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The aim of this study is to investigate experimentally the transition from a rigid regime to a
deformed regime for flexible discs freely advected in turbulent flows. For a given disc, the
amplitude of the deformation is expected to increase when its bending modulus decreases
or when the turbulent kinetic energy increases. To quantify this qualitative argument,
experiments are performed where the deformation of flexible discs is measured using three
cameras. The amplitude of the deformation has been characterised by the eigenvalues of the
moment of inertia tensor. Experimental results exhibit a transition from a rigid regime to a
deformed regime that depends on the size, the density and the flexibility of the disc and the
turbulent kinetic energy. The modeling of this transition is a generalisation and an extension
of the previous models used to characterise the deformation of flexible fibres in turbulent
flows.
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1. Introduction
Modeling the advection of particles in turbulent flows is a fundamental problem with various
applications going from the advection of plankton in the ocean (Guasto et al. 2012) to the
formation of planet (Pumir & Wilkinson 2016). The particles considered in these problems
have many different sizes, shapes, densities and rheologies. The role of size (Qureshi et al.
2007; Cisse et al. 2013; Klein et al. 2013), of the shape (Parsa et al. 2012; Parsa &Voth 2014;
Byron et al. 2015; Pujara et al. 2018) and of the particle to carrying fluid density ratio (Bec
et al. 2007; Volk et al. 2008) on the particle advection have been addressed in several studies
since the 2000’s. In turbulence, the first investigations on deformable particles were partly
motivated by drag reduction and focused on bubbles or polymers (Vanapalli et al. 2006;
Ravelet et al. 2011; van Gils et al. 2013; Loisy & Naso 2017; Lohse 2018; Vincenzi et al.
2021). The question of the role of flexibility on the advection of fibres in turbulent flows
has been raised recently. The transition from straight to bent fibres is controlled by the ratio
of the fibre length to persistence length. This persistence length depends on the mechanical
properties of the fibre, on those of the fluid and on the turbulent kinetic energy ε (Brouzet
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et al. 2014). More recently, it has been shown that, in the flexible regime, the statistics of the
fibre deformations depend on the fibre length (Gay et al. 2018; Sulaiman et al. 2019) and
that the dynamics of the deformation are given by the coherent structures of the flow (Rosti
et al. 2018; Allende et al. 2018). Moreover, increasing fibre flexibility leads to an increase of
preferential accumulation in high vortical regions (Picardo et al. 2020). One direct application
of the research on deformable objects is the formation of microplastics in the oceans, a global
environmental threat (Andrady 2017). Recent investigations on the fragmentation of brittle
fibres in turbulence highlight the relation between the deformation of these fibres and the
fragment size distribution (Allende et al. 2020; Brouzet et al. 2021). A relevant next step
would be to extend these results to 2D and 3D objects which constitute the large majority of
plastic debris in the ocean (Morét-Ferguson et al. 2010; Cózar et al. 2017). For slender bodies,
such as fibres, fluid and particle inertia can generally be neglected due to the slenderness
of the particle even for particles longer than the Kolmogorov length (Batchelor 1970; Shin
& Koch 2005; Bounoua et al. 2018). However, this assumption does not hold for 2D or 3D
objects larger than the Kolmogorov length. Therefore, if for fibres the main contribution of
the hydrodynamic stress tensor is due to the viscous stress, for 3D objects, such as spheres,
larger than theKolmogorov scale the hydrodynamic stress tensor is dominated by the pressure
term (Volk et al. 2011). For 2D objects, such as discs, the modeling of the hydrodynamic
stress is still an open question at moderate to high Reynolds numbers.
In turbulent flows, the dynamics of rigid discs have been mainly investigated numerically

by considering rigid oblate spheroids with a major axis smaller than the Kolmogorov
length (Voth & Soldati 2017). Disc-like particles tend to have their axis of symmetry perpen-
dicular to the local vorticity leading to a predominance of tumbling over spinning (Chevillard
& Meneveau 2013; Byron et al. 2015; Pujara et al. 2018). In these works, the question of
disc deformability has never been addressed. Conversely, several studies investigate the role
of the deformation on the motion of a settling disc. Most of these studies aim to understand
the different oscillatory motions of a disc falling in a fluid at rest and relate the motions to the
disc’s wake (Jenny et al. 2004; Fernandes et al. 2008; Auguste et al. 2013; Heisinger et al.
2014). The influence of deformability on the settling of 2D objects has been investigated both
theoretically (Alben 2010) and experimentally (Tam et al. 2010; Vincent et al. 2020). They
all show that deformability increases the settling speed due to a modification of the shape
of the object. This phenomenon is well known by the fluid structure interaction community
where the object is held fixed in a flow. In that case, the drag reduction is due to the
bending of a plate by the flow (Schouveiler & Boudaoud 2006; Gosselin et al. 2010). The
transition from flat to bent plate is governed by a Cauchy number defined by the ratio of the
hydrodynamic pressure to the plate rigidity CY ∼ ρL3U2/B where ρ is the fluid density, U
its mean streamwise velocity and L and B are the typical length and the bending modulus
of the plate. In these studies, the hydrodynamical constraint is mainly due to the mean
streamwise flow as the turbulent fluctuations are negligible compared to the mean flow. On
the contrary, the settling of rigid discs is still poorly understood when turbulent fluctuations
are important. Some recent results show that the settling speed increases due to turbulence
when the turbulent fluctuations are smaller than the settling speed of the disc in a fluid at
rest (Esteban et al. 2019) and decreases when the turbulent fluctuation are higher (Byron
et al. 2019). However a model for this phenomenon is still missing.
The present study is focused on the deformation of freely advected flexible discs in turbulent

flow. We limit ourselves to the case of low settling rate where the turbulent fluctuations are
of the order of or larger than the settling speed of the disc. In that respect, this study is closer
to the one of Byron et al. (2019) on the settling of hydrogel particles than the one of Esteban
et al. (2019) on the settling of thin rigid discs. The governing non dimensional parameter
is then expected to be different than the classical Cauchy number, based on the streamwise
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Integral Turbulent Taylor Kolmogorov Kolmogorov Reynolds
length dissipation rate length length time number

LI [cm] ε [m2.s−3] λT [mm] ηK [µm] τK [ms] Rλ
5-7 3.8-1.4 1.5-2.5 29-72 0.8 - 5.2 300 - 710

Table 1: Ranges of variation in the main parameters of turbulence in the measurement
volume.

velocity, generally used in fluid-structure interaction community (Tam et al. 2010; Vincent
et al. 2020).
In the next section, the experimental setup, the turbulence properties and themanufacturing

of the particles are presented. The main results are presented in the third section and their
interpretation in the fourth. The final section is a discussion of the results and a conclusion.

2. Experimental setup
The experiments are performed in a 60 cm cubic tank filled with water. The turbulent flow
is generated by the rotation of eight rotors with a diameter Dr of 17 cm and fitted with
six straight blades 5 mm in height. Each impeller is located at a vertex and points towards
the center of the cube. The rotation rate Frot of each impeller can be set independently
between 5 and 19 Hz. In the present study, they all rotate at the same frequency but with
an opposite direction to their three closest neighbours. An image of the tank can be seen
in Oehmke et al. (2021). The flow properties have been determined by Particle Image
Velocimetry (PIV) (Xu & Chen 2013). The measurements have been performed in a cubic
volume of nearly 10×10× 10 cm3 at the center of the tank where the mean flow is negligible
(Ū2/U2

rms ∼ 10−2, where Urms is the root mean square velocity and Ū the magnitude of
the mean flow). The turbulent dissipation rate ε is given by the structure function relation
Dll(r) = 〈(u(`) − u(` + r))2〉 = C2ε

2/3r2/3 (Frisch 1995). It scales as ε ∼ F3
mot as expected

in von Kármán like devices (Labbé et al. 1995; Pinton et al. 1999; Monchaux et al. 2009).
The comparison of the component of the Urms in different locations of the volume of
measurement shows that the turbulence is fairly homogenous and isotropic. The relative
homogeneity and the isotropy is confirmed by our previous studies mainly on the rotation of
fibres (Bounoua et al. 2018; Bordoloi et al. 2020; Oehmke et al. 2021). The variance of the
tumbling rate and the correlation times do not depend on the location of the measurements
and are equal, up to the statistical error bars, for the three components of the tumbling vector
for all the particles we have tested. From the measurements of Urms and ε one can deduce
the main timescales and lengthscales of the turbulence (considering a kinematic viscosity
ν = 10−6 m2/s for pure water): the Kolmogorov length ηK = (ν3/ε)1/4, the integral length
LI = U3

rms/ε, the Taylor length λT = (15νU2
rms/ε)

1/2 and the Reynolds number based on the
Taylor length Rλ = λUrms/ν. The ranges of variation of these quantities are listed in Table 1.
These measurements have been validated by our previous studies on the rotational dynamics
of fibres where our measurements were in agreement with different experiments (Bounoua
et al. 2018; Oehmke et al. 2021) and numerical simulations of the literature (Bordoloi et al.
2020) .
The aspect ratio, the Young’s modulus and the density of the discs have been varied to

investigate their influence on the transition from the rigid regime to the flexible one. The
elastic discs are manufactured in the lab with two different silicones from Esprit Composite,
EC00 and R1, having different Young’s moduli. First, silicone is poured on a glass plate



4

Material Symbol Young’s modulus Density Thickness Radius
E [kPa] ρ [kg.m−3] e [µm] R [mm]

EC00 � 50 1190 540 8
EC00 � 50 1190 220 8

EC00 + Cu * 110 2110 240 5
EC00 + Cu + 110 2250 390 8

R1 J 660 1110 190 8
R1 N 660 1110 350 8
R1 I 660 1110 350 13

R1 + Cu • 1600 2170 270 8
R1 + W ? 1600 4055 350 8

Table 2: Mechanical properties of the different discs used in this study. Note that the
concentration of copper varies between the two disc made of EC00+Cu. The standard
deviation of the thickness was of the order of 25 µm for all the cases. The symbols

correspond to the symbols used for each disc throughout this article.

and levelled at the desired thickness e using tape as spacers. The final sheet thickness varies
between 190 and 540 µm and was controlled with a 2D laser displacement sensor LJ-V7080
from Keyence with a resolution of 1 µm. The discs are then cut with various hollow punches
having different radii R. To vary the density of the discs, some of them have been made
with silicone loaded with copper or tungsten powder having a grain size of ∼ 45 µm and of
∼ 25 µm respectively. The final density was measured by weighing 20 discs of known radius
and thickness. Finally, the stress-strain curve of a silicone stripe (∼ 10 × 50 mm2) cut in the
same sheet as the discs was measured using a ZwikiLine testing machine from Zwick/Roell
company in order to estimate the Young’s modulus. The mechanical properties of the discs
used in this study are summarised in Table 2. The influence of buoyancy can be estimated
by comparing the typical settling velocity us = ((4ρ/ρ f )eg)1/2, where 4ρ = ρ − ρ f is
the density difference between the particle and the fluid (Jenny et al. 2004; Esteban et al.
2019), to the turbulent fluctuation Urms. The ratio us/Urms is always small for lighter discs
(ρ . 1200 kg.m−3) so buoyancy is always negligible in these cases. For heavy discs this
settling velocity might be higher than Urms at very low rotation rates F < Fmin. To minimise
buoyancy effects for these discs, the minimal rotation rate Fmin investigated here has been
chosen so that the root mean square of the turbulent flow Urms = αDrFrot , where α is
a constant, is equal to the settling speed us: Frot > Fmin = us/αDr . Finally, the disc
concentration cd is always very low, cd = NdπR2e/Vtot . 2.10−5. The interactions between
discs and their feedback on the flow can then be neglected Elgobashi (1994).

3. From rigid to flexible discs
Determining if an object is bent or not does not require measuring its exact shape. For
instance, Brouzet et al. (2014) quantified the deformability of fibres in turbulence using
the distance between the two extremities of the fibre which is smaller than the fiber length
for a bent fibre. Here, a similar approach is used by looking at the global shape of flexible
discs advected in a turbulent flow. Three 1 MP cameras are used to simultaneously image
the volume of measurement. Only the discs seen by the three cameras are reconstructed.
We are not interested in the dynamics of the deformation so the acquisition rate Facq

is purposely low, Facq = Frot . This minimises the correlation between images and the
quantity of data needed to ensure a good convergence of the deformation statistics. The
cameras are modelled by the pinhole model whose 11 parameters (position and orientation

Focus on Fluids articles must not exceed this page length
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Figure 1: a,b and c) Typical images with a superimposition of the reconstructed disc
shown in red dots. d) Illustration of the reconstruction process with the voxel selection.
Here for simplicity, the axis of the voxel array is aligned with the axes of the cameras. e)

Reconstructed object from the convex hull volume method with the voxel selection
detailed in the text. The color codes the z coordinate of the voxel

of the camera in the lab frame, scaling factors, the skew parameter and the projection of the
principal points onto the image plane) are determined through a calibration process (Faugeras
& Luong 2001; Hartley & Zisserman 2003; Verhille & Bartoli 2016). The calibration is
performed within the fluid to take into account the variation of the refractive index through
the different interfaces (water/plexiglass/air) (Agrawal et al. 2012). The shape of the disc is
then determined by the convex hull volume method also known as the Shape from Silhouette
method in computer vision (Cheung et al. 2005; De La Rosa Zambrano et al. 2018). Here,
the volume of reconstruction is divided into cubic voxels of 500 µm in length. Each voxel is
projected onto each image plane. The voxels for which their projections belong to a disc in
all images are stored. At the end of this stage the deformed disc is made of a group of voxels.
As we aim to reconstruct a surface, voxels which are not at the boundary of the object are
discarded. Moreover, if two voxels are projected identically onto an image, the voxel closer
to the camera is stored and the farther is discarded. An illustration of the voxel selction is
sketched in Figure 1.d, and an exemple of a reconstructed disc from 3 images is shown in
Figure 1.e.
The convex hull volume method gives only access to the convex envelope of the object

and not to its real shape. However, this information is sufficient for determining if a disc is
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(a) (b) (c)

Figure 2: a) Ratio of the shape factor λ2/λ3 as a function of λ1/λ3 for all of the
reconstructed discs made from silicone R1 (R = 8 mm, e = 190 µm) at Frot = 19 Hz. The
shaded area is an unreachable zone as λ2 > λ1 by definition. b) Evolution of the mean

shape factor for the same disc at different frequencies. The color codes the frequency. The
plain line and the dashed line correspond to theoretical prediction, see text for more detail.
c) Evolution of the mean shape factor as function of the turbulent dissipation rate for all

the discs (for symbols, see table 2).

bent. Here, disc deformations are quantified by the moment of inertia tensor I defined by:

Ii j =
N∑
k=1

mk

(
|rk |2δi j − x(k)i x(k)j

)
(3.1)

where rk = (x
(k)
1 , x(k)2 , x(k)3 ) is the vector connecting the voxel k to the center of mass of the

group of voxels and mk is the mass of point k which is constant here, so mk = m. The shape
of the object can be characterised by the three eigenvalues λ1 6 λ2 6 λ3. These quantities
are extensive, as they depend on the mass of the particle. This prevents an easy comparison
of discs having different sizes. To work with intensive quantities, we define two shape factors
λ1/λ3 and λ2/λ3 independent of the disc size. These shape factors are not shape specific,
meaning that two different objects can have the same shape factors. For instance, a cuboid of
dimension d1 = d2 > d3 and a cylinder of length L f and radius rf have the same shape factors
if 3d2

3/d
2
1 = L2

f /r
2
f − 2. A cube (d1 = d2 = d3) and a cylinder of aspect ratio L f /rf =

√
5

also have the same shape factors. In the plane (λ1/λ3,λ2/λ3), three points are remarkable:
the point (1/2,1/2) which corresponds to a thin disc, (1,0) to a thin cylinder and (1,1) to a
sphere. In Figure 2a the different shape factors measured for discs made with the silicone
R1 (e = 190 µm and R = 8 mm) at Frot = 19 Hz are shown. Most of the points stay in
the vicinity of the point (0.5,0.5) corresponding to a flat disc. This shows that in this case
most of the discs are undeformed. There is also a cluster of points in the neighbourhood of
the point (0,1) corresponding to a cylinder. This suggests that at the onset of the transition,
deformable discs tend to roll up more than to crumple like a packed paper sheet.
To characterize the transition from rigid to flexible disc, we focus on the mean shape

factors 〈λ1〉/〈λ3〉 and 〈λ2〉/〈λ3〉, where 〈·〉 is a time and an ensemble average. The evolution
of these parameters when the rotation rate Frot is varied is shown in Figure 2b for the same
discs as in Figure 2a. One can see that these shape factors are good proxies for the disc
deformability as the evolution of 〈λ2〉/〈λ3〉 and 〈λ1〉/〈λ3〉 is monotonic when the rotation
rate of the impellers increases, and so when the turbulent dissipation rate ε increases. In the
following the disc deformability will be quantified by 〈λ2〉/〈λ3〉 which increases when the
deformation of the disc increases. The evolution of this parameter as a function of ε is shown
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Figure 3: 3D representation of an undistorted disc K0 = 0, on the left, and of a bent disc,
K0R=1, on the right.

on Figure 2c. As expected the deformability increases with the turbulent dissipation rate and
is higher for discs having a smaller Young’s modulus or a smaller aspect ratio Λ = e/R.

4. Modeling
4.1. Disc shape

We will first model the evolution of the disc shape. As shown on Figures 2a and 2b, at the
onset of the transition, discs tend to wrap and form cylinder like particles. The exact shape
of the disc is given by the equation of elasticity:

σ∂ttr + B∇2∇2r = ξ, (4.1)

where r is the position of a point on the disc, ∂tt the second temporal derivative, σ = ρe the
surface density and B = Ee3/12(1 − ν) the bending modulus of the disc, with ν ' 0.5 the
Poisson coefficient of silicone, and ξ the hydrodynamic stress. The disc being freely advected
and as no external torque is applied at the boundary, the boundary condition is κ(r = R) = 0.
To model the evolution of the shape, we consider a simple solution where a flat disc lies

in the x − z plane and can only deform in the y direction according to:

yd(x) =
K0

2
x2

(
1 −

x2

6x2
R

)
, (4.2)

where K0 is the curvature at the center of the disc and xR the lateral extension of the disc.
For an inextensible disc, xR is defined by the arc length which should be equal to the disc
radius:

R =
∫ xR

0
ds =

∫ xR

0

√
dx2 + dy2 =

∫ xR

0

√√√
1 + K2

0 x2

(
1 −

x2

3x2
R

)2

dx, (4.3)

Representations of a flat and a bent disc are shown in Figure 3. The (x,y,z) axes being the
principal axes of the object, the eigenvalues of the moment of inertia of the bent disc are
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(a) (b)

Figure 4: a) Theoretical evolution of the shape factors of a bent disc represented on
Figure 3 as a function of the normalised curvature K0R. b) Evolution of the mean shape

factor 〈λ2〉/〈λ3〉 for a partially empty cylinder.

given by:

Ix =
∫ xR

xR

dx
∫ ∞

0
dy

∫ zm

−zm

dz((y − yG)
2 + z2)δ (y − yd(x)) (4.4)

Iy =
∫ xR

xR

dx
∫ ∞

0
dy

∫ zm

−zm

dz(x2 + z2)δ (y − yd(x)) (4.5)

Iz =
∫ xR

xR

dx
∫ ∞

0
dy

∫ zm

−zm

dz((y − yG)
2 + x2)δ (y − yd(x)) (4.6)

where zm(x) is the maximum height of the disc at the position x and is given by:

z2
m(x) = R2 −

(∫ x

0
ds

)2
, (4.7)

and yG = 3K0x2
R/20 is the y-coordinate of the center of gravity. The exact expressions of

the moments of inertia are relatively tricky to compute analytically. We then compute the
evolution of the shape factors numerically for different K0, cf. Figure 4a. The theoretical
evolution of the bent disc in the (λ1/λ3, λ2/λ3) plane is represented by the plain line in
Figure 2b. As one can see the general trend is well captured by this model, but there is an
offset between the measurements and the theoretical prediction. Two sources of discrepancy
can be identified. First, the number of voxels forming the disc ismuch smaller than the number
of voxels used to compute the theoretical moment of inertia. A second source of error is
related to the convex hull volume method. As detailed previously, for voxels projecting onto
the same pixel only the voxel closest to the camera is stored. The reconstructed disc is then,
in general, not a disc but a partially filled cylinder, as illustrated by Figure 1d. To estimate
the order of magnitude of this last source of error, we can compute the shape factor of an
object made of touching two coaxial cylinders: one filled of radius R and thickness h, and
one empty cylinder of inner/outer radii R1 and R with the same height h. Here h is given
by the voxel size and we take R1 = R − h. The evolution of λ2/λ3 for this object is shown
on Figure 4b. The value of the shape factor for h = 0 is equal to the one of a flat disc and
increases when h is increased. As mentioned previously the exact value of the offset cannot
be determined rigorously and has been considered as a constant free parameter to fit the data.
The dashed line on Figure 2b is obtained by shifting the theoretical prediction for a disc
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by 0.1 in the vertical direction (〈λ2〉/〈λ3〉) and 0.01 in the horizontal direction (〈λ1〉/〈λ3〉).
These coefficients will remain fixed in the following sections.
Here, the agreement between our model and our measurements suggests that near the

transition the disc bend and adopt a U-shape which can be described by equation 4.2. All
the physics of the deformation are then hidden in the parameter K0 which depends on the
disc deformability and the turbulent intensity. The following sections aim to model these
dependencies.

4.2. A power budget argument
As shown in Figure 4a, if K0R . 10−2 the deformations are weak and the disc can be seen
as rigid, whereas if K0R > 10−2 deformations are important and the disc is indeed flexible.
The curvature K0 then plays a role similar to the persistence length `p for the deformation
of wormlike chain polymers. The stiffness of polymers is characterised by the ratio of their
length Lp to the persistence length `p, defined by 〈t(s) · t(s + `)〉 = e−`/`p , where t(s) is the
tangent vector at the position s (Yamakawa 1971). If Lp � `p deformations are important.
On the contrary if Lp � `p the polymer remains straight and is considered stiff. In polymer
theory, the order of magnitude of the persistence length is given by the balance of the thermal
energy kBT with the elastic energy Eel ∼ EI/`p, where kB is the Boltzmann constant, T
the temperature and I the area moment of inertia. Brouzet et al. (2014) draw an analogy
between this system and flexible fibres distorted by a turbulent flow. They showed that the
energy balance was not able to capture the transition from rigid to flexible fibres. The reason
is that the correlation time of turbulence is, in general, of the same order of magnitude as the
dynamical timescale of the deformations. Therefore, contrary to polymers, the forcing cannot
be modeled by delta correlated noise. The energy budget has then to be replaced by a balance
of power. Indeed, the deformation of a fibre in a turbulent flow is an out-of-equilibrium
stationary process. The mean elastic energy stored by the fibre Eel is then constant and:

dEel
dt
= Pinj − Pdis = 0, (4.8)

where Pinj is the power injected by the turbulence and Pdis is the power dissipated by
viscosity. For fibres whose lengths are in the inertial range, deformations are due to eddies
of similar sizes. The turbulent power Pturb is then given by Pturb ∼ ρ f L3

pε. The dissipative
term should be proportional to the elastic energy Eel stored in the fibre and should depend
on the typical timescale of the deformation τdef . The ratio of these two terms defines an
elastic power Pel . For fibres, they showed that the timescale of the deformation is given by
the relaxation time defined by the ratio of the viscous stress to the bending stress.
Following a similar argument, one can assume that the transition from a rigid to a flexible

disc is given by the balance of the turbulent power:

Pturb ∼ ρ f R3ε (4.9)

and the elastic power:
Pel,v = Bκ2R2/τB, (4.10)

where τB is the relaxation timescale of the deformation given by the balance of the viscous
stress ξv with the bending stress B∇2∇2r in equation 4.1. From dimensional analysis, at small
Reynolds number, ξv scales as:

ξv ∼
µ

R
(u f − ∂tr), (4.11)

where u f is the fluid velocity and µ the dynamical viscosity of the fluid. The relaxation time
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(a) (b)

Figure 5: Evolution of the mean shape factors 〈λ1〉/〈λ3〉 (a) and 〈λ2〉/〈λ3〉 (b) as a
function of the normalised turbulent dissipation rate ε/εv . The dashed line represents the

best fit of an ideal bent disc, see text for more details.

is then:
τB ∼ µR3/B, (4.12)

and, assuming that at the transition κ can be replaced by 1/R in equation 4.10, the elastic
power scales as:

Pel,v ∼
B2

µρ f R3 , (4.13)

The balance of power Pturb = Pel,v defines a critical turbulent dissipation rate εv:

εv =
B2

ρ f µR6 . (4.14)

If this model was able to capture the physics of the deformation, the evolution of the mean
shape factors should only depend on the ratio ε/εv . To compare the theoretical evolution
of the shape factor with this prediction one needs to relate the curvature K0 to ε. Using
equation 4.9, 4.10 and 4.12, which define the turbulent and elastic power, one can show
that near the threshold the typical curvature κ, and therefore K0, should be proportional to
ε1/2. The comparison of the theoretical and measured evolution of the mean shape factors
as a function of ε/εv is shown in Figures 5a and 5b. The dashed line is the best fit of the
experimental measurements considering K0 as a free parameter. Here, the global trend is
well captured by the theoretical prediction. However, the estimation of the threshold with
this model is not valid as evidenced by the scattering of the experimental points around the
theoretical prediction. In particular, the threshold of the discs having the highest densities
(symbols?and •) seems to be at least one order ofmagnitude lower than themodel prediction.
In this model, inertia is always neglected. It is then not surprising that the dependency of

the transition on the disc density is not captured for high densities. Another model, derived
by Rosti et al. (2018), considers the density of fibres. The transposition of their model to
discs is presented in the following section.

4.3. A temporal argument
The second model used to quantify fibre deformation is based on a temporal argument. If the
forcing timescale is smaller than the deformation timescale, deformations are weak as fibres
do not have the time to adapt their shapes to the flow. On the contrary, if the forcing timescale

Rapids articles must not exceed this page length
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(a) (b)

Figure 6: Evolution of the mean shape factors 〈λ1〉/〈λ3〉 (a) and 〈λ2〉/〈λ3〉 (b) as a
function of the normalised turbulent dissipation rate ε/εr . The dashed line represents the

best fit of an ideal bent disc, cf. text for more details.

is larger than the deformation timescale, the fibre is distorted by the coherent structures of
the flow.
As for the model presented in section 4.2, the transposition of this idea to the current study

requires an estimation of the deformation timescale of the discs. Two timescales are relevant
depending on the influence of particle inertia. The first one is the relaxation timescale,
as defined by equation 4.12. It is used to define the Weissenberg number which generally
quantifies polymer deformations in turbulent flows (Vincenzi et al. 2021). The second one
is the resonant frequency which has been used by Rosti et al. (2018) to quantify fibre
deformations in the underdamped regime, i.e. when viscous stress is negligible as compared
to particle inertia. As shown previously, the relaxation time is independent of the particle
density. Therefore a model solely based on this timescale should not be able to describe our
measurements.
The resonant frequency of the discωd is given by the equation of elasticity 4.1 by balancing

the inertial term σ∂ttr and the bending term B∇2∇2r:

ω2
d = cω

B
σR4 , (4.15)

where cω is a constant which depends on the excited mode. In the following we will consider
the case where cω = 1. When the disc radius R is in the inertial range of turbulence, the
relevant timescale for the forcing τturb is the typical time of eddies of similar size:

τturb ∼ R/uR ∼ R2/3ε−1/3, (4.16)

where uR ∼ (εR)1/3 is the typical velocity at scale R. From these two timescales, one can
define an inertial Weissenberg number Wi = ωdτturb which should be of order unity at the
transition. This defines a critical turbulent dissipation rate εr above which a disc can be bent:

εr =
B3/2

σ3/2R4 (4.17)

Contrary to the previousmodel, this model cannot predict the evolution of themean curvature
κ as function of ε. There was relatively good agreement between the shape of the theoretical
prediction and the global trend of the measurement in the previous scaling argument, so we
will assume that κ ∼ ε1/2. Once again K0 will be considered as a free parameter in order to
fit the experimental data.
The measurements and the theoretical predictions are compared on Figures 6a and 6b. As
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(a) (b)

Figure 7: Evolution of the mean shape factors 〈λ1〉/〈λ3〉 (a) and 〈λ2〉/〈λ3〉 (b) as a
function of the normalised turbulent dissipation rate ε/εr . The dashed line represents the

best fit of an ideal bent disc, cf. text for more details.

for the previous case, there is a scattering of the experimental points around the theoretical
prediction for both shape factors. The failure of this approach is not surprising as it was
derived to describe the transition between two modes of deformation of fibres: the excitation
of the first bending mode if ωdτturb � 1 and the deformation dependent upon the coherent
structures of the flow if ωdτturb � 1 (Rosti et al. 2018). On the contrary, we focus here on
the transition from rigid to flexible discs which should occur at smaller ε.

4.4. An inertial power balance argument
In the first model presented in section 4.2, the transition from rigid to flexible discs was
modeled using a balance between the turbulent power Pturb and the elastic power Pel =
Bκ2R2/τel assuming that the timescale of the deformation τel was the relaxation timescale,
cf. equation 4.12. In the second model (section 4.3), we introduce a second timescale for the
deformation: the frequency of the first bending mode, cf. equation 4.15. The relevance of
each timescale depends on the importance of the disc inertia in the equation of elasticity 4.1.
This is quantified by the ratio of the inertial term σ∂ttr ∼ σω2

f ζ , where ω f is the forcing
frequency and ζ the typical displacement, to the viscous term µ∂tr/R ∼ µω f ζ/R. This ratio
defines an elastic Stokes number Std:

Std ∼
ρ

ρ f

(
e
ηK

)4/3 (
R
e

)1/3
. (4.18)

Here we have assumed that the forcing timescale is given by the eddies at the scale of the
disc ω f ∼ uR/R. In this study, Std varies between 14 and 320. Inertia is then larger than
the viscous dissipation and the timescales of the deformation should be given by ωd. This
regime corresponds to the underdamped regime investigated by Rosti et al. (2018) for fibres.
Replacing the relaxation time scale by ω−1

d
in the definition of the elastic power leads to:

Pel,w ∼
B3/2κ2

σ1/2 . (4.19)

As for the first model, balancing this elastic power with the turbulent power Pturb = ρR3ε,
we find that κ ∼ ε1/2 near the threshold. Moreover, the critical turbulent dissipation rate εw
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(a) (b)

Figure 8: Evolution of the deflection y(xR) = δ (a) and the radial extension xR (b), see
equation 4.3, as function of the curvature K0.

can be estimated by defining the threshold of the transition by κ ∼ 1/R:

εw =
B3/2

ρ fσ1/2R5 (4.20)

The evolution of the shape factors as a function of the normalised turbulent dissipation
rate ε/εw is shown in Figures 7a and 7b. There is now a good agreement between the
measurements and the theoretical predictions for all the discs except for the most flexible
ones. In that case, deformations probably involved several modes of bending. This cannot be
captured by our model and will be discussed in the following section.

5. Discussion and conclusion
We have presented here an experimental investigation on the deformation of discs within
a turbulent flow. The disc deformations have been measured using the convex hull volume
method and quantified by the evolution of the shape factors 〈λ1,2〉/〈λ3〉, where λi are the
eigenvalues of the moment of inertia tensor. We showed that near the threshold of the
transition, the discs adopt a ∪ shape with a maximum curvature κ located at the center and
which scales as κ ∼ ε1/2. The threshold of the transition is given by an equilibrium between
the turbulent power Pturb and the elastic power Pel defined by the ratio of the elastic energy
to the timescale of the deformation which is here given by the frequency of the first bending
mode. This timescale depends on the elastic Stokes number Std which is relatively large in
this study. When Std � 1, i.e. when e/ηK � (R/e)1/4, viscous stress is dominant and the
timescale should then be given by the relaxation time τB, cf. equation 4.12, as it was for
fibres (Brouzet et al. 2014). More studies are needed to understand the influence of the Stokes
number on the timescale of the deformations and, hence, on the onset of the deformation.
In our modeling we compare the disc deformation to a folded disc shown in Figure 3. For

this simple shape the variation of the curvature and of the deflection at the extremity, given by
yd(xR) = 5K0x2

R/12, evolves linearly with K0 for small deformation, as shown in Figure 8a.
The agreement between the experiments and this simple model calls into question about
the term “transition” we use throughout this paper which suggests that two different states
exist: the rigid and the flexible regime. In fact, the existence of two different regimes can be
seen in the radial extension xR of the disc, cf. Figure 8b, and in the evolution of the shape
factors, cf. Figure 7. For K0R � 1, xR ∼ R so the shape of the disc is well approximated
by a flat disc. For K0R & 1, xR < R meaning that the radial extension in the x direction is
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smaller than in the z direction, cf. Figure 3. In this regime, deformations cannot be neglected
and should impact the disc dynamics. Moreover, investigation of the fragmentation of brittle
fibres shows evidence that the critical length `p, defined by the balance of power, plays a
major role in the fragmentation process (Brouzet et al. 2021). Extrapolating this result to
brittle discs allows us to define a critical size above which deformations, and the following
fragmentation, are important for 2D objects:

Rc =
B3/10(

ρ fσ1/2ε
)1/5 . (5.1)

This length scale could be relevant to determine the size of microplastic fragmented in the
ocean. Considering a plastic bag made of polyethylene with a Young’s modulus of 500 kPa
and a thickness of 80 µm within a turbulent flow with ε ∈ [10−1; 102] m2.s−3, typical during
a storm (Gemmrich & Farmer 2004), the critical size Rc varies between 3.2 mm and 790 µm.
These values show that the plastic bag can easily be deformed within the turbulent ocean.
Moreover, these lengthscales are compatible with field measurements where the fragment
size distribution exhibits a maximum for microplastic particles around 1 mm (Cózar et al.
2014).
Finally in section 4.3, we claimed that the critical value εr derived from the temporal

argument (Wi = 1) should be larger than εw . In fact, εr characterises a transition where the
topology and the dynamics of the deformation are given by the coherent structures of the
flow and not by the eigenmode of the disc. To fully validate this claim more measurements
are needed. However, we can compare the two thresholds εr and εw:

εw
εr
=

σ

ρ f R
=

ρ

ρ f

e
R
. (5.2)

In the case of the most flexible discs investigated here (�), this ratio is of the order of 1/30.
As the threshold of the transition from flat to bent disc occurs for ε/εw ∼ 3, cf. Figure 7, the
second regime of deformation where coherent structures of the flow are responsible of the
disc deformation occur then at ε/εw & 90, as it is the case here, cf. Figure 7. In general, when
ρ ∼ ρ f , for 2D objects where e � R, the transition derived from the temporal argument
occurs at higher turbulent dissipation rate ε than the one corresponding to the excitation of
the bending mode. When the particle and the carrying fluid have very different densities, like
a plastic bag advected in air, this ratio can be of order unity (for a plastic bag with a thickness
e = 80 µm and of typical size 20 cm εw/εr ∼ 2). In that case the deformation should directly
be driven by the coherent structures of the flow. Further investigation is needed to validate
this point.
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