Kermouche et al. (2005).

– The adaptation of the Gao et al. (2006) expanding cavity model to wedge indentation leads also

to satisfactory results, with a lesser accuracy regarding sealing materials nonetheless.

• Interaction regime
– The use of suitable dimensionless quantities leads us to show that the interaction regime is

almost geometry-independent, which is of primary importance regarding the development of

further reduced sealing contact models.

– The main parameter governing the interaction regime is the strain hardening exponent. A

higher strain hardening exponent leads to the start of the interaction regime for a lower

contact length and a higher increase of the hardness.

• Plastic locking regime
– Contrary to slip line field prediction, the plastic locking regime is not really “locked”. The

sealing can proceed up to full closing, at the cost however of a fast increase of the apparent

hardness, up to two to three times the single wedge indentation hardness. It fixes a virtual
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limit for closing, hence sealing, to approximately 80% of total projected area.

– Here again, the main parameter governing the interaction regime is the strain hardening

exponent 𝑛. A higher strain hardening exponent leads to the start of the plastic regime for a

lower contact length and a higher increase of the hardness.

• About sealing
– For a given hardness, the best sealing materials are those that can delay the start of the

interaction regime, that is those with the lowest strain hardening exponent 𝑛.

– The sealing of face-turned surface can be complete only once the plastic locking regime is

ended for one groove.
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